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ABSTRACT

Advances in transcriptomic and translatomic tech-
niques enable in-depth studies of RNA activity pro-
files and RNA-based regulatory mechanisms. Ribo-
somal RNA (rRNA) sequences are highly abundant
among cellular RNA, but if the target sequences do
not include polyadenylation, these cannot be easily
removed in library preparation, requiring their post-
hoc removal with computational techniques to ac-
celerate and improve downstream analyses. Here,
we describe RiboDetector, a novel software based
on a Bi-directional Long Short-Term Memory (BiL-
STM) neural network, which rapidly and accurately
identifies rRNA reads from transcriptomic, metage-
nomic, metatranscriptomic, noncoding RNA, and ri-
bosome profiling sequence data. Compared with
state-of-the-art approaches, RiboDetector produced
at least six times fewer misclassifications on the
benchmark datasets. Importantly, the few false pos-
itives of RiboDetector were not enriched in certain
Gene Ontology (GO) terms, suggesting a low bias for
downstream functional profiling. RiboDetector also
demonstrated a remarkable generalizability for de-
tecting novel rRNA sequences that are divergent
from the training data with sequence identities of
<90%. On a personal computer, RiboDetector pro-
cessed 40M reads in less than 6 min, which was
∼50 times faster in GPU mode and ∼15 times in CPU
mode than other methods. RiboDetector is available
under a GPL v3.0 license at https://github.com/hzi-
bifo/RiboDetector.

INTRODUCTION

rRNA is the predominant form of RNA in both prokaryotic
and eukaryotic cells (1–6). The RNA content in a prokary-
otic or an eukaryotic cell consists of 80–90% rRNA, 10–

15% transfer RNA (tRNA) and 3–7% messenger RNA
(mRNA) and regulatory ncRNA (1–6). RNA sequencing
(RNAseq) of microbial communities and prokaryotic iso-
lates is widely used for activity profiling in microbiology
(7–9). Sequencing of functional non-coding RNAs (ncR-
NAseq) has also expanded our knowledge of the regula-
tory roles of various ncRNAs (10). Furthermore, sequenc-
ing of ribosome-protected mRNA fragments, called ribo-
some sequencing (Riboseq) or ribosome profiling, provides
insight into the translatome (11). However, the lack of
polyadenylation (polyA) tails in prokaryotic mRNAs, all
ncRNAs, and ribosome-protected mRNA fragments in Ri-
boseq complicates the enrichment of these non-rRNA se-
quences before sequencing using polyA tails. Currently, nu-
merous rRNA depletion kits are available that can drasti-
cally remove rRNA sequences for model organisms (12).
However, the efficacy for non-model organisms and un-
known bacteria is limited, which results in highly abun-
dant rRNA reads being retained in the sequencing data.
For example, rRNA reads correspond to 78.44 ± 11.41% of
RNAseq data after rRNA depletion with the MicrobEnrich
and MicrobExpress kits in our previous oral metatranscrip-
tome study (13). In other metatranscriptomic and bacterial
transcriptomic studies, in which the RiboZero kit was used,
the rRNA reads account for 22.05% ± 20.18% to 31.98% ±
10.07% of total reads (14–16).

The presence of abundant rRNA can introduce sub-
stantial bias to transcriptome data. A number of pro-
tein coding genes contain some rRNA-like sequence seg-
ments (17–20), so their expression levels can be strongly
overestimated unless the rRNA reads are removed. Fur-
thermore, rRNA removal can greatly reduce the data size
for downstream analysis and accelerate the entire work-
flow. To facilitate the removal of rRNA sequences from
large-scale sequencing data, a number of methods have
been developed, including Meta-RNA (21), rRNASelector
(22) and rRNAfilter in the RNA-QC-chain pipeline (23)
(named RQC rRNAfilter below), which use hidden Markov
models (HMMs) trained on curated rRNA sequences; Ri-
boPicker (24) and SortMeRNA (25), which are based on
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sequence alignment; and rRNAFilter (26), which applies an
expectation-maximization algorithm to discriminate rRNA
reads and non-rRNA reads based on their k-mer profiles.
Some short-read aligners such as BWA (27) can also be
used to remove rRNA reads. Most of these methods are
either based on alignment algorithms that search for se-
quence homologies or based on a first-order HMM, which
makes probabilistic predictions based on the assumption
that the current state only depends on the state one step
before. Moreover, RNAseq datasets are usually large: one
sample can comprise 10G bases and one dataset may have
100 such samples, and the existing methods take hours to
process one such sample. Thus, those methods may require
weeks to remove rRNA from an entire dataset.

Deep neural networks, particularly recurrent neural net-
works (RNNs), are able to capture the sequence patterns
in a long-range context (28–30). Therefore, we proposed a
novel method named RiboDetector, which is based on a so-
phisticated RNN architecture, the Long Short-Term Mem-
ory (LSTM) (31) network, and detects rRNA sequences
from large sequencing datasets rapidly and accurately with
a very low level of bias for downstream functional analyses.

MATERIALS AND METHODS

Data collection and RiboDetector training

We collected all the rRNA sequences from the SILVA
database, version 138.1 (32), and coding sequences (CDSs)
from the Orthologous MAtrix (OMA) database (August
2020 version) (33). SILVA v138.1 contains curated se-
quences for 510 508 small subunit (SSU) and 95 286 large
subunit (LSU) rRNAs. The August 2020 version of OMA
includes 5 979 441 prokaryotic and 9 522 432 eukaryotic
non-redundant protein coding DNA sequences. To further
reduce the number of sequences but keep the diversity of the
remaining sequences, we performed sequence clustering us-
ing MMseqs2 v12.113e3 (34) at a sequence identity cutoff of
0.7 and a coverage of 0.7 with ‘easy-cluster –min-seq-id 0.7
-c 0.7 –cov-mode 1’, which resulted in 6 935 571 representa-
tive sequences from both prokaryotes and eukaryotes. The
resulting CDSs were mapped against the SILVA sequences
using minimap2 v2.17-r941 (35) with the CIGAR (Concise
Idiosyncratic Gapped Alignment Report) output option ‘-
c –secondary = no’ to detect possible rRNA sequences in
the CDS collection. Thus, 354 CDSs, which shared 98%
similarity and 90% coverage with any rRNA sequences in
the SILVA database, were removed, as they were proba-
bly rRNA sequences erroneously included in the OMA
database. The rest of the CDS collection, consisting of 6
935 217 sequences, comprises the OMA id07 cov07 dataset.
Next, ∼300 000 rRNA sequences and 300 000 CDSs were
randomly selected from SILVA and OMA id07 cov07 as
training data for training the RiboDetector models. A val-
idation dataset was also generated for selecting the best
model. It consists of 1 million paired-end rRNA reads and
1 million paired-end CDS reads simulated from sequences
that are not included in the training data.

To determine the optimal hyperparameter settings, such
as use of a one-directional or bi-directional LSTM, one or
two LSTM layers, and different numbers of hidden units

(64, 128, 256), we compared models trained from the first
30 epochs with different hyperparameter settings. For train-
ing, one-hot encoded full-length rRNA and CDSs were pro-
vided as input. The classification models were trained with a
batch size of 256, a maximum sequence length of 100 (vary-
ing from 70 to 100), and a sliding window step size of 25
for rRNA sequences and 30 for CDSs. We chose 100 as
the maximum sequence length because most of the current
next-generation sequencing short reads are around 100 bp
long. The trained models can be also used for the classifi-
cation of reads longer than 100 bp and shorter than 70 bp.
All the models using 256 hidden units and models based
on two layers of BiLSTM with 128 hidden units were not
trained successfully, because of an ‘out of CUDA (Compute
Unified Device Architecture)’ memory issue. The architec-
ture using one BiLSTM layer with 128 hidden units showed
the best performance in terms of Matthews correlation co-
efficients (MCCs, MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
)

(Supplementary Figure S1A) for the validation dataset.
We then trained the RiboDetector models with the se-

lected optimal hyperparameters (one input layer, one BiL-
STM layer with 128 hidden units, and one fully connected
linear layer with two outputs representing two classes) on
the same training dataset with 150 epochs and an initial
learning rate of 0.001 (Supplementary Figure S1B). The
softmax values of the outputs from the linear layer repre-
senting the predicted probabilities of the input sequences
being rRNA and non-rRNA were computed to calculate
the cross-entropy loss. The implementation uses PyTorch
v1.6 and Python v3.8. Parameter optimization was per-
formed using the stochastic gradient descent method Adap-
tive Moment Estimation (Adam). The learning rate decayed
by a factor of 0.5 every 10 epochs. After 150 epochs of
training, the best model was selected from these 150 models
(last model of each epoch) based on the MCC on the val-
idation dataset. The reads used in the tSNE visualization
were generated from Firmicutes mRNA, Tuf genes, virus se-
quences obtained from the European Nucleotide Archive
(ENA) database, and rRNA sequences downloaded from
the Human Oral Microbiome Database (HOMD) (36).

To further improve the runtime performance of RiboDe-
tector in CPU mode, we used the Open Neural Network Ex-
change (ONNX) technique to accelerate RiboDetector on
a CPU. When taking full advantage of multiprocessing, it
was only about three times slower in CPU mode with 40
CPU cores than in GPU mode with one NVIDIA Tesla
V100 GPU and 40 CPU cores. For low-memory computers,
we provided a ‘–chunk size’ parameter that can substan-
tially reduce the memory use but does not affect much of
the runtime. Additionally, there is also an ‘–ensure’ option
(with option values of ‘none’, ‘rrna’, ‘norrna’ or ‘both’) for
paired-end reads. Specifically, the option ‘rrna’ will output
rRNAs with high confidence; in other words, the read pair
is considered as rRNA only when both ends are predicted as
rRNAs, whereas ‘norrna’, conversely, outputs non-rRNAs
with high confidence. For the option ‘both’, the discor-
dantly predicted read pair will be discarded. The option
‘none’, which is the default option, averages the output
probabilities of both ends and chooses the class with the
higher average probability.
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In the benchmark, we considered rRNA reads as posi-
tives and non-rRNA reads, including mRNA, regulatory
ncRNA, and viral reads as negatives. Therefore, correctly
classified rRNA reads were considered to be true pos-
itives (TPs), whereas incorrectly classified rRNA reads
were considered to be false negatives (FNs). Further, cor-
rectly classified non-rRNA reads were true negatives (TNs)
while misclassified non-rRNA reads were false positives
(FPs). The false positive rate (FPR) was formulated as

false positives
nonrRNA sequences ; the false negative rate (FNR) was defined

as false negatives
rRNA sequences . The misclassifications include FPs as well

as FNs, and the misclassification rate was calculated as
false positives + false negatives

total sequences . The true positive rate (TPR) was

calculated as true positives
rRNA sequences .

Generation of benchmark datasets

To evaluate the performance of RiboDetector and other
rRNA detection methods, we created eight benchmark
datasets with sequences that were not used in the training
and validation datasets described above. The datasets were
simulated using ART Illumina v2.3.7 (37) with the parame-
ter settings ‘-p -l 100 -ss HS25 -m 150 -s 10’. The benchmark
datasets are:

(1) SILVA rRNA to assess the false negative rate of rRNA
detection methods: 20M paired-end reads simulated
from 50 474 SSU and LSU rRNA sequences from the
SILVA database; these sequences are distinct from the
sequences used for training and validation. It includes
18 269 416 rRNA reads generated from 46 107 bac-
terial rRNA sequences, 556 229 rRNA reads gener-
ated from 1401 archaeal rRNA sequences, and 1 174
355 rRNA reads generated from 2966 eukaryotic rRNA
sequences;

(2) OMA CDS to assess the false positive rate of rRNA
detection methods on prokaryotic and eukaryotic mR-
NAs: 20M paired-end reads simulated from 500 000
CDSs from the OMA id07 cov07 dataset excluding the
sequences used for training and validation. It contains 7
634 440 reads from 1639 bacterial species, 650 320 reads
from 153 archaeal species, and 11 715 240 from 480 eu-
karyotic species;

(3) ENA virus to evaluate the false positive rate of rRNA
detection methods on virus sequences: 27 206 792
paired-end reads simulated from 13 848 viral gene se-
quences downloaded from the ENA database;

(4) Amplicon 16S to evaluate the false negative rate of
rRNA detection methods on real 16S rRNA gene se-
quencing data: 7 917 920 real paired-end amplicon
sequencing reads targeting the V1–V2 region of 16s
rRNA genes from an oral microbiome study (38);

(5) Human ncRNA to evaluate the false positive rate of
rRNA detection methods on regulatory ncRNAs: 6 330
381 paired-end reads simulated from 106 880 human
non-coding RNA sequences;

(6) MetaT to evaluate the false negative rate and false posi-
tive rate of rRNA detection methods on metatranscrip-
tome data: 9 165 829 paired-end oral metatranscrip-
tome reads consisting of 4 735 326 prokaryotic mRNA

reads from 50 species, 2 474 450 human mRNA reads,
73 100 viral mRNA reads and 1 882 953 rRNA reads.
The four sequence components were simulated sepa-
rately and then combined into one dataset. To simulate
prokaryotic mRNA reads, we used the abundance of the
50 most abundant species in an oral microbiome study
(38) as the multiplication factor Si (i ∈ {1..50}). As the
expression levels of genes for an organism follow the
log-normal distribution (39–41) Lognormal(μ, σ 2), we
determined the mean μ and standard deviation σ of the
distribution (Supplementary Figure S1C) on the basis
of a previous oral bacterial transcriptome dataset (15).
We then generated the expression levels, represented as
the fragments per kilobase per million reads (FPKM),
of all genes (e.g. N genes) for each species which was de-
noted as Fj ( j ∈ {1..N}) following the log-normal dis-
tribution Lognormal(μ, σ 2). The coverage of gene j of
species i was calculated as Si × Fj

106 . Prokaryotic mRNA
reads were simulated from the genes of these 50 species
in OMA with the computed coverage. Similarly, we then
simulated transcriptome reads of the human host for
which the FPKMs of the genes also followed the distri-
bution Lognormal(μ, σ 2) with a coverage of Fj

106 , and
the reads of the top 10 most active viruses from a pre-
vious oral microbiome dataset (42) with a coverage of
50. Finally, we added 1 882 953 rRNA reads simulated
from 10 000 rRNA sequences from the 50 prokaryotic
species extracted from the SILVA database with a cov-
erage of 50. The proportion of human mRNA reads to
all mRNA reads was set to 0.34 corresponding to the
human mRNA reads fraction in an oral metatranscrip-
tome study in periodontitis (42). The proportion of mi-
crobial rRNA reads to all reads was set to 0.21 accord-
ing to the average rRNA reads proportion in a previ-
ous study (14). We did not set this to the proportion
of rRNA reads in the above mentioned oral metatran-
scriptome study, as a rarely used and inefficient rRNA
depletion protocol (MicrobEnrich and MicrobExpress
kits) was applied, resulting in about 90% of the gener-
ated reads being rRNA reads. We set the viral mRNA
reads proportion to all mRNA reads to 0.01, which is
ten times the fraction found in the above referenced oral
metatranscriptome study, to allow us to benchmark on
viral data;

(7) The OMA SILVA dataset to estimate false positive rate
of rRNA detection methods on mRNAs sharing se-
quence similarity to rRNAs in Figure 1C contains 1 027
675 paired-end reads simulated from OMA id07 cov07
CDSs which share similarity (identity ≥ 70%) to rRNA
genes. Sequences with identity ≥98% and query cover-
age ≥90% to rRNAs and sequences used for training
and validation were excluded;

(8) The HOMD FP dataset in Figure 1C has 100 558
paired-end reads simulated from HOMD CDSs from
human oral microbes, which share similarity (iden-
tity ≥ 70%) to high-FPR (FPR ≥ 0.5) sequences
of BWA, RiboDetector, and SortMeRNA in the
OMA CDS dataset above; again, sequences with iden-
tity ≥98% to and query coverage ≥90% of rRNAs were
excluded. This dataset was used to estimate false posi-
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Figure 1. Performance of RiboDetector on different datasets and hardware. (A) Visualization of the output of the BiLSTM hidden layer for different
sequence types. (B) Comparison of the misclassification rates ( false positives + false negatives

total sequences ), runtime, maximum memory use, and output size of RiboDetector
and other methods. The colored dots show different datasets and the red diamond indicates the mean. The metrics are specified on the top of each plot
and the four plots share the same x-axis. (C) Benchmarking on the microbiome dataset consisting of prokaryotic mRNA reads, human mRNA reads,
virus mRNA reads, and rRNA reads. Note: to show all the differences in different ranges, three intervals with breaks are shown on the y-axis. (D) The
performance of all methods on the microbiome dataset demonstrated by TPR ( true positives

rRNA sequences ) and FPR ( false positives
nonrRNA sequences ) or ROC curve. Only the ROC

curve of RiboDetector is shown because the other methods do not report values that can be used as confidence or probability for all input sequences. The
ROC curve is based on 20 000 randomly selected reads from the whole metatranscriptome dataset, while the TPR-FPR calculation was performed using
all reads, therefore the curve does not intersect with the TPR-FPR values for RiboDetector. Logarithmic scale was applied in the x-axis. The black dots on
the curve with values beside indicate the cutoffs of the probabilities generating the ROC curve. The y-axis starts from 0.6 as the curve below 0.6 is a vertical
line and not informative. (E) The FPR of RiboDetector, BWA and SortMeRNA on two additional benchmark datasets. The details of the datasets used in
A–C can be found in the Material and Methods.
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tive rate of rRNA detection methods on mRNAs shar-
ing sequence similarity to high FPR sequences.

We evaluated RiboDetector alongside other rRNA
detection methods including BWA v0.7.17-r1188, Ri-
boPicker v0.4.3, rRNAFilter v1.1, SortMeRNA v4.2.0 and
RQC rRNAfilter v1.0. We also attempted to include Meta-
RNA v3 and rRNASelector in the benchmarking. However,
Meta-RNA did not finish generating the final output for
the SILVA rRNA dataset after running for 5 days with 40
CPU cores, whereas rRNAselector is not maintained any-
more and the download link is unavailable. For BWA, we
used the BWA-MEM algorithm with the default parame-
ter settings. The training rRNA sequences of RiboDetector
were used as rRNA reference sequences for mapping. The
unmapped reads were extracted by SAMtools (43) with ‘-
f 12 -F 256’ and BEDTools bamtofastq (44). The mapped
reads were retrieved using SAMtools with ‘-F 12 -F 256’,
and read counting of the genes was carried out using SAM-
tools idxstats. RiboDetector with ‘–ensure norrna’ was used
for the datasets SILVA rRNA and Amplicon 16S; for the
rest of the datasets, ‘–ensure rrna’ was used. We also evalu-
ated RiboDetector with the default setting ‘–ensure none’
for all benchmark datasets. The number of misclassifica-
tions was 513 ± 359, which was much lower than that of
other methods (Supplementary Table S1). Minimap2 was
used to determine the similarity, query coverage, and se-
quence divergence between sequences in the benchmark
datasets and the training sequences or reference sequences.
The runtime, memory (maximum unique set size), and out-
put size were determined with the Snakemake (45) bench-
mark functionality on a computer with a NVIDIA Tesla
V100 GPU, Intel Xeon processor (2.20GHz) virtualized to
80 cores (40 cores were used in the benchmark) and 500GB
of main memory. Gene ontology (GO) terms for each CDS
were extracted from the OMA database. The enrichment
analysis was performed using Fisher’s exact test based on
the contingency table of FPs or TNs assigned or not as-
signed to a given GO term. Benjamini–Hochberg correc-
tion was applied to the Fisher’s exact test p-values to con-
trol false discovery rate (FDR) and account for multiple
comparisons.

RESULTS

rRNA reads may be mapped to protein coding genes by short
read alignment

To demonstrate that activity profiling without rRNA
removal introduces considerable bias towards certain
functional groups, we mapped rRNA reads from the
SILVA rRNA dataset against CDSs in the OMA database
with BWA (Material and Methods). Over 83.37% of the
rRNA reads were mapped to CDSs. Genes belonging to 27
GO terms had over 1% of the rRNA reads mapped (Supple-
mentary Figure S2A). Base coverage analysis showed that
the reads were most likely to be mapped onto certain regions
of these protein-coding genes, indicating that these genes
have one or several short regions that share sequence simi-
larity to rRNA sequences (Supplementary Figure S2B). The
results suggest that functional groups such as membrane,
translation, ATP-binding, and DNA-binding proteins can

be strongly overestimated, if rRNA reads are not removed
before activity profiling. We also calculated the fraction of
rRNA reads mapped to CDSs after filtering by the map-
ping quality score (MAPQ) and using a longer exact match
seed length in BWA. The MAPQ quantifies the probabil-
ity that a read is misplaced because of ambiguity, poor base
quality, and/or bad alignment. A larger MAPQ represents
a higher certainty that the alignment is correct and unam-
biguous. A longer seed length setting in BWA will generate
a more stringent and unambiguous alignment. This analy-
sis showed that 56.26% of the rRNA reads were mapped
uniquely to specific CDSs with MAPQ ≥5, 47.15% with
MAPQ ≥ 10 and 41.59% with MAPQ ≥20. In comparison
to the default seed length of 19, with a seed length of 29, the
fraction of rRNA reads being mapped to CDSs was reduced
to 25.49%. However, a longer seed length will decrease the
alignment rate for mRNA reads to the reference sequences
in real data analysis.

Highly accurate discrimination of rRNA reads and non-
rRNA reads with neural networks

We developed a discriminative neural network model based
on a BiLSTM that detects rRNA reads from the non-rRNA
background with high accuracy (Supplementary Figure
S1B, Materials and Methods). Visualization of the last
step’s outputs from the BiLSTM layer for 8000 randomly
selected short reads (including four types of sequence,
each containing 2000 reads; details regarding the data are
given in Material and Methods) using tSNE demonstrated
that the features captured by the model clearly discrim-
inated rRNA sequences from the non-rRNA sequences
(Figure 1A).

We then evaluated the performance of RiboDetector
alongside BWA, RiboPicker, rRNAFilter, SortMeRNA
and RQC rRNAfilter on five benchmark datasets derived
from SILVA rRNA sequences, 16S rRNA gene amplicon
sequences, OMA CDSs, viral sequences, and ncRNA se-
quences (Materials and Methods). On average, RiboDetec-
tor had the fewest misclassifications, namely 165 ± 114
per 1 million (M) reads, compared with 8956 ± 7219,
1488 ± 1302, 373 257 ± 509 856, 948 ± 1438, and 12
800 ± 28 544 for BWA, RiboPicker, rRNAFilter, Sort-
MeRNA and RQC rRNAfilter, respectively (Figure 1B,
Supplementary Table S1). The number of misclassifications
of RiboDetector was six times lower than the method ranked
second (i.e. SortMeRNA). SortMeRNA is the most com-
monly used method for rRNA read detection at present.
RQC rRNAfilter made the fewest FP predictions, but had
the highest FNR (6.39%) for the SILVA rRNA dataset. For
the OMA CDS dataset which was simulated from 500 000
CDSs, RQC rRNAfilter and RiboDetector had only 24 and
35 genes, respectively, with a FPR ≥0.5 in classifying the
corresponding reads, while it was 549 for BWA, 114 for
RiboPicker, 579 for rRNAFilter, and 153 for SortMeRNA
(Supplementary Figure S3). For each method, the FPR of
a gene was computed as the number of FP reads produced
by the method from the gene divided by the total num-
ber of reads from the gene. Nineteen out of 35 high-FPR
(≥0.5) genes of RiboDetector were also high-FPR genes of
all other methods, except for rRNAFilter, which had no
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overlap with all the other methods (Supplementary Fig-
ure S3). Remarkably, following RQC rRNAfilter, RiboDe-
tector also had a very low level of FPs on the human ncRNA
dataset (Figure 1B, Supplementary Table S1). Specifically,
RQC rRNAfilter falsely predicted 504 out of 6 330 381 hu-
man ncRNA reads as rRNA reads and RiboDetector mis-
classified 2021 human ncRNA reads, whereas BWA falsely
predicted 113 816; RiboPicker, 11 085; rRNAFilter, 5 815
406; and SortMeRNA, 21 898 reads.

Next-generation sequencing datasets are usually large,
containing over 10M reads per sample. Therefore, in ad-
dition to predictive quality, the runtime is another impor-
tant factor of software performance. We evaluated the run-
times and memory uses of all methods with the benchmark
functionality of Snakemake (Material and Methods). Ri-
boDetector required 0.43 ± 0.05 minutes per million reads,
which was 6.9 times faster than BWA (the second fastest
method) and 33.2 times faster than SortMeRNA on av-
erage (Figure 1B, Supplementary Table S1). RiboDetector
also had the smallest output size (420.21 ± 232.83 MB
per million reads). In terms of memory usage, the high-
memory mode of RiboDetector used slightly more mem-
ory (1955.50 ± 463.05 MB) per million reads than BWA
(1674.22 ± 1420.67 MB). However, in low-memory mode
with a chunk size of 64, the memory use of RiboDetec-
tor was reduced to 485.55 MB per million reads (a quar-
ter of the high-memory mode) while increasing the runtime
by only 1.5 times (0.59 minutes per million reads for the
SILVA rRNA dataset).

To assess the performance of different methods on mi-
crobiome data, we benchmarked these methods on a meta-
transcriptome dataset consisting of oral microbial mRNA,
human mRNA, viral mRNA, and rRNA reads (Mate-
rials and Methods). RiboDetector made the fewest mis-
classifications (70 misclassifications per million reads), fol-
lowed by SortMeRNA (269), RiboPicker (344), rRNAFil-
ter (5142), RQC rRNAfilter (6111) and BWA (16839) (Fig-
ure 1C, Supplementary Table S2). RiboDetector had low
levels of misclassification for all sequence types, whereas
RQC rRNAfilter and rRNAFilter made few misclassifica-
tions for bacterial and human mRNA reads, but had very
high misclassification levels for rRNA and viral mRNA
reads. The receiver operating characteristic (ROC) curve
of the RiboDetector predictions on this metatranscriptome
dataset (area under the curve: 0.9999942) also shows that
it performs well on microbiome data (Figure 1D). Sort-
MeRNA and RiboPicker were performant as well on this
dataset in terms of their TPR and FPR.

Based on all benchmark datasets that we evaluated above,
RiboDetector produced 6, 9, 69, 78 and 2088 times less
misclassifications than SortMeRNA, RiboPicker, BWA,
RQC rRNAfilter and rRNAFilter, respectively. Since Sort-
MeRNA ranked second in the benchmarks and is the most
used method for rRNA removal, we investigated whether
its performance could be further improved when using
the training rRNA sequences of RiboDetector as reference
database. However, in this setting SortMeRNA produced
1883 misclassifications per 1 million reads on the meta-
transcriptome dataset, 7 times more than with the original
SortMeRNA reference database. The result suggests that its
original database was highly optimized for SortMeRNA.

RiboDetector performs better than SortMeRNA is not be-
cause of the training sequences.

Test on CDSs similar to FPs and rRNAs

To compare the performance of different methods on
non-rRNA sequences sharing similarity to rRNA se-
quences, we used two additional non-rRNA datasets
named OMA SILVA and HOMD FP for this evaluation
(Material and Methods). RiboPicker, rRNAFilter, and
RQC rRNAfilter, which had runtimes of >30 min per
1M reads in the Snakemake runtime benchmark (Figure
1B), were not included in this evaluation and following
analyses. The HOMD database contains a collection of
well-annotated human oral microbial genomes, CDSs and
rRNA genes, the CDSs of which can be used as nega-
tive samples for evaluation. The FPRs of RiboDetector
were 1.1% and 1.5% for OMA SILVA and HOMD FP,
respectively (Figure 1E). BWA had a FPR of 17.4% for
OMA SILVA and 32.0% for HOMD FP, whereas Sort-
MeRNA had a FPR of 10.1% for OMA SILVA and 4.3%
for HOMD FP. Thus, the FPRs of RiboDetector were about
15–20 times lower than those of BWA and 3–10 times lower
than those of SortMeRNA for these two datasets. The re-
sults suggest that RiboDetector performs well even for the
CDSs sharing similarity to rRNA sequences.

Generalizability of different methods for novel rRNA detec-
tion

It is important for rRNA detection methods to be able to
identify novel rRNA sequences that are not in the pub-
lic databases. This is particularly critical in microbiome
datasets, in which numerous novel and unknown microbes
are likely to be present. We analyzed the probabilities of
the correct class assignment (termed confidence) to given
rRNA or non-rRNA sequences predicted by RiboDetector.
In general, the confidence was not smaller for sequences
that were more divergent from the training data (Figure
2A). To compare the generalizability of RiboDetector with
that of BWA and SortMeRNA, we grouped the reads from
the SILVA rRNA dataset into different divergence bins on
the basis of the least divergence from the training dataset or
reference database sequences and summarized their FPRs
(Figure 2B). The divergence was determined by mapping
the rRNA sequences used in SILVA rRNA to the training
or reference rRNA sequences with minimap2 (Material and
Methods). BWA and SortMeRNA showed a clear increase
in their FNR, along with an increase in the divergence be-
tween the benchmark data and sequences in their reference
databases or training datasets (Figure 2B). The FNR of
BWA was close to 20% when the divergence was 20%, and
SortMeRNA was close to 15%, whereas the FNR of Ri-
boDetector remained at a very low level across all the di-
vergence bins. There are no sequences in the SILVA rRNA
benchmark dataset that have a sequence divergence from
the training dataset and reference database of more than
20%. To demonstrate the performance of RiboDetector
on more divergent (≥20%) rRNA sequences from training
and reference sequences, we identified 144 such rRNA se-
quences from the SILVA database. We then analyzed the
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Figure 2. Evaluation of the generalizability of the prediction model. (A) The predicted probabilities of the correct label for rRNA in the benchmark
dataset SILVA rRNA and non-rRNA in the dataset OMA CDS, and the divergence of the sequence from the training dataset. The x-axis shows the
divergence of each testing sequence from its most closely related sequence in the training dataset. The probability in the y-axis shows the mean confidence
(i.e. predicted probabilities) of all reads of a gene. The probabilities were calculated as the softmax values of outputs from the final linear layer, which
represent the predicted probabilities for the correct class. (B) The false negative rate (FNR) of RiboDetector, BWA and SortMeRNA on rRNA sequences
from SILVA rRNA dataset with different ranges of divergence from the closest rRNA genes used in the reference database. Since the rRNA sequences are
relatively conserved, there were no sequences with divergence >20% from the training and reference rRNA sequences in the SILVA rRNA dataset. The
three panels share the same y-axis.
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FNRs of different methods on 38,083 reads simulated from
these 144 rRNA sequences (Supplementary Figure S4).
The FNRs for these more divergent sequences were indeed
higher than those for the sequences in the SILVA rRNA
dataset for all methods. However, the FNRs of RiboDetec-
tor are still about two times smaller than those of the other
methods, rising from 12.8% to 23.0% with increasing se-
quence divergence. These results show that identifying novel
sequences that are not in databases is a big challenge for cur-
rently widely used methods, whereas RiboDetector demon-
strated a substantial generalizability for divergent rRNA se-
quences, which should facilitate the accurate identification
of novel rRNA sequences. Still, for rRNA sequences with
a divergence ≥20% from training and reference sequences,
all the methods showed a high FNR (≥10%). In practice,
this case may be very rare though, as the sequences in the
training data and reference database well represent rRNA
sequence diversity.

Analysis of the FPs of BWA, RiboDetector and SortMeRNA

To elucidate why some non-rRNA reads from the
OMA CDS dataset were classified as rRNA by differ-
ent methods, we analyzed the alignments for the FPs of
BWA and SortMeRNA. As RiboDetector does not generate
alignments, to show whether the FPs of RiboDetector are
similar to rRNAs, we mapped its FPs to the training rRNA
sequences with BWA and analyzed the alignments. Around
30% of its FP reads could be mapped. In this analysis,
the alignment match reflects the length of the aligned
region and the edit distance represents the total bases of
mismatches, insertions and deletions (indels) within the
alignment. The mapped FPs of RiboDetector had a much
longer alignment match length than those of BWA and
SortMeRNA, as well as fewer mismatches and indels within
the alignment (Supplementary Figure S5A). For BWA,
84.5% of the alignments had an alignment match length
between 19 (the default seed length) and 21 nucleotides
to the reference, and the remaining read regions were not
aligned to rRNA (Supplementary Figure S5A). The default
seed length of BWA is 19, thus allowing for one mismatch
in 20 nucleotides, which corresponds to 95% identity or 5%
divergence on average. Therefore, the number of FPs could
be reduced by increasing the seed length of BWA. However,
our generalizability analysis showed that the FNR of
BWA started to increase for tested rRNA sequences with a
divergence of over 5% from the reference rRNA sequences.
Together, these points indicate that a larger seed length
will result in a low FPR but a higher FNR. To prove
this, we ran BWA on the OMA CDS and SILVA rRNA
datasets with a larger seed length, namely 29 (one mismatch
in 30 nucleotides, corresponding to ∼97% identity). As
expected, the number of FPs for the OMA CDS dataset
decreased from 283 517 to 17 021, whereas the number
of FNs on SILVA rRNA increased from 58 736 to 85
610. With SortMeRNA, the FPs tended to have a larger
alignment match with the reference rRNA sequences, but
more mismatches and indels within the alignment than
BWA (Supplementary Figure S5A). Only 16.68% of the
mapped FPs of RiboDetector had an aligned length shorter
than half of the read (50 nucleotides), but this value rose to

98.15% for BWA and 56.23% for SortMeRNA. Moreover,
95.60% of the mapped FPs of RiboDetector had an edit
distance (mismatches and indels, not including clipping)
smaller than five; this was 99.48% for BWA and 57.96%
for SortMeRNA. This result suggests that the FPs of
RiboDetector that could be mapped to rRNA are very
similar to rRNA sequences, whereas the FPs of BWA and
SortMeRNA are less similar to rRNAs overall, but contain
either short exact matches to rRNA or long alignment
matches with numerous mismatches and indels. We also
analyzed the predicted probabilities of FPs that could
be mapped to rRNAs, FPs that could not be mapped to
rRNAs, and the TPs of RiboDetector. Remarkably, the
unmapped FPs tended to have smaller probabilities than
the mapped FPs and the TPs (Supplementary Figure S5B).
Overall, the FPs have intermediate probabilities and all TPs
have very high probabilities close to one (Supplementary
Figure S5B). This suggests that RiboDetector generates
FPs by predicting non-rRNA reads as rRNA reads with
low confidence.

rRNA removal methods must ensure not to introduce
bias towards certain functional groups by FP predictions.
That is, the FP sequences being removed should not be sig-
nificantly enriched in certain functional groups. Therefore,
we performed a GO term enrichment analysis with Fisher’s
exact test based on the hypergeometric distribution of the
number of FP and TN reads from the OMA CDS dataset
for each GO term (Material and methods). The FPs of Ri-
boDetector were enriched in three GO terms with a FDR
of ≤0.01 and an odds ratio of 10 (Figure 3A, Supplemen-
tary Table S3), but none of them had FPRs higher than 5%.
In comparison, BWA’s FPs were significantly enriched in 39
GO terms; all of these had FPRs over 5% and 22 had FPRs
higher than 15% (Figure 3B, Supplementary Table S3). The
FPRs can be up to 40.5% for certain GO terms. The FPs
of SortMeRNA were enriched in 62 GO terms, 18 of which
had FPRs higher than 5% (Figure 3C, Supplementary Ta-
ble S3). Its FPRs were up to 22.5% for certain GO terms.
Overall, analysis suggests that the FPs of RiboDetector were
enriched in fewer functional groups than other methods,
which will enable a more accurate functional analysis of the
data.

Benchmarking computational resource requirements of Ri-
boDetector

To systematically evaluate the computational performance
of RiboDetector, we ran the software on different com-
puters with limited CPU, GPU, and memory resources.
First, we compared RiboDetector with other methods on
a personal workstation computer with a consumer-grade
GPU NVIDIA RTX 2080 Ti (Figure 4A). Compared to
the consumer-grade GPU 2080 Ti, V100 has more CUDA
cores, and it is an advanced data center GPU (https://www.
nvidia.com/en-us/data-center/v100/). Interestingly, the run-
time on the 2080 Ti computer was shorter than that on
one with a V100 (17.6 s versus 22.8 s for 1 million paired-
end reads), possibly because RiboDetector can take advan-
tage of the high input/output speed of the solid-state drive
of the workstation. Since the memory on the workstation
is limited, we used the low memory mode of RiboDetec-

https://www.nvidia.com/en-us/data-center/v100/
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Figure 3. GO term enrichment analysis for FPs of RiboDetector (A), BWA (B) and SortMeRNA (C) with a false discovery rate (FDR) of ≤0.01 and an
odds ratio of ≥10. For BWA, only GO terms with a FPR of ≥15% are shown; GO terms with a FPR of ≥5% are shown for SortMeRNA. BP: biological
process, CC/MF: cellular component/molecular function. The three panels share the same x-axis.

tor and it used only 4.5GB memory for 20M paired-end
reads. To make RiboDetector suitable for most use cases, in-
cluding on computer without GPU, we optimized RiboDe-
tector for CPUs using ONNX (Material and Methods). It
was then tested on different computational servers with a
V100 GPU, a T4 GPU, or only CPUs with different mem-
ory settings by changing the chunk size (Figure 4B). In CPU
mode, RiboDetector was only 3.3 times slower than in the

GPU mode but still 5.6 times faster than the second-fastest
method (BWA) and 12.3 times faster than SortMeRNA on
the same dataset (Figure 4).

A metatranscriptome data processing workflow usually
consists of read quality control, rRNA reads removal, host
reads removal, and reference gene mapping. To demon-
strate that rRNA removal is the most time-consuming step
in processing with the most widely used method (Sort-
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Figure 4. The computational resource requirement benchmarks of RiboDetector on computers with limited resources. (A) Comparison of the resource
consumption and runtime of different methods on a personal computer with eight CPUs and a 2080 Ti GPU. One million paired rRNA reads from the
SILVA rRNA dataset were used for the evaluation. RiboDetector had zero false misclassifications. (B) Performance of RiboDetector and other methods
on different computers. V1001: 40 cores, no memory limit; V1002: 40 cores, chunk size 256 (∼20GB memory limit); T4: 40 cores, no memory limit; CPU:
40 core Intel Xeon processor (2.20 GHz), no GPU, no memory limit; 2080 Ti: eight cores, chunk size 64 (∼5GB memory limit).

MeRNA), we ran the entire data processing workflow on
the oral metatranscriptome dataset that was used in the pre-
vious benchmark with 40 CPU cores. We performed read
quality control with Fastp (46), then removed rRNA reads
with SortMeRNA, filtered out human reads by mapping the
non-rRNA reads against the human reference with BWA,
and finally mapped the cleaned reads against HOMD refer-
ence CDSs with BWA. The read quality control required 1
min, rRNA removal with SortMeRNA took 109 min, hu-
man reads removal took 4 min, and read alignment took 2
min of computing time. In comparison, with RiboDetector,
rRNA removal required only 4 min in GPU mode and 15
min in CPU mode.

DISCUSSION

Here, we describeRiboDetector, a deep learning-based
method leveraging GPU acceleration and a BiLSTM model
to capture patterns from a long-range context for rapid
and accurate rRNA sequence detection. Removal of rRNA
reads is an essential step in prokaryotic transcriptome,

metatranscriptome, ncRNAseq, and Riboseq data analy-
sis. In rRNA detection, RiboDetector was very accurate
with low levels of both false positives and negatives. More-
over, RiboDetector also demonstrated a notable generaliz-
ability for detecting rRNA sequences divergent from the
training data over other methods. While alignment-based
methods generated more false positives with partial matches
to rRNAs, whereas the HMM-based method was sub-
stantially slower in terms of runtime and produced nu-
merous false negatives. RiboDetector showed a false neg-
ative rate over 15% on the rRNA sequences with diver-
gence >25% from training dataset, but this is about two
times lower than those of other methods. In practice, this
case will be very rare, as the sequences in the training
dataset well represent rRNA sequence diversity and we
identified only 144 rRNA sequences in the whole SILVA
database with divergence ≥20% from the training dataset.
The LSTM is capable of memorizing many previous steps
in a sequence, which, together with the highly efficient
implementation provided by RiboDetector based on the
Pytorch package, allows for a more accurate and rapid
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prediction compared with alignment- and HMM-based
methods.

The misclassification of reads by rRNA removal meth-
ods can introduce bias to the downstream analysis. More
specifically, the abundance of a given non-rRNA gene will
be underestimated if the reads originating from it are mis-
classified as rRNA reads and thus removed. On the other
hand, the abundance of a non-rRNA gene will be overes-
timated if false negatives of a rRNA removal method can
be mapped to this gene. If the genes with a biased abun-
dance estimation are enriched in certain functional groups,
the entire analysis of these functional groups will be bi-
ased. On the CDS benchmark dataset, the few false posi-
tives of RiboDetector introduced a very low level of func-
tional bias compared with other methods. CDSs sharing
partial sequence similarity to rRNAs are enriched in cer-
tain functional groups, which may cause the enrichment of
false positives for alignment-based approaches in numerous
functional groups. Additionally, many false positives of Ri-
boDetector did not share sequence similarity to rRNA at all,
which may also explain why these reads were not enriched
in many functional groups.

The sample sizes in microbiome or ncRNA studies are
generally large, with each sample consisting of tens of mil-
lions of reads. Processing such datasets is excessively time-
consuming and computationally intensive. rRNA read re-
moval can be the most time-consuming step in the en-
tire data processing pipeline. RiboDetector is able to pro-
cess tens of millions of reads in a few minutes and it is
over 30 times faster than the most widely used method
(SortMeRNA), yet achieves a misclassification rate six
times smaller. RiboDetector does not need a large reference
database, unlike other methods, and the size of the model
file is around 1.5 MB.

Currently, RiboDetector is intended for rRNA short read
detection from sequence data. As it demonstrated a remark-
able performance in nucleotide sequence classification, we
will develop methods with a similar architecture for rRNA
gene annotation from genome assembly data or other se-
quence recognition problems in the future.

DATA AVAILABILITY

RiboDetector is available under a GPL v3.0 license
at https://github.com/hzi-bifo/RiboDetector. A Docker
image is available at https://hub.docker.com/r/dawnmy/
ribodetector. The benchmark datasets used in this study are
available via the link https://zenodo.org/record/5547691.
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