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Abstract 
Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-
driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This 
study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular 
optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing 
methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF–enhancer linkage prediction, and enhancer– 
gene relation discovery. Application of STREAM to an Alzheimer’s disease dataset and a diffuse small lymphocytic lymphoma dataset 
reveals its ability to identify TF-enhancer–gene relations associated with pseudotime, as well as key TF-enhancer–gene relations and 
TF cooperation underlying tumor cells. 
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Introduction 
Recent single-cell sequencing technologies, such as scRNA-seq 
and scATAC-seq, have advanced our understanding of gene reg-
ulatory networks (GRNs) at single-cell resolution [1]. Approaches 
like SCENIC use random forest algorithms for GRN construction 
and cell state identification [2], and DIRECT-NET employs gradi-
ent boosting to map cis-regulatory element-target gene relation-
ships [3]. Integrating scRNA-seq and scATAC-seq data overcomes 
these limitations, enhancing GRN inference by reducing noise and 
improving TF-gene prediction accuracy through regulatory rela-
tionship cross-validation [1, 3–19]. This approach broadens motif 
discovery beyond restricted promoter regions, preserving regu-
latory sequence diversity. Furthermore, incorporating chromatin 
accessibility data facilitates the construction of enhancer-driven 
GRNs (eGRNs) [5], where transcription factor (TF)-target gene con-
nections involve enhancer regions critical for regulation, offering 
a more comprehensive view of gene regulation mechanisms. 

Elucidating eGRNs reveals cell-type-specific and conserved TF 
regulatory patterns, highlighting the diversity in TF–enhancer and 
enhancer–gene interactions, which deepens our understanding 
of gene regulation dynamics [20, 21]. Janssens et al., advanced 
this field by mapping eGRNs for 40 cell types in the fly brain, 
employing a bioinformatics framework that includes cell cluster-
ing, motif discovery, network prediction, and deep learning [5]. A 
key tool in this progress is SCENIC+ [16], integrating pySCENIC 
and pycisTopic to predict enhancers, identify regulating TFs, and 

link enhancers with target genes, utilizing a motif collection of 
over 30,000 motifs for improved accuracy. SCENIC+ has shown its 
efficacy across various species and data types, including human 
peripheral blood mononuclear cells and Drosophila retinal devel-
opment. Additionally, GLUE uses deep learning for eGRN infer-
ence from multi-modal single-cell data [4], and Pando models 
gene expression through TF-peak interactions, demonstrating the 
diverse applications of these tools in genomic research [14]. 

Inferencing eGRNs encounters three primary challenges. 
Firstly, methods like SCENIC+ [16], GLUE [4], and DIRECT-NET 
[3], Pando [14], and scMEGA [17], which predict enhancer–gene 
relationships based on accessibility and expression correlations, 
often lead to high false-positive rates due to not accounting for 
the interdependence of multiple enhancer and gene interactions. 
Secondly, biases from initial cell clustering can impact the accu-
racy of subsequent TF-enhancer–gene relationship predictions. 
Lastly, the regulatory complexity within cells complicates the 
extraction of pivotal TF-enhancer–gene relationships, hindered 
further by the vast array of potential regulatory combinations 
influencing cell states. 

Motivated by the three challenges, we introduce STREAM 
(Single-cell enhancer regulaTory netwoRk inference from gene 
Expression And chroMatin accessibility), a computational 
framework for inferring eGRNs from paired scRNA-seq and 
scATAC-seq data, utilizing the Steiner forest problem model and 
submodular optimization (Fig. 1A, Supplementary Note S1, and
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Figure 1. STREAM method overview and its applications in Alzheimer’s disease and diffuse small lymphocytic lymphoma. (A) An outline of the STREAM 
framework for eRegulon identification. An eRegulon comprises a TF, its set of binding enhancers, and target genes. (B) STREAM’s application in predicting 
pseudotime-associated eRegulons in Alzheimer’s disease. (C) The use of STREAM for inferring cell-type-specific eGRNs in diffuse small lymphocytic 
lymphoma. Abbreviations: enh, enhancers; SFP, Steiner forest problem; TSS, transcriptional start site. 

Supplementary Note S2). To disentangle the interdependence of 
multiple enhancer and gene interactions, STREAM constructs 
a heterogeneous graph that depicts enhancer–enhancer and 
enhancer–gene relations. This approach leverages the Steiner 
forest problem model to identify robust relations within context-
specific gene modules [22]. To avoid biases from pre-defined cell 
clusters, STREAM detects hybrid biclusters comprising genes, 
enhancers, and cells. Each hybrid bicluster includes genes co-
regulated by a shared TF through binding to co-accessible 
enhancers within these cells, thereby eliminating the need for 
prior cell clustering. To extract pivotal TF–enhancer–gene rela-
tionships, STREAM utilizes submodular optimization to prioritize 
the most representative hybrid biclusters, thereby highlighting 
key TF–enhancer–gene interactions [23]. Consequently, these 
interactions within a hybrid bicluster define an enhancer-driven 
Regulon (eRegulon), forming the foundation of an eGRN for 
a specific cell subpopulation. The time complexity of these 
operations is detailed in Supplementary Note S3. 

Assessing STREAM on six paired scRNA-seq and scATAC-seq 
datasets and comparing it with six methods (SCENIC+, SCENIC,  
GLUE, DIRECT-NET, Pando, and scMEGA), we found STREAM 
superior in eGRN inference, particularly in TF recovery, TF– 
enhancer relation identification, and enhancer–gene relation 
prediction. Its application on Alzheimer’s disease (Fig. 1B) and  
diffuse small lymphocytic lymphoma datasets (Fig. 1C) revealed 
dynamic eRegulons and underscored STREAM’s efficacy in 
uncovering disease-specific gene regulation. These findings 
highlight STREAM’s robustness in eGRN analysis across complex 
biological contexts, available for further exploration as an R 
package on GitHub (https://github.com/OSU-BMBL/STREAM). 
Meanwhile, there is still much room for improvement in 
STREAM, including integrating 3-D genome structures, protein 

data, regulatory perturbations, causality inference, and valid 
benchmarking based on bulk data. 

Materials and Methods 
The STREAM framework 
Step 1: functional gene module prediction 

A functional gene module represents a set of genes exhibit-
ing structured expression patterns, often related or co-regulated 
within specific cell subpopulations [24]. To identify these mod-
ules, STREAM uses gene expression (Xn×o) and chromatin acces-
sibility (Ym×o) matrices, post-quality control, indicating n genes’ 
expression and m peaks’ accessibility across o cells, respectively 
(Fig. 2A and Supplementary Fig. S1A). By transforming Xn×o into a 
discretized matrix X′

n×o using a left-truncated mixture Gaussian 
model [25], it captures diverse gene expression regulated by tran-
scriptional inputs. sRNA-seq analysis on X′

n×o identifies biclusters 
Bk (k = 1, . . .  , l), where each gene set represents a functional gene 
module, and each cell set denotes the cells in which the functional 
gene module is active, preparing for Step 2. 

Step 2: steiner forest problem model 
The STREAM methodology employs a Steiner forest prob-

lem model to deduce eGRNs by identifying enhancer–gene 
and enhancer–enhancer relationships conducive to gene co-
expression in functional gene modules (Fig. 2A and Supplemen-
tary Fig. S1B) [24]. For each module Bk, discrete expression (X′

k) 
and chromatin accessibility (Yk) submatrices are constructed, 
restricted to the cells of Bk. The  rows  of  X′

k correspond to the genes 
of Bk. Using Signac and Cicero [26, 27], a heterogeneous graph 
G(k) = (

V(k), E(k)
)

is constructed. Nodes V(k) represent genes/en-
hancers from X′

k and Yk, and edges E(k) indicate enhancer– 
gene cis-regulatory and enhancer–enhancer co-accessibility
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Figure 2. Detailed overview of the STREAM framework. (A) The Steiner forest problem model is utilized to extract highly confident enhancer–gene 
relations. (B) The hybrid biclustering pipeline is used for the identification of hybrid biclusters. (C) The construction of eRegulons using a submodular 
optimization approach based on hybrid biclusters. Abbreviations: FGM, functional gene module; SFP, Steiner forest problem. 

connections derived from these matrices. Edge weights are 
quantified using Pearson correlation coefficients (enhancer–gene) 
and covariances (enhancer–enhancer) as defined by Signac and 
Cicero, respectively. Additionally, partial correlation is used as an 
alternative metric to provide a more nuanced understanding of 
relationships by accounting for the influence of other variables 
[ 28]. Edge costs are calculated by subtracting the min-max 
normalized edge weight from one. Nodes in V(k) representing 
genes are segmented into subsets V(k) 

s (s = 1, . . .  , t), termed 
terminal nets, where nodes within the same subset belong to 
the same connected component in G(k). 

Within the weighted undirected graph G(k) and t terminal nets 
V(k) 

s , the Steiner forest model seeks a minimum-cost forest F(k), 
connecting nodes within each V(k) 

s via forest edges. Given the 
Steiner forest problem’s NP-hard nature, a heuristic strategy is 
adopted. F(k) comprises multiple trees T(k) 

s , linking nodes in each 
terminal net. Identifying F(k) involves finding each T(k) 

s , starting 
with the gene pair from V(k) 

s that are co-regulated across the 
maximum number of cells. The shortest path between them 
initiates T(k) 

s . Subsequently, the gene outside T(k) 
s closest to it is 

iteratively incorporated, extending T(k) 
s until it includes V(k) 

s . All  
T(k) 

s , for  s = 1, . . .  , t, merge to form F(k) 

F(k) = 
t⋃

s=1 

T(k) 
s . (1)  

Within F(k), enhancer–gene relations are selected and grouped 
by TF binding sites downloaded from JASPAR [29], associating 
each subset with enhancers bound by the same TF. Identifying 
TF–enhancer relations using experimentally verified TF binding 
sites curated in JASPAR, instead of performing a motif scan, 

reduces computational resources and time while decreasing false 
positives. Only subsets linked to ≥ 2 genes are retained. Each 
enhancer–gene subset is converted into a hybrid bicluster, com-
prising gene, enhancer, and cell subsets, denoted as I(k) 

i , J(k) 
i , and  

K(k) 
i 

H(k) 
i =

(
I(k) 
i , J(k) 

i , K(k) 
i

)
, i = 1, . . . , p; k = 1, . . . , l. (2)  

In each hybrid bicluster H(k) 
i , cells in K(k) 

i are ranked by descend-
ing average expression of genes in I(k) 

i , creating trend M(k) 
i . For each 

enhancer in J(k) 
i , we compute the average ratio r(k) 

i of cells where 
the enhancer is accessible compared to all cells in K(k) 

i . The  hybrid  
bicluster score is defined as the minimum of

∣∣∣I(k) 
i

∣∣∣ and
∣∣∣K(k) 

i

∣∣∣, used  
to rank biclusters. All hybrid biclusters are saved in S, serving as 
seeds for hybrid biclustering in Step 3, 

S =
{
H(k) 

i =
(
I(k) 
i , J(k) 

i , K(k) 
i

)
: i = 1, . . .  , p; k = 1, . . .  , l

}
. (3)  

Step 3: hybrid biclustering 
Starting with seeds from Step 2, STREAM applies hybrid 

biclustering to identify co-regulated genes and co-accessible 
enhancers within specific cell subpopulations. Expanding from 
a seed in set S, we grow the hybrid bicluster vertically (genes 
and enhancers) and horizontally (cells), maintaining a monotonic 
expression trend (Fig. 2B and Supplementary Fig. S1C). This 
process, akin to simultaneously biclustering two matrices, 
is computationally intensive due to its NP-hard nature [30], 
necessitating a heuristic approach. Expansion ceases when no 
further growth is possible, resulting in the final hybrid bicluster 
and delete this seed from S. The process stops if S is empty;
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otherwise, we evaluate the first seed in S for eligibility; unqualified 
seeds are removed. Qualified seeds are expanded via the longest 
path identification in directed acyclic graphs, representing gene 
expression monotonicity. A seed qualifies if it shares less than an 
α (0.5 by default) proportion of submatrix defined by genes and 
cells with prior hybrid biclusters (Supplementary Fig. S2). 

Selecting the seed H(k) 
i with the maximum hybrid bicluster 

score from S, a directed acyclic graph Ĝ(k) 
i = ( ̂V(k) 

i , Ê(k) 
i ) is con-

structed, with nodes for cells in K(k) 
i and directed edges from 

higher- to lower-ranking cells according to the trend M(k) 
i . To  

prevent infinite paths, looping nodes condense into one, and the 
hybrid bicluster score is defined as 

score
(
H(k) 

i

)
= score

((
I(k) 
i , J(k) 

i , K(k) 
i

))
= min

(∣∣∣I(k) 
i

∣∣∣ ,
∣∣∣J(k) 

i

∣∣∣ ,
∣∣∣K(k) 

i

∣∣∣) . 
(4) 

We define the candidate gene set as all genes excluding those 
in I(k) 

i and including those linked to at least one enhancer bound 
by the same TF, referred to as supporting enhancers. For each 
candidate gene g, we refine Ĝ(k) 

i to build another directed acyclic 

graph 
∼ 
D 

(k) 

i = (
∼ 
V 

(k) 

i ,
∼ 
E 

(k) 

i ) by excluding non-expressing cells, edges 
violating M(k) 

i , and genes without accessible supporting enhancers 

in ≥ r(k) 
i · |  

∼ 
V 

(k) 

i | cells. Using dynamic programming, we identify 

the gene yielding the longest path 
∼ 
P 

(k) 

i from 
∼ 
D 

(k) 

i [31]. We select the 
candidate gene g yielding the longest path and form a new hybrid 
bicluster 

∼ 
H 

(k) 

i =
(∼ 

I 
(k) 

i ,
∼ 
J 
(k) 

i , 
∼ 
K 

(k) 

i

)
. (5) 

The updated hybrid biclusters 
∼ 
H 

(k) 

i are constructed by: (i) adding 

gene g to I(k) 
i to form 

∼ 
I 
(k) 

i ; (ii) if  g′s supporting enhancer is not in 
J(k) 
i , add the enhancer, accessible in the maximum number of cells 

of 
∼ 
V 

(k) 

i , e to J(k) 
i to form 

∼ 
J 
(k) 

i , otherwise, J(k) 
i remains unchanged; (iii) 

constructing 
∼ 
K 

(k) 

i with cells from the longest path
∼ 
P 

(k) 

i . If  
∼ 
H 

(k) 

i

′
s score  

is ≥ H(k) 
i

′
s, assign H(k) 

i as 
∼ 
H 

(k) 

i . If not, end the expansion for this seed, 
output H(k) 

i , and remove the seed from S. If  S is not empty, proceed 
with the next seed. 

Finally, hybrid biclusters are ranked by descending score, 
and within each, enhancer–gene relations (C(k) 

i ) link genes to 
enhancers within 250 kb of their TSS [21]. Each hybrid bicluster is 
denoted as 

H(k) 
i =

(
I(k) 
i , J(k) 

i , K(k) 
i , C(k) 

i

)
. (6)  

We send all the hybrid biclusters for optimization in Step 4. 
Step 4: hybrid bicluster optimization 
Hybrid bicluster optimization seeks a subset that enhances 

diversity and minimizes redundancy, outputting eRegulons. This 
involves three elements (Fig. 2C and Supplementary Fig. S1D): (i) 
an evaluation function determining eRegulon number, (ii) a sub-
modular objective function measuring hybrid biclusters’ informa-
tiveness, and (iii) a submodular optimization algorithm selecting 
highly ranked hybrid biclusters [23]. 

eRegulon number identification. In our model, the evaluation func-
tion is formulated as follows: 

ΔR = Rin − Rout. (7) 

Rin represents the number of enhancer–gene pairs linked in 
selected hybrid biclusters, while Rout counts the number of pairs 
within 250 kb without established connections in selected hybrid 
biclusters. 

Submodular function. Using the facility location function, we 
quantify the data fraction in the entire set U captured by subset 
W of hybrid biclusters [23], where f maps U ′s power set to real 
numbers 

f (W) =
∑
H′∈U 

maxH∈W rH′ ,H, (8)  

where rH′ ,H determines the pairwise similarity between hybrid 
biclusters H′ = (

I′, J′, K′, C′) and H = (I, J, K, C), and is given by 

rH′ ,H = min

( ∣∣I ∩ I′
∣∣ · ∣∣K ∩ K′∣∣

min (|I| · |K| , |I′| · |K′|) ,
∣∣J ∩ J′

∣∣ · ∣∣K ∩ K′∣∣
min (|J| · |K| , |J′| · |K′|)

)
. (9)  

Intuitively, the facility location function achieves a high value 
when every hybrid bicluster in U has at least one representative 
in W that is similar. We define the conditional gain of f as: 

f (H|W) = f (H ∪ W) − f (W) . (10) 

Submodular optimization. Submodular optimization starts with 
an empty set W0 = ∅ and iteratively selects a hybrid bicluster 
Hi maximizing conditional gain, updating Wi to Wi−1 ∪ {Hi}. The  
process ends when there is no unselected hybrid bicluster. Finally, 
select Wi that yields the maximum ΔR as the set of eRegulons. 

Benchmarks 
Datasets 
This study benchmarks against six datasets from human cell 
lines, combining scRNA-seq and scATAC-seq data, accessible 
through NCBI GEO, 10x Genomics, or literature (Supplementary 
Table S1). Since the evaluation of performance depends on TF 
ChIP-seq and chromatin interaction data from the same cell 
lines in ENCODE, we downloaded all jointly profiled datasets and 
retained those with both supporting TF ChIP-seq and chromatin 
interaction data from the same cell lines (Supplementary Table 
S2-S3). Therefore, technologies used include 10x Genomics 
Multiome, scCAT-seq [32], SHARE-seq [33], and SNARE-seq2 [34]. 
Case studies feature a 10x Genomics Multiome dataset from an 
Alzheimer’s mouse model at various ages and another dataset 
from a diffuse small lymphocytic lymphoma model with ∼14,000 
sorted nuclei. 

Preprocessing scRNA-seq and scATAC-seq datasets 
This study processed scRNA-seq and scATAC-seq data using 
Read10X_h5, read_10x, and read.table functions for loading. 
scRNA-seq matrices were transformed into Seurat objects with 
CreateSeuratObject (Seurat v.4.0.5), and mitochondrial RNA 
percentages calculated via PercentageFeatureSet. For scATAC-seq, 
we retained enhancers on standard chromosomes (standardChro-
mosomes) and annotated genomes using GetGRangesFromEnsDb 
(EnsDb.Hsapiens.v86 for hg38, EnsDb.Hsapiens.v75 for hg19). 
Common cells across matrices were identified using intersect. 
scATAC-seq fragments in 10x Genomics Multiome datasets 
were integrated into Seurat with CreateChromatinAssay. Quality 
control was performed using subset based on mitochondrial RNA 
content and counts.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data


Enhancer-driven gene regulatory networks | 5

Benchmark methods 
We compared STREAM against six (e)GRN inference methods 
(Supplementary Note S4): (i) SCENIC (pySCENIC v.0.12.1) for fast 
TF, GRN, and cell type deduction from scRNA-seq [2]; (ii) SCENIC+ 
v.1.0.1 for constructing eGRNs from scRNA-seq and scATAC-seq 
datasets [16]; (iii) GLUE v.0.3.2, a deep learning framework for 
regulatory interaction inference from scRNA-seq and scATAC-seq 
[4]; (iv) DIRECT-NET v.1.0.0, for GRN construction from scRNA-seq 
and scATAC-seq [3]; (v) Pando v.1.0.5, using multi-modal single-
cell data for GRN inference [14]; (vi) scMEGA v.1.0.1, inferring GRNs 
with Seurat, Signac, and ArchR [17]. 

Evaluation metrics of eGRN inference 
We evaluate the effectiveness of various eGRN/GRN identification 
techniques, and examined their performance following SCENIC+ 
using three perspectives: TF recovery, TF–enhancer relation pre-
diction, and enhancer–gene relation discovery [16]. 

TF recovery. To assess TF identification accuracy, we obtained TF 
ChIP-seq bed files for six cell lines from ENCODE (Supplementary 
Table S2). We analyzed method accuracy by identifying overlaps 
between TFs in the (e)GRNs and ENCODE data, considering these 
overlaps as true positives. f scores were calculated to compare 
TF recovery effectiveness across methods, aiming to comprehen-
sively evaluate each method’s ability to accurately identify and 
recover TFs for the specified cell lines. 

TF–enhancer relation prediction. To evaluate the accuracy of pre-
dicted TF–enhancer associations by benchmarked methods, we 
sourced TF ChIP-seq bed files for six cell lines from ENCODE 
(Supplementary Table S3). For comprehensiveness, we selected 
the bed file with the most signal peaks per TF. We then compared 
the predicted TF-binding enhancers from our methods to the 
ENCODE ChIP-seq peaks, employing precision as our metric. This 
approach allowed us to assess the accuracy and relevance of our 
TF–enhancer predictions, emphasizing quality and significance 
over sheer quantity. 

Enhancer–gene relation discovery. To assess the accuracy of 
inferred enhancer–gene connections by various methods, we uti-
lized chromatin interaction, e.g., Hi-C data, for six cell lines from 
ENCODE, selecting the largest chromatin contact matrix in .hic 
format for each. Using strawr v.0.0.91, we converted .hic files to 
contact matrices with 2500 kb bins, indicating chromatin contact 
frequency. Gene locations were determined using gene annota-
tions from EnsDb.Hsapiens.v86 (hg38) and EnsDb.Hsapiens.v75 
(hg19). We compared our predicted enhancer–gene associations 
with ENCODE Hi-C contact data, using f scores to quantify the 
prediction accuracy of enhancer–gene connections. 

Case studies 
In the case study of Alzheimer’s disease, cell-type-specific trajec-
tories from scRNA-seq and scATAC-seq data were inferred using 
Monocle3 v.1.0.0, designating 2.5-month stage cells as trajectory 
roots [35]. In the case study of diffuse small lymphocytic lym-
phoma, we created cell-type-specific eGRNs for diffuse small 
lymphocytic lymphoma via a two-step approach. Initially, cell-
type-specific eRegulons were identified using a hypergeometric 
test (p < 0.05), adjusted for multiple tests with the Bonferroni 
correction. An eRegulon was considered cell-type-specific if its 
active cell set was significantly enriched in that cell type, merging 
eRegulons under the same TF for each cell type. Subsequently, 
we assembled the eGRN by integrating these eRegulons and their 
TF–enhancer–gene links. Differentially expressed genes or differ-
entially accessible regions were identified using Seurat v.4.0.5’s 

FindMarkers function, with significance set at adjusted p-values 
< 0.05. 

Results 
Benchmark evaluations of STREAM 
We benchmarked STREAM using six datasets from 10x Genomics 
Multiome, scCAT-seq [32], SHARE-seq [33], and SNARE-seq [34], 
covering cell lines like bone marrow and K562 (Fig. 3A). Our 
goal was to validate predictions on TFs, enhancers, and their 
interactions. Unlike SCENIC+’s simulated approach, we used real 
datasets to better understand method efficacy and sequencing 
nuances [16]. 

We compared STREAM to six (e)GRN construction tools: 
SCENIC+ [16], SCENIC [2], GLUE [4], DIRECT-NET [3], Pando 
[14], and scMEGA [17] (see  Materials and Methods for details). 
STREAM identified 143–159 TFs across datasets, comparable 
to SCENIC and GLUE’s 229–356, but higher than SCENIC+’s 36, 
DIRECT-NET’s 89, Pando’s 147–407, and scMEGA’s 15–84 (Fig. 3B 
and Supplementary Table S1). SCENIC+ struggled with detecting 
differentially accessible regions, affecting eRegulon inference. 
STREAM covered 70.4–78.3% of JASPAR-confirmed TFs (203) [29]. 
GLUE and SCENIC reported the highest TF counts due to their 
methodology, often exceeding STREAM. On average, STREAM 
identified 124 genes per (e)regulon, contrasting with SCENIC+’s 
9, DIRECT-NET’s 28, Pando’s 2, SCENIC’s 486, GLUE’s 157, and 
scMEGA’s 403 (Fig. 3C). Additionally, STREAM found an average 
of 69 enhancers per eRegulon, against SCENIC+’s 10, GLUE’s 184, 
and Pando’s 3 (Fig. 3D). 

We evaluated the biological relevance of identified TFs against 
690 ENCODE TF ChIP-seq datasets for the same cell lines 
(Figs. 3E-3J and Supplementary Table S2). STREAM showed the 
highest recovery rate of TFs regulating (e)regulons, as indicated 
by its f score. DIRECT-NET excelled in 10x Genomics Multiome 
datasets, with SCENIC and GLUE performing similarly across 
various platforms. SCENIC+ detected a limited number of 
eRegulons (36) in the 10x Genomics Multiome dataset (Fig. 3E), 
none of which matched ENCODE ChIP-seq TFs. While DIRECT-
NET was strong on the 10x platform, its performance dropped 
on others (Figs. 3E-3J). Pando stood out in scCAT-seq analysis, 
surpassing other methods (Fig. 3F). 

We assessed the accuracy of predicted TF target enhancers 
against ENCODE TF ChIP-seq data specific to the same cell line, 
excluding SCENIC, DIRECT-NET, and scMEGA for their lack of TF– 
enhancer inference. STREAM led in precision (Figs. 3K-3P), with 
GLUE close behind. SCENIC+ failed to align with ENCODE’s TF 
binding peaks due to non-detection of TFs (Fig. 3K). Consistent 
with TF recovery, Pando excelled in the scCAT-seq dataset analysis 
(Fig. 3L). 

In our final analysis of enhancer–gene relationship accuracy 
against Hi-C data, we focused on STREAM, GLUE, and SCENIC+, 
excluding SCENIC, DIRECT-NET, and Pando (Supplementary Table 
S3). STREAM led with f scores of 0.4 to 0.5 across datasets 
(Figs. 3Q-3V), while GLUE followed with 0.3 to 0.4. SCENIC+ had an 
f score of 0.12 in the 10x Genomics Multiome dataset, indicative of 
its limited enhancer–gene detection (Fig. 3Q). Consistently, Pando 
excelled in the scCAT-seq dataset, aligning with previous findings 
on TF recovery and TF–enhancer predictions (Fig. 3R). 

In conclusion, STREAM excels in eRegulon inference across cell 
lines and sequencing techniques, outshining rivals in TF recovery, 
TF–enhancer relationship prediction, and enhancer–gene connec-
tion identification. Its success stems from globally optimizing 
enhancer–gene interactions and predicting co-regulated gene and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
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Figure 3. Evaluation of STREAM in comparison to other single-cell RNA-seq and ATAC-seq GRN inference methods using mainstream jointly profiled 
data. (A) Chart of benchmarking strategy. (B-D) Number of TFs (B) identified per method and distributions of the number of target genes (C), and 
enhancers per regulon and method (D). (E-J) f score distributions from the comparison of TF recovery per method for datasets of human bone marrow 
(10x Multiome, E); mixture of K562, HCT116, and Hela-S3 (scCAT-seq, F); GM12878 (SHARE-seq, G-H); A549 (SNARE-seq2, I); and GM12878 (SNARE-seq2, J). 
(K-P) Overlap between Hi-C links and predicted enhancer–gene relations per method for datasets of human bone marrow (10x Multiome, K); mixture of 
K562, HCT116, and Hela-S3 (scCAT-seq, L); GM12878 (SHARE-seq, M-N); A549 (SNARE-seq2, O); and GM12878 (SNARE-seq2, P). (Q-V) f score distributions 
from the comparison of regulon target genes, per method for datasets of human bone marrow (10x Multiome, K); mixture of K562, HCT116, and Hela-S3 
(scCAT-seq,L); GM12878 (SHARE-seq, M-N); A549 (SNARE-seq2, O); and GM12878 (SNARE-seq2, P). 

enhancer pairs (Supplementary Table S4). STREAM’s comprehen-
sive approach, leveraging the Steiner forest problem model and 
submodular optimization, offers a unified view of TF–enhancer 
and enhancer–gene relationships, enhancing the accuracy and 
depth of regulatory network mapping. 

STREAM reveals pseudotime-linked eRegulons 
and dynamic enhancer–gene relationships in 
Alzheimer’s disease trajectories 
Using STREAM, we analyzed a scRNA-seq and scATAC-seq dataset 
from an Alzheimer’s disease mouse model (n = 21, 374 cells, 
32, 286 genes, 66, 861 enhancers) across three stages (2.5, 5.7, 
and 13+ months) generated by 10x Genomics Multiome. We 
identified 27 cell clusters using Seurat v.4.0.5 and manually 
annotated seven cell types: oligodendrocytes, oligodendrocyte 
progenitors, inhibitory neurons, excitatory neurons, astrocytes, 
microglia, and endothelial & pericytes (Supplementary Table 
S5 and Figs. 4A-4B). STREAM revealed 81 eRegulons linked to 
Alzheimer’s TFs, including androgen receptor [36], JUN [37], 
ESR2 [38, 39], FOSL2 [40], PLAG1 [41], RUNX1 [42], RORA [43], 

and STAT2 [44]. We assessed eRegulon overlap across stages 
(Fig. 4C), noting similarities within and across different TF-
regulated eRegulons. Specifically, in excitatory neurons, inhibitory 
neurons, and oligodendrocytes, we found 18, 11, and 17 cell-
type-specific eRegulons, respectively, highlighting STREAM’s 
capacity to reveal temporal dynamics in Alzheimer’s disease 
progression. 

To understand the temporal dynamics of eRegulon regulatory 
strengths in excitatory neurons, we isolated excitatory neuron 
cells, mapped their developmental trajectory (Fig. 4D), and 
computed pseudotime. We quantified each eRegulon’s enhancer– 
gene regulatory strength as the cell proportion showing accessible 
enhancers and gene expression within pseudotime segments, 
normalizing these values into z-scores to identify temporal 
patterns (Fig. 4E). Some eRegulons exhibited monotonically 
changing regulatory strengths across pseudotime, with trends 
of both increase and decrease. Specifically, eRegulons under 
RUNX1, FOS, NFE2, JUND, and FOSL2 showed diminishing expres-
sion, indicating strong early pseudotime activity. In contrast, 
regulatory strengths for NR2C2, ESR2, RUNX1, and FOSL2 peaked
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Figure 4. Analysis of pseudotime-associated eRegulons and changing trends of enhancer–gene relations. (A-B) UMAP plots color-coded by cell types (A) 
and stages (B). (C) Graph visualizing eRegulon similarity identified at three stages, with nodes representing eRegulons and weighted edges indicating 
pairwise similarity defined as the Jaccard index of enhancer–gene relations of two eRegulons. (D) UMAP plot with pseudotime color-coding in excitatory 
neuron cells. (E) Heatmap showing mean regulatory strengths of enhancer–gene relations in eRegulons specific to excitatory neuron cells over 
pseudotime. (F-G) Exemplary enhancer–gene relations demonstrating a monotonic trend in regulatory strengths over pseudotime in excitatory neuron 
cells. Similar plots for Inhibitory neuron cells (H-K) and oligodendrocytes (L-O). 

mid-trajectory, while NKX3–1, ELK4, FOSL2, androgen receptor, 
and ESR2 eRegulons increased over pseudotime. These patterns 
align with the neurological roles of these TFs, such as RUNX1’s 
pro-neurogenic function [ 45], androgen receptor’s link to cognitive 
deficits [46], JUN and FOS’s involvement in apoptosis [47, 48], 
ESR2’s Alzheimer’s disease susceptibility [38], JUND’s apoptotic 
impact, ELK4’s and FOSL2’s (AP-1 component) neuronal functions 
[47–49]. Notably, the enhancer bound by FOS and FOLS2 on 
chr11–70646709–70647600 showed decreasing regulatory strength 
on Mink1 (Fig. 4F), important for cognition and Alzheimer’s 
disease. Similarly, an enhancer regulated by ELK4 and ESR2 
on chr12–110696009–110696853 exhibited growing influence 
on Alzheimer’s-associated gene Dync1h1 (Fig. 4G) [38, 50], 
highlighting STREAM’s ability to capture significant regulatory 
changes over time in disease progression. 

Our analysis extended to inhibitory neurons, revealing mono-
tonic trends in eRegulon regulatory strengths similar to those in 
excitatory neurons (Figs. 4H-4I). eRegulons controlled by ESR2, 
TLX1, JUN, JUND, NFE2, NR2C2, ELK4, RORA, and KAISO (Zbtb33) 
exhibited distinct patterns. Notably, RORA [43], associated with 
Alzheimer’s disease pathology, showed increased expression in 
disease contexts. KAISO plays a role in central nervous system 

development. ESR2 and JUN [51], binding to chr2–34372425– 
34373312, regulated Pbx3 [52], essential for the central nervous 
system, with diminishing regulatory strength over pseudotime 
(Fig. 4J). Conversely, ELK4 and JUN enhanced Frmd5’s regulatory 
impact from chr2–121806663–121807507, indicating an increasing 
influence over time (Fig. 4K). 

In oligodendrocytes, we observed eRegulons with monotonic 
changes in regulatory strength over pseudotime (Fig. 4L), con-
trolled by TFs similar to those in excitatory and inhibitory neuron 
analyses (Fig. 4M). We explored two enhancers: chr17–65884560– 
65885475, regulated by FOSL2 and FOS, showed decreasing 
regulatory influence on Rab31 (Fig. 4N) [53], a RUNX1 target 
in Alzheimer’s. Meanwhile, chr10–79681469–79682367, under 
androgen receptor and JUN (Fig. 4O), revealed increasing impact 
on Bsg, linked to learning, memory [54], and potential sensory and 
memory function abnormalities [55]. 

STREAM elucidates the role of eRegulons or enhancer– 
gene relationships in developmental trajectories across excita-
tory neurons, inhibitory neurons, oligodendrocytes, microglia, 
astrocytes, and oligodendrocyte progenitors (Figs. 4D-4O and 
Supplementary Figs. S3, S4, and S5), showcasing its ability to infer 
critical regulatory dynamics.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
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Figure 5. Key enhancer and enhancer–gene relations in B cell tumor development revealed by STREAM eRegulons. (A) UMAP plot of cell types in diffuse 
small lymphocytic lymphoma. (B) Distribution of the number of enhancers linked to each gene and rank distribution based on absolute distance between 
enhancer and gene. (C) Overlap fraction of enhancers between eRegulon pairs, normalized by enhancer count in each row’s eRegulon. (D) Heatmap-
dotplot displaying eRegulon gene expression (color scale) and ranks of chromatin accessibility (size scale). (E) Schematic showcasing TF variation 
regulating CCDC88C via chr14–91366590-91389532 binding among Normal B, Tumor B proliferation, and Tumor B cells. (F) Chromatin accessibility 
profiles across three B cell types within chr14–91370000–91420000, labeled by TF binding sites from (E). (G) Schematic highlighting enhancer–gene 
relation variation between chr3–195203363–195211311 and gene pair (ACAP2 and XXYLT1) across three B cell types. (H) Chromatin accessibility profiles 
within chr3–195203363–195211311 across three B cell types, labeled by LHX2 binding sites. Arcs show enhancer–gene links with color denoting the 
fraction of cells showing concurrent enhancer accessibility and gene expression. Abbreviations: Tumor B pro, Tumor B proliferation cell; TAM, Tumor-
associated macrophage; DC, Dendritic cell; EL CD4+ T, Effector-like CD4+ T cell; EL CD4+ T1, Effector-like CD4+ T cell type 1; EL CD4+ T2, Effector-like 
CD4+ T cell type 2; Exh CD4+ T, Exhaustive CD4+ T cell; EL CD8+ T, Effector-like CD8+ T cell; Exh CD4+ T, Exhaustive CD4+ T cell. 

STREAM reveals eRegulons in diseased B cells of 
diffuse small lymphocytic lymphoma 
Demonstrating STREAM’s utility in cancer research, we analyzed a 
diffuse small lymphocytic lymphoma dataset from 10x Genomics 
Multiome with 14,104 cells, 36,601 genes, and 70,469 enhancers. 
Post-unsupervised clustering and manual cell type annotation 
using Seurat v.4.0.5, we refined the dataset to include 11 cell 
types (Fig. 5A) [11]. STREAM identified 50 eRegulons across this 
dataset, each containing 19–290 genes and 9–70 active enhancers 
affecting 34–703 cells. Notably, 99.6% of genes were linked to 1–10 
enhancers, and 47.0% of enhancers were exclusively associated 
with their nearest gene (Fig. 5B). 

We identified 37 eRegulons specific to certain cell types in a dif-
fuse small lymphocytic lymphoma dataset, including Effector-like 
and Exhaustive CD4+ T cells, Effector-like and Central memory-
like CD8+ T cells, Dendritic cells, Normal and Tumor B cells. 

These eRegulons, exclusive to eight cell types, showed TF co-
binding patterns (Fig. 5C). Notable TFs regulating these eRegulons 
included TCF7 and LHX2 in Normal B cells [56, 57], along with 
SPI1 [58, 59], TCF12 [60], STAT3 [61, 62], NFIC [63], NFIB [64], and 
MYF5 [65] in Tumor B cells. We observed a concordance between 
expression and chromatin accessibility in eRegulons regulated by 
these TFs, highlighting chromatin’s role in transcription across 
different cell types (Fig. 5D). However, for eRegulons like those 
regulated by LHX2 (eR21), SPI1 (eR12), TCF7 (eR22), and TCF12 
(eR13), chromatin accessibility changes did not always accom-
pany expression variations, indicating the complex interplay of 
chromatin accessibility in transcription regulation within specific 
eRegulons [66]. 

In exploring TF–enhancer–gene relationships in diffuse small 
lymphocytic lymphoma, we analyzed cell-type-specific eRegulons 
within Normal B cells, Tumor B proliferation cells, and Tumor
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Figure 6. Interaction of SPI1, STAT3, and TCF12 in B cells. (A) Chromatin accessibility profiles across three distinct B cell types, complemented by 
ChIP-seq signals for SPI1, STAT3, and TCF12 in the specified chromosomal region (chr14–91370000–91420000). (B) Visualization of an eGRN exclusive to 
proliferating Tumor B cells, constructed by the interplay of SPI1, STAT3, and TCF12 and confined to highly variable genes or enhancers. The thickness 
of the line connecting two nodes signifies the proportion of cells in which both nodes are either accessible (in the case of enhancers) or expressed (in 
the case of genes encoding TFs or their targets). Abbreviations: Tumor B pro, Tumor B proliferation cell. 

B cells ( Figs. 5E-5H). We discovered cell-type-specific eRegulons: 
two in Normal B, eight in Tumor B proliferation, and nine in Tumor 
B cells. In Normal B cells, eRegulons regulated by TCF7 and LHX2 
targeted 14 and 73 genes through 11 and 82 enhancers [56], high-
lighting LHX2’s role in B cell differentiation and TCF7’s in B cell 
lineage commitment [56]. The Tumor B proliferation cells–cells 
presented eight eRegulons governed by TFs such as LHX2, MYF5, 
NFIB, NFIC, SPI1, STAT3, TCF12, and ZFP42, affecting 14–478 genes 

via 11–1,097 enhancers. This diversity underlines B cell differ-
entiation’s molecular complexity, with MYF5 linked to myoblast 
proliferation and NFIB/NFIC associated with lymphoma cell char-
acteristics [63–65]. SPI1 and TCF12 are essential for B cell function-
ality, while ZFP42 (REX1) is connected to lymph node oncogenesis 
[58–60, 67, 68]. Tumor B cells shared similarities with Tumor B 
proliferation cells, with the addition of an EGR1 eRegulon, a gene 
implicated in B-cell lymphoma signaling pathways [69]. STREAM’s
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analysis reveals intricate TF–enhancer–gene dynamics, offering 
insights into the molecular underpinnings of Tumor B cell biology. 

To assess the impact of TF binding variation on gene expression 
in B cells, we studied CCDC88C, regulated by an enhancer (chr14– 
91366590–91389532) across diffuse small lymphocytic lymphoma 
marker genes (Fig. 5E). CCDC88C encodes Daple, which activates 
Wnt signaling [70], reducing apoptosis [71], and is upregulated 
in lymphoma/leukemia B cells versus healthy counterparts [72]. 
Variation in TF binding to this enhancer was noted among B cell 
types: TCF7 exclusively in Normal B, with SPI1, TCF12, STAT3, 
MYF5, NFIC, and NFIB co-binding in Tumor B proliferation and 
Tumor B cells (Fig. 5F), indicating cooperative TF interactions. 
Violin plots showed CCDC88C upregulation in Tumor B cells 
compared to Normal B, highlighting the role of diverse TF 
combinations in CCDC88C regulation and cell differentiation 
(Fig. 5F). 

Exploring the impact of enhancer–gene relationships on lym-
phoma marker gene expression, we analyzed ACAP2 and XXYLT1, 
regulated by LHX2 at chr3–195203363–195211311 (Fig. 5G). ACAP2, 
overrepresented in lymphoma [73], and XXYLT1, a Notch signaling 
regulator [74, 75], illustrate the complexity of gene regulation 
in cancer. Regulatory strength, defined by the fraction of cells 
showing both enhancer accessibility and gene expression, high-
lighted LHX2’s distinct influence on these genes across B cell 
types. XXYLT1 showed regulatory strengths of 0.63 and 0.56 in 
Tumor B proliferation and Tumor B cells, respectively, absent in 
Normal B cells (Fig. 5H). ACAP2 displayed varying strengths across 
cell types, peaking in Tumor B cells (0.96). Increased Tn5 insertion 
events in tumor cells suggest enhanced marker expression driven 
by regulatory strength changes, possibly due to altered chromatin 
accessibility. Thus, chr3–195203363–195211311, under LHX2 regu-
lation, varies in regulatory intensity across B cell types, affecting 
marker gene expression and cell differentiation. 

STREAM constructs comprehensive eGRNs 
highlighting TF cooperativity in gene regulation 
across cell types 
To elucidate TF-enhancer–gene interactions in B cells of diffuse 
small lymphocytic lymphoma, we focused on SPI1, STAT3, and 
TCF12, leveraging ChIP-seq data from ENCODE’s GM12878 cell 
line [76]. This facilitated eGRN reconstruction in Normal B, Tumor 
B proliferation, and Tumor B cells. SPI1 and TCF12 are pivotal 
for B cell development and commitment [58–60], while STAT3 is 
crucial in B cell lymphoma [61, 62]. SPI1 and STAT3 collaboratively 
influence tumorigenesis pathways, and TCF12 [77], belonging 
to the basic helix–loop–helix family, contributes to metastasis, 
including in lymph nodes [78]. These TFs regulate CCDC88C, a 
Wnt signaling activator. Analyzing their binding within chr14– 
91370000–91420000 across B cell types (Fig. 6A), we noted signifi-
cant binding site and ChIP-seq signal overlaps, indicating height-
ened chromatin accessibility and TF activity, especially for SPI1 
and TCF12 (Fig. 6A). STREAM’s eGRNs thus reveal the cooperative 
regulation by multiple TFs, offering insights into their roles in gene 
regulation and lymphoma pathology. 

To map TF-enhancer–gene interactions in diffuse small lym-
phocytic lymphoma B cells, we focused on SPI1, STAT3, and TCF12, 
analyzing their enhancer and gene interactions. We quantified 
TF–enhancer and enhancer–gene relationship strengths based 
on gene activity and enhancer accessibility across B cell types. 
This approach generated three eGRNs, each comprising 276 nodes 
and 457 edges, with edge weights differing by cell type (Fig. 6B 
and Supplementary Figs. S6-S7). Notably, in Tumor B proliferation 
cells, we found 253 enhancers jointly targeted by SPI1 and STAT3 

regulating 148 genes, 297 by SPI1 and TCF12 for 94 genes, and 
208 by STAT3 and TCF12 for 69 genes (Supplementary Table 
S6). Pathway enrichment analyses identified significant pathways 
related to lymphoma pathogenesis (Supplementary Table S7) [79], 
including leukocyte migration, toxoplasmosis, and thyroid hor-
mone signaling [80–84]. Genes co-regulated by SPI1 and TCF12 
were linked to acute myeloid leukemia and cancer metabolism, 
indicating their role in lymphoma [84–89]. Similarly, genes tar-
geted by STAT3 and TCF12 were involved in immune differentia-
tion and inflammatory diseases, highlighting their contribution to 
lymphoma risk [90]. These findings illustrate STREAM’s capacity 
to elucidate the cooperative gene regulation by TFs in lymphoma, 
offering insights into the underlying biological pathways and 
mechanisms. 

Conclusion 
STREAM is a robust framework for inferring eGRNs from scRNA-
seq and scATAC-seq data. By leveraging the Steiner forest problem 
model, hybrid biclustering, and submodular optimization, 
STREAM elucidates regulatory mechanisms by accounting for 
inter-dependencies among multiple enhancer–enhancer and 
enhancer–gene interactions. This approach eliminates the 
impact of pre-defined cell clusters on eGRN inference and 
globally optimizes TF-enhancer–gene relationships through a 
global optimization perspective. Benchmarking analyses reveal 
that STREAM outperforms six established (e)GRN inference 
methods across various datasets in TF recovery, TF–enhancer 
linkage prediction, and enhancer–gene relationship identification. 
Applied to Alzheimer’s disease and diffuse small lymphocytic 
lymphoma datasets, STREAM effectively identified eRegulons 
and their dynamics over pseudotime, highlighting its utility 
in revealing disease-specific gene regulation patterns and the 
interplay among TFs in gene regulation. Despite its strengths, 
STREAM has limitations that need addressing, such as developing 
customized approaches or parameter settings for different 
data qualities or sequencing techniques, integrating additional 
modalities (e.g., 3-D genome structures, protein expression, 
protein–protein interactions), distinguishing positive/negative 
trans- and  cis-regulatory mechanisms, inferring causality among 
TFs, enhancers, and genes, and developing valid benchmarking 
schemes using bulk data. Moreover, STREAM must identify critical 
states and transitions in complex biological systems and disease 
progression through graph entropy analyses [91–94]. Nonetheless, 
STREAM’s robust performance underscores its potential as a 
complementary tool in gene regulation analysis, with future 
enhancements anticipated through integration with other GRN 
prediction approaches, promising deeper insights into cellular 
dynamics and regulatory networks. 

Key Points 
• The paper introduces STREAM, an innovative algorithm 

designed for the inference of enhancer-driven gene reg-
ulatory networks. 

• STREAM leverages global optimization strategies, incor-
porating a Steiner forest problem model and a hybrid 
biclustering pipeline integrated with a framework of 
submodular optimization. 

• Evaluated against six established methods across bench-
mark datasets from six cell lines, STREAM demonstrates 
superior performance. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
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• STREAM adeptly identifies relationships among tran-
scription factors, enhancers, and genes relevant to 
Alzheimer’s disease and diffuse small lymphocytic lym-
phoma. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 

Funding 
This work was supported by award R01GM131399 from the 
National Institute of General Medical Sciences of the National 
Institutes of Health. The work was also supported by the award 
NSF1945971 from the National Science Foundation. This work 
was supported by the Pelotonia Institute of Immuno-Oncology 
(PIIO). The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the PIIO. 
The authors thank Qiuqin Wu, Xiaoying Wang, Zhenyu Wu, Yujia 
Xiang, Shuangquan Zhang, Shuo Chen, and Cindy Tong for their 
assistance in data collection, pipeline development, tool testing, 
and cell type annotation. 

Data availability 
Detailed tutorials and documentation on the STREAM workflow 
are available at https://github.com/OSU-BMBL/STREAM. Scripts 
to reproduce the analyses presented in this manuscript are 
available at https://github.com/OSU-BMBL/stream_analyses. 
All datasets analyzed in this study were published previously. 
The corresponding descriptions and pre-processing steps are 
described in the Materials and Methods. 

References 
1. Jin T, Rehani P, Ying M. et al. scGRNom: a computational pipeline 

of integrative multi-omics analyses for predicting cell-type dis-
ease genes and regulatory networks. Genome Med 2021;13:95. 
https://doi.org/10.1186/s13073-021-00908-9. 

2. Aibar S, González-Blas CB, Moerman T. et al. SCENIC: single-
cell regulatory network inference and clustering. Nat Methods 
2017;14:1083–6. https://doi.org/10.1038/nmeth.4463. 

3. Zhang L, Zhang J, Nie Q. DIRECT-NET: An efficient method to 
discover cis-regulatory elements and construct regulatory net-
works from single-cell multiomics data. Sci Adv 2022;8:eabl7393. 
https://doi.org/10.1126/sciadv.abl7393. 

4. Cao Z-J, Gao G. Multi-omics single-cell data integration and reg-
ulatory inference with graph-linked embedding. Nat Biotechnol 
2022;40:1458–66. https://doi.org/10.1038/s41587-022-01284-4. 

5. Janssens J, Aibar S, Taskiran II. et al. Decoding gene regulation 
in the fly brain. Nature 2022;601:630–6. https://doi.org/10.1038/ 
s41586-021-04262-z. 

6. Duren Z,  Lu WS,  Arthur  JG.  et al. Sc-compReg enables the 
comparison of gene regulatory networks between conditions 
using single-cell data. Nat Commun 2021;12:4763. https://doi. 
org/10.1038/s41467-021-25089-2. 

7. Duren Z,  Chen X,  Zamanighomi  M.  et al. Integrative analysis 
of single-cell genomics data by coupled nonnegative matrix 

factorizations. Proc Natl Acad Sci 2018;115:7723–8. https://doi. 
org/10.1073/pnas.1805681115. 

8. Duren Z, Chang F, Naqing F. et al. Regulatory analysis of single 
cell multiome gene expression and chromatin accessibility data 
with scREG. Genome Biol 2022;23:114. https://doi.org/10.1186/ 
s13059-022-02682-2. 

9. Badia-i-Mompel P, Wessels L, Müller-Dott S. et al. Gene reg-
ulatory network inference in the era of single-cell multi-
omics. Nat Rev Genet 2023;24:739–54. https://doi.org/10.1038/ 
s41576-023-00618-5. 

10. Kamimoto K, Stringa B, Hoffmann CM. et al. Dissecting cell iden-
tity via network inference and in silico gene perturbation. Nature 
2023;614:742–51. https://doi.org/10.1038/s41586-022-05688-9. 

11. Ma A, Wang X, Li J. et al. Single-cell biological network infer-
ence using a heterogeneous graph transformer. Nat Commun 
2023;14:964. https://doi.org/10.1038/s41467-023-36559-0. 

12. Kartha VK, Duarte FM, Hu Y. et al. Functional inference 
of gene regulation using single-cell multi-omics. Cell Genom 
2022;2:100166. https://doi.org/10.1016/j.xgen.2022.100166. 

13. Kamal A, Arnold C, Claringbould A. et al. GRaNIE and GRaNPA: 
Inference and evaluation of enhancer-mediated gene regula-
tory networks applied to study macrophages. Mol Syst Biol 
2023;19:e11627. https://doi.org/10.15252/msb.202311627. 

14. Fleck JS, Jansen SMJ, Wollny D. et al. Inferring and perturbing cell 
fate regulomes in human brain organoids. Nature 2023;621:365– 
72. https://doi.org/10.1038/s41586-022-05279-8. 

15. Duren Z, Chen X, Jiang R. et al. Modeling gene regula-
tion from paired expression and chromatin accessibility data. 
Proc Natl Acad Sci 2017;114:E4914–23. https://doi.org/10.1073/ 
pnas.1704553114. 

16. González-Blas CB, De Winter S, Hulselmans G. et al. SCENIC+: 
single-cell multiomic inference of enhancers and gene reg-
ulatory networks. Nat Methods 2023;20:1355–67. https://doi. 
org/10.1038/s41592-023-01938-4. 

17. Li Z, Nagai JS, Kuppe C. et al. scMEGA: single-cell multi-omic 
enhancer-based gene regulatory network inference. Bioinform 
Adv 2023;3:vbad003. https://doi.org/10.1093/bioadv/vbad003. 

18. Duren  Z, Chen  X, Xin  J.  et al. Time course regulatory anal-
ysis based on paired expression and chromatin accessibil-
ity data. Genome Res 2020;30:622–34. https://doi.org/10.1101/ 
gr.257063.119. 

19. Zhang Q, Teng P, Wang S. et al. Computational prediction 
and characterization of cell-type-specific and shared bind-
ing sites. Bioinformatics 2022;39:btac798. https://doi.org/10.1093/ 
bioinformatics/btac798. 

20. Buenrostro JD, Wu B, Litzenburger UM. et al. Single-cell chro-
matin accessibility reveals principles of regulatory variation. 
Nature 2015;523:486–90. https://doi.org/10.1038/nature14590. 

21. Granja JM, Corces MR, Pierce SE. et al. ArchR is a scalable soft-
ware package for integrative single-cell chromatin accessibil-
ity analysis. Nat Genet 2021;53:403–11. https://doi.org/10.1038/ 
s41588-021-00790-6. 

22. Gassner E. The Steiner Forest Problem revisited. J Discrete Algo-
rithms 2010;8:154–63. https://doi.org/10.1016/j.jda.2009.05.002. 

23. Wei K, Libbrecht MW, Bilmes JA. et al. Choosing panels of 
genomics assays using submodular optimization. Genome Biol 
2016;17:229. https://doi.org/10.1186/s13059-016-1089-7. 

24. Chang Y, Allen C, Wan C. et al. IRIS-FGM: an integrative single-
cell RNA-Seq interpretation system for functional gene module 
analysis. Bioinformatics 2021;37:3045–7. https://doi.org/10.1093/ 
bioinformatics/btab108. 

25. Wan C, Chang W, Zhang Y. et al. LTMG: a novel statisti-
cal modeling of transcriptional expression states in single-cell

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae369#supplementary-data
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/STREAM
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://github.com/OSU-BMBL/stream_analyses
https://doi.org/10.1186/s13073-021-00908-9
https://doi.org/10.1186/s13073-021-00908-9
https://doi.org/10.1186/s13073-021-00908-9
https://doi.org/10.1186/s13073-021-00908-9
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41467-021-25089-2
https://doi.org/10.1038/s41467-021-25089-2
https://doi.org/10.1038/s41467-021-25089-2
https://doi.org/10.1038/s41467-021-25089-2
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1186/s13059-022-02682-2
https://doi.org/10.1186/s13059-022-02682-2
https://doi.org/10.1186/s13059-022-02682-2
https://doi.org/10.1186/s13059-022-02682-2
https://doi.org/10.1038/s41576-023-00618-5
https://doi.org/10.1038/s41576-023-00618-5
https://doi.org/10.1038/s41576-023-00618-5
https://doi.org/10.1038/s41576-023-00618-5
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1016/j.xgen.2022.100166
https://doi.org/10.1016/j.xgen.2022.100166
https://doi.org/10.1016/j.xgen.2022.100166
https://doi.org/10.1016/j.xgen.2022.100166
https://doi.org/10.1016/j.xgen.2022.100166
https://doi.org/10.15252/msb.202311627
https://doi.org/10.15252/msb.202311627
https://doi.org/10.15252/msb.202311627
https://doi.org/10.15252/msb.202311627
https://doi.org/10.1038/s41586-022-05279-8
https://doi.org/10.1038/s41586-022-05279-8
https://doi.org/10.1038/s41586-022-05279-8
https://doi.org/10.1038/s41586-022-05279-8
https://doi.org/10.1073/pnas.1704553114
https://doi.org/10.1073/pnas.1704553114
https://doi.org/10.1073/pnas.1704553114
https://doi.org/10.1073/pnas.1704553114
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1101/gr.257063.119
https://doi.org/10.1101/gr.257063.119
https://doi.org/10.1101/gr.257063.119
https://doi.org/10.1101/gr.257063.119
https://doi.org/10.1093/bioinformatics/btac798
https://doi.org/10.1093/bioinformatics/btac798
https://doi.org/10.1093/bioinformatics/btac798
https://doi.org/10.1093/bioinformatics/btac798
https://doi.org/10.1093/bioinformatics/btac798
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/s41588-021-00790-6
https://doi.org/10.1038/s41588-021-00790-6
https://doi.org/10.1038/s41588-021-00790-6
https://doi.org/10.1038/s41588-021-00790-6
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1186/s13059-016-1089-7
https://doi.org/10.1186/s13059-016-1089-7
https://doi.org/10.1186/s13059-016-1089-7
https://doi.org/10.1186/s13059-016-1089-7
https://doi.org/10.1093/bioinformatics/btab108
https://doi.org/10.1093/bioinformatics/btab108
https://doi.org/10.1093/bioinformatics/btab108
https://doi.org/10.1093/bioinformatics/btab108
https://doi.org/10.1093/bioinformatics/btab108


12 | Li et al.

RNA-Seq data. Nucleic Acids Res 2019;47:e111. https://doi.org/10. 
1093/nar/gkz655. 

26. Stuart T, Srivastava A, Madad S. et al. Single-cell chromatin state 
analysis with Signac. Nat Methods 2021;18:1333–41. https://doi. 
org/10.1038/s41592-021-01282-5. 

27. Pliner HA, Packer JS, McFaline-Figueroa JL. et al. Cicero Pre-
dicts cis-Regulatory DNA Interactions from Single-Cell Chro-
matin Accessibility Data. Mol Cell 2018;71:858–871.e8. https:// 
doi.org/10.1016/j.molcel.2018.06.044. 

28. Abbaszadeh O, Azarpeyvand A, Khanteymoori A. et al. Data-
Driven and Knowledge-Based Algorithms for Gene Network 
Reconstruction on High-Dimensional Data. IEEE/ACM Trans 
Comput Biol Bioinform 2022;19:1545–57. https://doi.org/10.1109/ 
TCBB.2020.3034861. 

29. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I. et al. 
JASPAR 2022: the 9th release of the open-access database 
of transcription factor binding profiles. Nucleic Acids Res 
2022;50:D165–73. https://doi.org/10.1093/nar/gkab1113. 

30. Li G, Ma Q, Tang H. et al. QUBIC: a qualitative biclustering 
algorithm for analyses of gene expression data. Nucleic Acids Res 
2009;37:e101. https://doi.org/10.1093/nar/gkp491. 

31. Eddy SR. What is dynamic programming? Nat Biotechnol 2004;22: 
909–10. https://doi.org/10.1038/nbt0704-909. 

32. Liu L, Liu C. et al. Deconvolution of single-cell multi-omics lay-
ers reveals regulatory heterogeneity. Nat Commun 2019;10:470. 
https://doi.org/10.1038/s41467-018-08205-7. 

33. Ma S, Zhang B, LaFave LM. et al. Chromatin Potential Iden-
tified by Shared Single-Cell Profiling of RNA and Chro-
matin. Cell 2020;183:1103–1116.e20. https://doi.org/10.1016/j. 
cell.2020.09.056. 

34. Plongthongkum N, Diep D, Chen S. et al. Scalable dual-omics 
profiling with single-nucleus chromatin accessibility and mRNA 
expression sequencing 2 (SNARE-seq2). Nat Protoc 2021;16: 
4992–5029. https://doi.org/10.1038/s41596-021-00507-3. 

35. Cao J, Spielmann M, Qiu X. et al. The single-cell transcrip-
tional landscape of mammalian organogenesis. Nature 2019;566: 
496–502. https://doi.org/10.1038/s41586-019-0969-x. 

36. Ferrari R, Dawoodi S, Raju M. et al. Androgen receptor 
gene and sex-specific Alzheimer’s disease. Neurobiol Aging 
2013;34:2077.e19–20. https://doi.org/10.1016/j.neurobiolaging. 
2013.02.017. 

37. MacGibbon GA, Lawlor PA, Walton M. et al. Expression of Fos, 
Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 
1997;147:316–32. https://doi.org/10.1006/exnr.1997.6600. 

38. Pirskanen M, Hiltunen M, Mannermaa A. et al. Estrogen recep-
tor beta gene variants are associated with increased risk of 
Alzheimer’s disease in women. Eur J Hum Genet 2005;13:1000–6. 
https://doi.org/10.1038/sj.ejhg.5201447. 

39. Zhao L, Woody SK, Chhibber A. Estrogen receptor β in 
Alzheimer’s disease: From mechanisms to therapeutics. Age-
ing Res Rev 2015;24:178–90. https://doi.org/10.1016/j.arr.2015. 
08.001. 

40. Morabito S, Miyoshi E, Michael N. et al. Single-nucleus chromatin 
accessibility and transcriptomic characterization of Alzheimer’s 
disease. Nat Genet 2021;53:1143–55. https://doi.org/10.1038/ 
s41588-021-00894-z. 

41. Liu C, Chyr J, Zhao W. et al. Genome-Wide Association and Mech-
anistic Studies Indicate That Immune Response Contributes 
to Alzheimer’s Disease Development. Front Genet 2018;9:410. 
https://doi.org/10.3389/fgene.2018.00410. 

42. Patel A, Rees SD, Kelly MA. et al. Association of variants 
within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with 
dementia in Alzheimer’s disease in subjects with Down 

syndrome. Neurosci Lett 2011;487:144–8. https://doi.org/10.1016/ 
j.neulet.2010.10.010. 

43. Acquaah-Mensah GK, Agu N, Khan T. et al. A regulatory role 
for the insulin- and BDNF-linked RORA in the hippocampus: 
implications for Alzheimer’s disease. J Alzheimers Dis 2015;44: 
827–38. https://doi.org/10.3233/JAD-141731. 

44. Sierksma A, Lu A, Mancuso R. et al. Novel Alzheimer risk 
genes determine the microglia response to amyloid-β but not 
to TAU pathology. EMBO Mol Med 2020;12:e10606. https://doi. 
org/10.15252/emmm.201910606. 

45. Fukui H, Rünker A, Fabel K. et al. Transcription factor 
Runx1 is pro-neurogenic in adult hippocampal precursor 
cells. PloS One 2018;13:e0190789. https://doi.org/10.1371/journal. 
pone.0190789. 

46. Raber J. Androgens, ApoE, and Alzheimer’s Disease. Sci Aging 
Knowledge Environ 2004;2004:re2–2. https://doi.org/10.1126/ 
sageke.2004.11.re2. 

47. Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis in 
Alzheimer’s disease: colocalization with c-Jun immunoreactiv-
ity, relationship to brain area, and effect of postmortem delay. 
J Neurosci 1996;16:1710–9. https://doi.org/10.1523/JNEUROSCI. 
16-05-01710.1996. 

48. Marcus DL, Strafaci JA, Miller DC. et al. Quantitative neuronal 
c-Fos and c-Jun expression in Alzheimer’s disease11To 
whom correspondence should be addressed. Neurobiol 
Aging 1998;19:393–400. https://doi.org/10.1016/S0197-4580(98) 
00077-3. 

49. Hüttenrauch M, Salinas G, Wirths O. Effects of Long-Term 
Environmental Enrichment on Anxiety, Memory, Hippocam-
pal Plasticity and Overall Brain Gene Expression in C57BL6 
Mice. Front Mol Neurosci 2016;9:62. https://doi.org/10.3389/ 
fnmol.2016.00062. 

50. Mentis AA, Vlachakis D, Papakonstantinou E. et al. A novel  
variant in DYNC1H1 could contribute to human amyotrophic 
lateral sclerosis-frontotemporal dementia spectrum. Cold Spring 
Harb Mol Case Stud 2022;8:mcs.a006096. https://doi.org/10.1101/ 
mcs.a006096. 

51. Illarionova NB, Borisova MA, Bazhenova EY. et al. Zbtb33 Gene 
Knockout Changes Transcription of the Fgf9, Fgfr3, c-Myc and 
FoxG1 Genes in the Developing Mouse Brain. Mol Biol 2021;55: 
363–71. https://doi.org/10.1134/S0026893321020230. 

52. Rhee JW, Arata A, Selleri L. et al. Pbx3 deficiency results in 
central hypoventilation. Am J Pathol 2004;165:1343–50. https:// 
doi.org/10.1016/S0002-9440(10)63392-5. 

53. Kunkle BW, Vardarajan BN, Naj AC. et al. Early-Onset Alzheimer 
Disease and Candidate Risk Genes Involved in Endolyso-
somal Transport. JAMA Neurol 2017;74:1113–22. https://doi. 
org/10.1001/jamaneurol.2017.1518. 

54. Naruhashi K, Kadomatsu K, Igakura T. et al. Abnormali-
ties of Sensory and Memory Functions in Mice LackingB-
sgGene. Biochem Biophys Res Commun 1997;236:733–7. https://doi. 
org/10.1006/bbrc.1997.6993. 

55. Najyb O, Brissette L, Rassart E. Apolipoprotein D Internaliza-
tion Is a Basigin-dependent Mechanism. J Biol Chem  2015;290: 
16077–87. https://doi.org/10.1074/jbc.M115.644302. 

56. Rosén A, Bergh A-C, Gogok P. et al. Lymphoblastoid cell line with 
B1 cell characteristics established from a chronic lymphocytic 
leukemia clone by in vitro EBV infection. Onco Targets Ther 2012;1: 
18–27. https://doi.org/10.4161/onci.1.1.18400. 

57. Wu JQ, Seay M, Schulz VP. et al. Tcf7 is an important regulator of 
the switch of self-renewal and differentiation in a multipotential 
hematopoietic cell line. PLoS Genet 2012;8:e1002565. https://doi. 
org/10.1371/journal.pgen.1002565.

https://doi.org/10.1093/nar/gkz655
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1109/TCBB.2020.3034861
https://doi.org/10.1109/TCBB.2020.3034861
https://doi.org/10.1109/TCBB.2020.3034861
https://doi.org/10.1109/TCBB.2020.3034861
https://doi.org/10.1093/nar/gkab1113
https://doi.org/10.1093/nar/gkab1113
https://doi.org/10.1093/nar/gkab1113
https://doi.org/10.1093/nar/gkab1113
https://doi.org/10.1093/nar/gkab1113
https://doi.org/10.1093/nar/gkp491
https://doi.org/10.1093/nar/gkp491
https://doi.org/10.1093/nar/gkp491
https://doi.org/10.1093/nar/gkp491
https://doi.org/10.1093/nar/gkp491
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1038/s41596-021-00507-3
https://doi.org/10.1038/s41596-021-00507-3
https://doi.org/10.1038/s41596-021-00507-3
https://doi.org/10.1038/s41596-021-00507-3
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1016/j.neurobiolaging.2013.02.017
https://doi.org/10.1006/exnr.1997.6600
https://doi.org/10.1006/exnr.1997.6600
https://doi.org/10.1006/exnr.1997.6600
https://doi.org/10.1006/exnr.1997.6600
https://doi.org/10.1038/sj.ejhg.5201447
https://doi.org/10.1038/sj.ejhg.5201447
https://doi.org/10.1038/sj.ejhg.5201447
https://doi.org/10.1038/sj.ejhg.5201447
https://doi.org/10.1038/sj.ejhg.5201447
https://doi.org/10.1016/j.arr.2015.08.001
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.1016/j.neulet.2010.10.010
https://doi.org/10.1016/j.neulet.2010.10.010
https://doi.org/10.1016/j.neulet.2010.10.010
https://doi.org/10.1016/j.neulet.2010.10.010
https://doi.org/10.1016/j.neulet.2010.10.010
https://doi.org/10.3233/JAD-141731
https://doi.org/10.3233/JAD-141731
https://doi.org/10.3233/JAD-141731
https://doi.org/10.3233/JAD-141731
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.1371/journal.pone.0190789
https://doi.org/10.1371/journal.pone.0190789
https://doi.org/10.1371/journal.pone.0190789
https://doi.org/10.1371/journal.pone.0190789
https://doi.org/10.1371/journal.pone.0190789
https://doi.org/10.1126/sageke.2004.11.re2
https://doi.org/10.1126/sageke.2004.11.re2
https://doi.org/10.1126/sageke.2004.11.re2
https://doi.org/10.1126/sageke.2004.11.re2
https://doi.org/10.1126/sageke.2004.11.re2
https://doi.org/10.1523/JNEUROSCI.16-05-01710.1996
https://doi.org/10.1016/S0197-4580(98)00077-3
https://doi.org/10.3389/fnmol.2016.00062
https://doi.org/10.3389/fnmol.2016.00062
https://doi.org/10.3389/fnmol.2016.00062
https://doi.org/10.3389/fnmol.2016.00062
https://doi.org/10.1101/mcs.a006096
https://doi.org/10.1101/mcs.a006096
https://doi.org/10.1101/mcs.a006096
https://doi.org/10.1101/mcs.a006096
https://doi.org/10.1101/mcs.a006096
https://doi.org/10.1134/S0026893321020230
https://doi.org/10.1134/S0026893321020230
https://doi.org/10.1134/S0026893321020230
https://doi.org/10.1134/S0026893321020230
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1016/S0002-9440(10)63392-5
https://doi.org/10.1001/jamaneurol.2017.1518
https://doi.org/10.1001/jamaneurol.2017.1518
https://doi.org/10.1001/jamaneurol.2017.1518
https://doi.org/10.1001/jamaneurol.2017.1518
https://doi.org/10.1006/bbrc.1997.6993
https://doi.org/10.1006/bbrc.1997.6993
https://doi.org/10.1006/bbrc.1997.6993
https://doi.org/10.1006/bbrc.1997.6993
https://doi.org/10.1074/jbc.M115.644302
https://doi.org/10.1074/jbc.M115.644302
https://doi.org/10.1074/jbc.M115.644302
https://doi.org/10.1074/jbc.M115.644302
https://doi.org/10.1074/jbc.M115.644302
https://doi.org/10.4161/onci.1.1.18400
https://doi.org/10.4161/onci.1.1.18400
https://doi.org/10.4161/onci.1.1.18400
https://doi.org/10.4161/onci.1.1.18400
https://doi.org/10.1371/journal.pgen.1002565
https://doi.org/10.1371/journal.pgen.1002565
https://doi.org/10.1371/journal.pgen.1002565
https://doi.org/10.1371/journal.pgen.1002565
https://doi.org/10.1371/journal.pgen.1002565


Enhancer-driven gene regulatory networks | 13

58. Solomon LA, Li SKH, Piskorz J. et al. Genome-wide compari-
son of PU.1 and Spi-B binding sites in a mouse B lymphoma 
cell line. BMC Genomics 2015;16:76. https://doi.org/10.1186/ 
s12864-015-1303-0. 

59. Torlakovic E, Tierens A, Dang HD. et al. The Transcription Factor 
PU.1, Necessary for B-Cell Development Is Expressed in Lympho-
cyte Predominance, But Not Classical Hodgkin’s Disease. Am J 
Pathol 2001;159:1807–14. https://doi.org/10.1016/S0002-9440(10 
)63027-1. 

60. Galbiati M, Lettieri A, Micalizzi C. et al. Natural history of acute 
lymphoblastic leukemia in neurofibromatosis type 1 monozy-
gotic twins. Leukemia 2013;27:1778–81. https://doi.org/10.1038/ 
leu.2013.55. 

61. Scuto A, Kujawski M, Kowolik C. et al. STAT3 Inhibition Is a Ther-
apeutic Strategy for ABC-like Diffuse Large B-Cell Lymphoma. 
Cancer Res 2011;71:3182–8. https://doi.org/10.1158/0008-5472. 
CAN-10-2380. 

62. Huang X, Meng B, Iqbal J. et al. Activation of the STAT3 signaling 
pathway is associated with poor survival in diffuse large B-cell 
lymphoma treated with R-CHOP. J Clin Oncol 2013;31:4520–8. 
https://doi.org/10.1200/JCO.2012.45.6004. 

63. Schmidl C, Vladimer GI, Rendeiro AF. et al. Combined chemosen-
sitivity and chromatin profiling prioritizes drug combinations 
in CLL. Nat Chem Biol 2019;15:232–40. https://doi.org/10.1038/ 
s41589-018-0205-2. 

64. Tian M, Li Y, Zheng W. et al. LncRNA PCAT1 enhances 
cell proliferation, migration and invasion by miR-508-3p/NFIB 
axis in diffuse large B-cell lymphoma. Eur Rev Med Pharma-
col Sci 2021;25:2567–76. https://doi.org/10.26355/eurrev_202103_ 
25420. 

65. Harada A, Okada S, Odawara J. et al. Production of a rat mono-
clonal antibody specific for Myf5. Hybridoma (Larchmt) 2010;29: 
59–62. https://doi.org/10.1089/hyb.2009.0066. 

66. Lynch AW, Theodoris CV, Long HW. et al. MIRA: joint regulatory 
modeling of multimodal expression and chromatin accessibil-
ity in single cells. Nat Methods 2022;19:1097–108. https://doi. 
org/10.1038/s41592-022-01595-z. 

67. Bernard SC, Abdelsamad EH, Johnson PA. et al. Pediatric 
leukemia: Diagnosis to treatment–A review. J Cancer Clin Trials 
2017;2:1. 

68. Penther D, Viailly PJ, Latour S. et al. A recurrent clonally distinct 
Burkitt lymphoma case highlights genetic key events contribut-
ing to oncogenesis. Genes Chromosomes Cancer 2019;58:595–601. 
https://doi.org/10.1002/gcc.22743. 

69. Kimpara S, Lu L, Hoang NM. et al. EGR1 Addiction in Diffuse Large 
B-cell Lymphoma. Mol Cancer Res 2021;19:1258–69. https://doi. 
org/10.1158/1541-7786.MCR-21-0267. 

70. Kurihara Y, Mizuno H, Honda A. et al. CCDC88C-FLT3 gene fusion 
in CD34-positive haematopoietic stem and multilineage cells in 
myeloid/lymphoid neoplasm with eosinophilia. J Cell Mol Med 
2022;26:950–2. https://doi.org/10.1111/jcmm.17143. 

71. Román-Gómez J, Cordeu L, Agirre X. et al. Epigenetic regulation 
of Wnt-signaling pathway in acute lymphoblastic leukemia. 
Blood 2007;109:3462–9. https://doi.org/10.1182/blood-2006-09-04 
7043. 

72. Patel MS, Kendall EK, Ondrejka S. et al. Gene Expression and 
Epigenetic Analysis in Relapsed/Refractory Diffuse Large B Cell 
Lymphoma Provides Insights into Evolution of Treatment Resis-
tance to R-CHOP. Blood 2020;136:26. https://doi.org/10.1182/ 
blood-2020-138645. 

73. Rouillard AD, Gundersen GW, Fernandez NF. et al. The har-
monizome: a collection of processed datasets gathered to 
serve and mine knowledge about genes and proteins. Database 
2016;2016:baw100. https://doi.org/10.1093/database/baw100. 

74. Yu H, Takeuchi M, LeBarron J. et al. Notch-modifying xylo-
syltransferase structures support an SNi-like retaining mech-
anism. Nat Chem Biol 2015;11:847–54. https://doi.org/10.1038/ 
nchembio.1927. 

75. Lobry C, Oh P, Mansour MR. et al. Notch signaling: switching an 
oncogene to a tumor suppressor. Blood 2014;123:2451–9. https:// 
doi.org/10.1182/blood-2013-08-355818. 

76. An integrated encyclopedia of DNA elements in the human 
genome. Nature 2012;489:57–74. https://doi.org/10.1038/ 
nature11247. 

77. Huang C, Xie K. Crosstalk of Sp1 and Stat3 signaling in pan-
creatic cancer pathogenesis. Cytokine Growth Factor Rev 2012;23: 
25–35. https://doi.org/10.1016/j.cytogfr.2012.01.003. 

78. Yang J, Zhang L, Jiang Z. et al. TCF12 promotes the tumorigenesis 
and metastasis of hepatocellular carcinoma via upregulation 
of CXCR4 expression. Theranostics 2019;9:5810–27. https://doi. 
org/10.7150/thno.34973. 

79. Ogata H, Goto S, Sato K. et al. KEGG: Kyoto Encyclopedia of 
Genes and Genomes. Nucleic Acids Res 1999;27:29–34. https://doi. 
org/10.1093/nar/27.1.29. 

80. Tsuzuki S, Toyama-Sorimachi N, Kitamura F. et al. Intracellu-
lar Signal-transducing Elements Involved in Transendothelial 
Migration of Lymphoma Cells. Jpn J Cancer Res 1998;89:571–7. 
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x. 

81. Dudley NJ, Balfour AH. Non-Hodgkin’s lymphoma presenting 
as ’chronic active toxoplasmosis. Postgrad Med J 1988;64:883–5. 
https://doi.org/10.1136/pgmj.64.757.883. 

82. Intaraphet S, Farkas DK, Johannesdottir Schmidt SA. et al. 
Human papillomavirus infection and lymphoma incidence 
using cervical conization as a surrogate marker: a Danish 
nationwide cohort study. Hematol Oncol 2017;35:172–6. https:// 
doi.org/10.1002/hon.2270. 

83. Liu YC, Yeh CT, Lin KH. Molecular Functions of Thyroid Hor-
mone Signaling in Regulation of Cancer Progression and Anti-
Apoptosis. Int J Mol Sci 2019;20:4896. https://doi.org/10.3390/ 
ijms20204986. 

84. Bispo JAB, Pinheiro PS, Kobetz E. Epidemiology and Etiology 
of Leukemia and Lymphoma. Cold Spring Harb Perspect Med 
2020;10:a034819. https://doi.org/10.1101/cshperspect.a034819. 

85. Mehravaran H, Makvandi M, Samarbaf Zade A. et al. Association 
of Human Cytomegalovirus with Hodgkin’s Disease and Non-
Hodgkin’s lymphomas. Asian Pac J Cancer Prev 2017;18:593–7. 

86. Grützmeier S, Porwit A, Schmitt C. et al. Fulminant anaplas-
tic large cell lymphoma (ALCL) concomitant with primary 
cytomegalovirus (CMV) infection, and human herpes virus 8 
(HHV-8) infection together with Epstein-Barr-virus (EBV) reacti-
vation in a patient with asymptomatic HIV-infection. Infect Agent 
Cancer 2016;11:46. https://doi.org/10.1186/s13027-016-0094-5. 

87. Sato K, Igarashi S, Tsukada N. et al. Cytomegalovirus infec-
tion in patients with malignant lymphomas who have not 
received hematopoietic stem cell transplantation. BMC Cancer 
2022;22:944. https://doi.org/10.1186/s12885-022-10008-5. 

88. Kang DW, Choi K-Y, Min DS. Functional Regulation of Phospho-
lipase D Expression in Cancer and Inflammation∗. J Biol Chem  
2014;289:22575–82. https://doi.org/10.1074/jbc.R114.569822. 

89. Xiong J, Wang L, Fei XC. et al. MYC is a positive regula-
tor of choline metabolism and impedes mitophagy-dependent 
necroptosis in diffuse large B-cell lymphoma. Blood Cancer J 
2017;7:e582–2. https://doi.org/10.1038/bcj.2017.61. 

90. Lan Q, Wang SS, Menashe I. et al. Genetic variation in 
Th1/Th2 pathway genes and risk of non-Hodgkin lymphoma: 
a pooled analysis of three population-based case-control 
studies. Br J Haematol 2011;153:341–50. https://doi.org/10.1111/ 
j.1365-2141.2010.08424.x.

https://doi.org/10.1186/s12864-015-1303-0
https://doi.org/10.1186/s12864-015-1303-0
https://doi.org/10.1186/s12864-015-1303-0
https://doi.org/10.1186/s12864-015-1303-0
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1016/S0002-9440(10)63027-1
https://doi.org/10.1038/leu.2013.55
https://doi.org/10.1038/leu.2013.55
https://doi.org/10.1038/leu.2013.55
https://doi.org/10.1038/leu.2013.55
https://doi.org/10.1158/0008-5472.CAN-10-2380
https://doi.org/10.1158/0008-5472.CAN-10-2380
https://doi.org/10.1158/0008-5472.CAN-10-2380
https://doi.org/10.1158/0008-5472.CAN-10-2380
https://doi.org/10.1200/JCO.2012.45.6004
https://doi.org/10.1200/JCO.2012.45.6004
https://doi.org/10.1200/JCO.2012.45.6004
https://doi.org/10.1200/JCO.2012.45.6004
https://doi.org/10.1038/s41589-018-0205-2
https://doi.org/10.1038/s41589-018-0205-2
https://doi.org/10.1038/s41589-018-0205-2
https://doi.org/10.1038/s41589-018-0205-2
https://doi.org/10.26355/eurrev_202103_25420
https://doi.org/10.1089/hyb.2009.0066
https://doi.org/10.1089/hyb.2009.0066
https://doi.org/10.1089/hyb.2009.0066
https://doi.org/10.1089/hyb.2009.0066
https://doi.org/10.1038/s41592-022-01595-z
https://doi.org/10.1038/s41592-022-01595-z
https://doi.org/10.1038/s41592-022-01595-z
https://doi.org/10.1038/s41592-022-01595-z
https://doi.org/10.1038/s41592-022-01595-z
https://doi.org/10.1002/gcc.22743
https://doi.org/10.1002/gcc.22743
https://doi.org/10.1002/gcc.22743
https://doi.org/10.1002/gcc.22743
https://doi.org/10.1158/1541-7786.MCR-21-0267
https://doi.org/10.1158/1541-7786.MCR-21-0267
https://doi.org/10.1158/1541-7786.MCR-21-0267
https://doi.org/10.1158/1541-7786.MCR-21-0267
https://doi.org/10.1111/jcmm.17143
https://doi.org/10.1111/jcmm.17143
https://doi.org/10.1111/jcmm.17143
https://doi.org/10.1111/jcmm.17143
https://doi.org/10.1182/blood-2006-09-047043
https://doi.org/10.1182/blood-2020-138645
https://doi.org/10.1182/blood-2020-138645
https://doi.org/10.1182/blood-2020-138645
https://doi.org/10.1182/blood-2020-138645
https://doi.org/10.1093/database/baw100
https://doi.org/10.1093/database/baw100
https://doi.org/10.1093/database/baw100
https://doi.org/10.1093/database/baw100
https://doi.org/10.1093/database/baw100
https://doi.org/10.1038/nchembio.1927
https://doi.org/10.1038/nchembio.1927
https://doi.org/10.1038/nchembio.1927
https://doi.org/10.1038/nchembio.1927
https://doi.org/10.1182/blood-2013-08-355818
https://doi.org/10.1182/blood-2013-08-355818
https://doi.org/10.1182/blood-2013-08-355818
https://doi.org/10.1182/blood-2013-08-355818
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1016/j.cytogfr.2012.01.003
https://doi.org/10.1016/j.cytogfr.2012.01.003
https://doi.org/10.1016/j.cytogfr.2012.01.003
https://doi.org/10.1016/j.cytogfr.2012.01.003
https://doi.org/10.1016/j.cytogfr.2012.01.003
https://doi.org/10.7150/thno.34973
https://doi.org/10.7150/thno.34973
https://doi.org/10.7150/thno.34973
https://doi.org/10.7150/thno.34973
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1111/j.1349-7006.1998.tb03299.x
https://doi.org/10.1136/pgmj.64.757.883
https://doi.org/10.1136/pgmj.64.757.883
https://doi.org/10.1136/pgmj.64.757.883
https://doi.org/10.1136/pgmj.64.757.883
https://doi.org/10.1002/hon.2270
https://doi.org/10.1002/hon.2270
https://doi.org/10.1002/hon.2270
https://doi.org/10.1002/hon.2270
https://doi.org/10.3390/ijms20204986
https://doi.org/10.3390/ijms20204986
https://doi.org/10.3390/ijms20204986
https://doi.org/10.3390/ijms20204986
https://doi.org/10.1101/cshperspect.a034819
https://doi.org/10.1101/cshperspect.a034819
https://doi.org/10.1101/cshperspect.a034819
https://doi.org/10.1101/cshperspect.a034819
https://doi.org/10.1101/cshperspect.a034819
https://doi.org/10.1186/s13027-016-0094-5
https://doi.org/10.1186/s13027-016-0094-5
https://doi.org/10.1186/s13027-016-0094-5
https://doi.org/10.1186/s13027-016-0094-5
https://doi.org/10.1186/s12885-022-10008-5
https://doi.org/10.1186/s12885-022-10008-5
https://doi.org/10.1186/s12885-022-10008-5
https://doi.org/10.1186/s12885-022-10008-5
https://doi.org/10.1074/jbc.R114.569822
https://doi.org/10.1074/jbc.R114.569822
https://doi.org/10.1074/jbc.R114.569822
https://doi.org/10.1074/jbc.R114.569822
https://doi.org/10.1074/jbc.R114.569822
https://doi.org/10.1038/bcj.2017.61
https://doi.org/10.1038/bcj.2017.61
https://doi.org/10.1038/bcj.2017.61
https://doi.org/10.1038/bcj.2017.61
https://doi.org/10.1111/j.1365-2141.2010.08424.x
https://doi.org/10.1111/j.1365-2141.2010.08424.x
https://doi.org/10.1111/j.1365-2141.2010.08424.x
https://doi.org/10.1111/j.1365-2141.2010.08424.x
https://doi.org/10.1111/j.1365-2141.2010.08424.x


14 | Li et al.

91. Zhong J, Tang H, Huang Z. et al. Uncovering the pre-deterioration 
state during disease progression based on sample-specific 
causality network entropy (SCNE). Research 2024;7:0368. https:// 
doi.org/10.34133/research.0368. 

92. Zhong J, Han C, Chen P. et al. SGAE: single-cell gene associ-
ation entropy for revealing critical states of cell transitions 
during embryonic development. Brief Bioinform 2023;24:bbad366. 
https://doi.org/10.1093/bib/bbad366. 

93. Zhong J, Han C, Wang Y. et al. Identifying the critical 
state of complex biological systems by the directed-network 
rank score method. Bioinformatics 2022;38:5398–405. https://doi. 
org/10.1093/bioinformatics/btac707. 

94. Zhong J, Han C, Zhang X. et al. scGET: Predicting Cell Fate 
Transition During Early Embryonic Development by Single-
cell Graph Entropy. Genomics Proteomics Bioinformatics 2021;19: 
461–74. https://doi.org/10.1016/j.gpb.2020.11.008.

https://doi.org/10.34133/research.0368
https://doi.org/10.34133/research.0368
https://doi.org/10.34133/research.0368
https://doi.org/10.34133/research.0368
https://doi.org/10.1093/bib/bbad366
https://doi.org/10.1093/bib/bbad366
https://doi.org/10.1093/bib/bbad366
https://doi.org/10.1093/bib/bbad366
https://doi.org/10.1093/bib/bbad366
https://doi.org/10.1093/bioinformatics/btac707
https://doi.org/10.1093/bioinformatics/btac707
https://doi.org/10.1093/bioinformatics/btac707
https://doi.org/10.1093/bioinformatics/btac707
https://doi.org/10.1093/bioinformatics/btac707
https://doi.org/10.1016/j.gpb.2020.11.008
https://doi.org/10.1016/j.gpb.2020.11.008
https://doi.org/10.1016/j.gpb.2020.11.008
https://doi.org/10.1016/j.gpb.2020.11.008
https://doi.org/10.1016/j.gpb.2020.11.008

	 Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data
	Introduction
	Materials and Methods
	Results
	Conclusion
	Key Points
	Supplementary data
	Funding
	Data availability


