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Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK)
cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by
CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be
proinflammatory (such as interferon-gamma (IFN-𝛾)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role
in B cell regulation and antibody production. Alpha-galactosylceramide (𝛼-GalCer), a derivative of the marine sponge, is a potent
stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in
the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus
(SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between
the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has
not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to
providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding
the immunomodulatory effects of vitaminD on iNKT cells, whichmay serve as a potential therapeutic target, given that deficiencies
in vitamin D have been reported in various autoimmune disorders.

1. Introduction

Natural killer T (NKT) cells are a component of the innate
immune system, which initiate and refine innate and adaptive
immune responses. NKT cells can be subdivided into type
1 and type 2 NKT cells based on their T cell receptors
(TCR), with type 1 NKT cells being commonly known as
invariant NKT (iNKT) cells [1–3]. These two types of NKT
cells display distinct roles involved in either the promotion
or control of immune responses [4]. The role of iNKT
cells and their mediators has been well defined in several
conditions, including some autoimmune diseases such as

multiple sclerosis (MS) [5]. However, the role of iNKT cells
in other autoimmune conditions remains largely unexplored.

The liver’s immune system is particularly specialized in
dealing with exposure to dietary and commensal microbial
antigens, to which it must remain tolerant. Hepatic immune
tolerance is modulated by antigen-presenting cells, such as
dendritic cells, Kupffer cells, hepatic stellate cells, and liver
endothelial cells [6]. The role of these populations is to
constantly present harmless antigens to T cells and facilitate
their commitment to apoptosis, anergy, or differentiation into
regulatory T cells. Still, the liver is also able to respond to
pathogenic stimuli and is equipped with cellular machinery
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to override immune tolerance. A variety of innate lympho-
cytic populations, including NKT cells, 𝛾𝛿 T cells, mucosal-
associated invariant T cells, and CD56(+) natural killer (NK)
cells are resident or can rapidly accumulate in the hepatic
microenvironment following potential pathogenic challenge
[7, 8]. These cells can maintain or override hepatic immune
tolerance to autoantigens, leading to expansion of autoreac-
tive T cells thatmediate liver injury causing autoimmune liver
disease or direct liver injury by killing hepatocytes or bile duct
cells [9, 10].

Autoimmune liver diseases (AiLD) include primary bil-
iary cholangitis (PBC), formerly known as primary biliary
cirrhosis, autoimmune hepatitis (AIH), and primary scleros-
ing cholangitis (PSC) [28, 29]. Hepatocytes are the target of
autoimmune attack inAIH,whereas the biliary epithelial cells
are the targets in PBC and PSC [30]. In PBC, the small- and
medium-sized bile ducts are affected, as opposed to the larger
bile ducts in PSC [24]. The demographic, epidemiological,
and clinical characteristics of these three conditions are
distinct, and a variety of genetic [31], immunological, and
environmental factors have been implicated in the disease
development [32–43].

This review will examine the current knowledge regard-
ing the role of iNKT cells in AiLD. We will first provide a
general overview and update of iNKT cells function in other
conditions aswell as in experimentalmodels.Wewill also dis-
cuss the emerging role of vitamin D in iNKT cells immuno-
modulation, whichmay serve as a therapeutic target [44–46].

2. Subtypes of NKT Cells and an Overview of
Their Behavior

NKT cells are subdivided into type 1 (iNKT) and type 2
(NKT). iNKT cells are innate immune T cells that express the
T cell receptor (TCR) V𝛼24-J𝛼18/V𝛽11, natural killer (NK)
cell surfacemarkers (such as NK1.1, Ly149, CD161 and CD56),
and activation markers CD25, CD69, and CD122 [47–51].
Liver iNKT cells have been recently shown to constitutively
express the costimulatory tumor necrosis factor superfamily
receptor OX40 [52]. Memory NK-like T cell populations also
exist in peripheral blood such asCD8(+)T cells responding to
innate IL-12 and IL-18 stimulation and coexpressing the tran-
scription factor Eomesodermin (Eomes) and KIR/NKG2A
membrane receptors [53]. Additionally, murine iNKT cells
can express certain toll-like receptors (TLR), which facilitate
TLR costimulation of iNKT cells in the presence of subopti-
mal concentrations of TCR agonists enhancing their cellular
activation [54].

NKT cells recognize host and microbial lipid and/or
alpha-mannosyl glycolipid antigens via CD1d (MHC class I-
like molecule) through their TCR [55–57]. Activated NKT
cells secrete Th1 cytokines (including IFN-𝛾 and TNF-𝛼),
Th2 cytokines (such as IL-4 and IL-10), and Th17 cytokines
(namely, IL-17 and IL-22) [58]. Hence, NKT cells play an
important role in immune system regulation by polarizing
Th1, Th2, Th17, and Treg cells. iNKT cells also appear to have
effects on B cells, NK cells, and dendritic cells (DCs) [59–61].
Innate immunity receptors within APCs, such as DCs, acti-
vate iNKT cells through the combined presentation of lipids

by CD1d and production of proinflammatory cytokines, such
as IL-12 and type I IFNs [62]. Innate receptors include TLRs,
Nod-like receptors (NLRs), Rig-I-like receptors (RLRs), and
C-type lectin-like receptors [63].

NKT cells display both proinflammatory and anti-
inflammatory behaviors, with iNKT cells generally being
proinflammatory and type 2 NKT cells being suppressors of
inflammation. However, recent data also indicates a possible
role of type 2 NKT cells in promoting chronic inflammation
[64, 65]. Hence, these roles may be reversed in differing
pathological states [64]. For example, iNKT cells appear to
have suppressive behavior in both experimental autoimmune
encephalomyelitis (EAE) animal model and patients withMS
[66, 67] but an inflammatory role in allergen-induced airway
disease [60, 68–70]. iNKT cells cytokine/chemokine produc-
tion has been shown to be chemoattractant to neutrophils
andmacrophages in organs such as the liver [9, 71]. Opposing
roles for iNKT and type 2 NKT cells have been proposed in
autoimmunity [72, 73]. Generally speaking, iNKT cells are
believed to have a predominantly proinflammatory role [73–
78], although they have also been observed to secrete IL-4
after stimulation with alpha-galactosylceramide (𝛼-GalCer)
[9, 71, 79]. Type 2 NKT cells (which are sulfatide-reactive
[50, 51, 80]) have been shown to be anti-inflammatory and
appear to inhibit iNKT cells function [9, 75]. Transfer of DCs
from sulfatide-treated animals to naı̈ve recipients resulted in
iNKT cells anergy [73].

Despite some experimental studies demonstrating oppos-
ing roles for iNKT and type 2 NKT cells, several other studies
have shown dual proinflammatory and anti-inflammatory
roles for iNKT cells. An anti-inflammatory role has been
proposed for iNKT cells in Chagas disease, whereas type 2
NKT cells were found to be inflammatory/pathogenic [81]. In
a murine model of Schistosomiasis, a proinflammatory role
viaTh1 cytokines has been described for iNKT cells, whereas
type 2 NKT cells act via a Th2 response [82]. Miyazaki et
al. [83] noticed decreased levels of mucosal associated iNKT
cells in the peripheral blood of patients with MS, which
were especially reduced during relapses. Invariant NKT cells
levels reflected disease activity with decreasing iNKT cells in
MS flares [83]. Levels of iNKT cells increased with clinical
recovery [83]. Other studies have reported similar find-
ings in experimental autoimmune encephalomyelitis (EAE),
whereby activating iNKT cells with 𝛼-GalCer modulated the
disease course [84–87]. The anti-inflammatory role by iNKT
cells is believed to be due to IL-4 and IL-10 secretion,
which promotes a deviation to a Th2 cytokine response [87],
although a role for IFN-𝛾 has also been postulated [88,
89]. Other studies note protection from autoimmune disease
following iNKT cells stimulation by 𝛼-GalCer in NOD mice
[90, 91]. Invariant NKT cells have also been implicated in
the progression of several autoimmune conditions, indicating
differing roles of iNKT cells in various disorders [8, 24, 92–
94].

3. iNKT Cells and B Cell Regulation

Current research indicates a regulatory role of iNKT cells
over B cells, which is dependent on the interaction of iNKT
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cells with B cells via CD1d, which may be IL-4-driven [95–
98]. It appears that iNKT cells are recruited to activate B
cells in response to antigenic lipids, thus enhancing antibody
response [99]. Recent studies in mice, however, have shown
that iNKT cells stimulation culminated in the rapid activation
and hepatic recruitment of innate-like regulatory B cells [100,
101]. Regulatory B cells (Bregs) influence immune responses
primarily, although not exclusively, via the production of
IL-10. The importance of human Bregs in the maintenance
of immune homeostasis has been documented in several
autoimmune-related pathologies [102–105].

It has also been found that marginal zone B cells are capa-
ble of activating iNKT cells [106, 107]. Bialecki and colleagues
[106] found that marginal zone B cells sensitized with 𝛼-
GalCer activated iNKT cells hybridomas but were unable to
directly activate ex vivo sorted iNKT cells in the absence of
DCs in culture. DC activation of iNKT cells was enhanced
by marginal zone B cells and reduced in their absence [106].
It was also found that in vivo transfer of 𝛼-GalCer loaded
marginal zone B cells activated both iNKT andNK cells [106].

The role of iNKT cells with regard to antibody pro-
duction appears to be diverse, with some studies indicating
an enhancement of antibody/autoantibody production via
iNKT cells, whereas others note a reduction. This may be
due to differing action of iNKT cells subtypes. It has been
noted that CD1d deficiency in animal models exacerbates
autoantibody production [108].Wermeling et al. [98] injected
murine models with apoptotic cells to trigger autoantibody
production and found that reduced or absent iNKT cells
resulted in increased autoreactive B cell activation, which was
also observed in models where CD1d expression was absent
on B cells. In response to injected apoptotic cells, iNKT cells
upregulated the activation marker CD69, in association with
decreased IFN-𝛾 but increased IL-10 production [98]. How-
ever, IFN-𝛾 was increased in NK cells and CD4+ T cells [98].
In splenic CD1d -/- CD45.1-B cells (GL7hi and CD95hi), IgM
and IgG3 anti-DNA production was increased in association
with increased survival of those B cells [98]. A second animal
model with a 50% reduction in iNKT cells (J𝛼18+/-) showed
increased IgG anti-DNA and splenic germinal center B cell
levels, and repopulationwith iNKT cells resulted in decreased
IgG3 anti-DNA production and a decreased percentage of
germinal center B cells [98]. Yang et al. [108] reported similar
findings, where iNKT cells suppressed IgG anti-DNA Ab
and rheumatoid factor production but increased total IgG
production and enhanced activation markers on B cells. That
study also found that both autoreactive and nonautoreactive
B cells were activated by iNKT cells, with autoreactive B cells
expressing higher levels of CD1d [108].

Differing biological actions of iNKT cells subsets influ-
ence differential B cell function. An earlier study by Galli et
al. [109] established that immunizingmicewith𝛼-GalCer and
proteins resulted in increased antibody titers compared to
immunization with protein alone and that decay of circulat-
ing antibodies occurred more rapidly in iNKT cells-deficient
mice. These observations have also been noted in addi-
tional studies [110–113]. Galli et al. [96, 97] note two major
iNKT subtypes: CD4+ and CD4-CD8- or double negative
(DN), with CD4+ inducing higher levels of immunoglobulin

production. A study by Zeng and colleagues [114] reports a
CD4+CD8𝛼+ subtype: coculturing CD4+CD8𝛼+ iNKT and
DN iNKT cells with peripheral B cells, they found that IgG,
IgM, and IgA were released by B cells in the absence of 𝛼-
GalCer [114]. CD4+ and DN iNKT cells secretedTh1 andTh2
cytokines when cultured with B cells pulsed with 𝛼-GalCer
but at a lower level compared to iNKT cells cultured with
dendritic cells [114]. CD4+ cells were also found to induce
regulatory B cell expansion, in addition to increasing B cell
production of IL-4 and IL-10 [114]. DN iNKT cells were found
to express CD107𝛼 (a cytotoxic degranulation marker) when
exposed to B cells [114]. In the presence of iNKT cells, B
cells were unable to stimulate alloreactive conventional T
cells [114]. A recent study by Tang et al. [115] examined the
behavior of iNKT cells subsets based on Ly108 expression,
which distinguishes iNKT cells that help B cells and secrete
IL-21 from iNKT cells that secrete IL-17. Ly108LoCD4-NK1.1-
secreted IL-17, while Ly108hiCD4+NK1.1- promoted B cell
secretion of IgG isotype anti-nuclear antibodies and IL-21
[115].

The above studies indicate a modulatory role for iNKT
cells on B cells, which appears to both stimulate and control
(auto)antibody production. This may be due to differing
actions by iNKT cells subsets. The identification of these
subsets and their functional phenotypes warrants further
study.

4. iNKT Cells and MDSC/Treg Regulation

iNKT cells upon antigenic stimulation and the production
of Th1 (IFN-𝛾 and TNF-𝛼) and Th2 (IL-4, IL-5, and IL-13)
cytokines can also act through additional suppressive cell
subsets such as myeloid derived suppressor cells (MDSCs)
and regulatory T cells (Tregs) [116–119]. In vivo cytokine
neutralization experiments have revealed a prominent role
for IL-4, IL-10, and IFN-𝛾 in the iNKT cells-mediated reg-
ulation of T cell lineage development such as Th17 [89].
MDSCs are abundant in liver/spleen and express higher lev-
els of chemokine receptors such as CCR2, CX3CR1, and
CXCR2 [120]. They also express CD11b and Gr-1 markers
[121] and therefore encompass diverse cell subsets such as
immature DCs, immature macrophages, and granulocytes
[122]. In tumor-bearing mice, two main MDSC subtypes
have been reported: granulocytic (G-MDSC) and monocytic
(M-MDSC) [123]. In humans, MDSCs are predominantly
characterized by expression of CD14, whereas G-MDSC are
mainly CD15+, both being CD33+ HLA-DR− [124].

MDSCs are proficient in suppressing T cell proliferation
and promoting tumor growth [125]. Both MDSC and Treg
cells are major components of the hepatic immune suppres-
sive tumor microenvironment (TME) [126, 127]. In tumor-
bearing mice, large amounts of myeloid-derived suppres-
sor cells (MDSCs) are recruited into the liver following
Con-A-induced hepatitis [128]. MDSCs are essential for
immune mediated suppression within the liver, as they elec-
tively reduce IFN-𝛾 production from NKT cells through
membrane-bound transforming growth factor-𝛽 (TGF-𝛽)
[128]. The absence of iNKT cells also markedly decreases the
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total number of intestinal polyps and is associated with a
reduced frequency of Tregs cells and lower expression levels
of FoxP3 protein and transcript uniquely in the polyps of
Apc𝑀𝑖𝑛/+ mice, a model for colorectal cancer [129].

The exact mechanisms that influence the activity and
interaction of iNKT cells/MDSCs in vivo remain ill-defined.
However, it has been documented that CD1d-restricted NKT
cells can enhance MDSC suppressive activity by secreting
IL-13 [130]. IL-13 has been reported to mediate its effect via
the IL-4R–STAT6 pathway and can induce TGF-𝛽-producing
CD11b+Gr-1+MDSC [130]. CD11b+ invariantNKT cells have
the ability to inhibit T cell proliferation viamembrane-bound
TGF-𝛽1 [131]. The induction of MDSC via IL-33 has been
proposed as an alternative mechanism for 𝛼-GalCer-elicited
iNKT cells-mediated immunosuppression [132].

In contrast, De Santo et al. have demonstrated that
the absence of invariant NKT (iNKT) cells in mice during
Influenza IAV infection resulted in the expansion of MDSCs,
which suppressed IAV-specific immune responses through
the expression of both arginase and NOS, resulting in high
IAV titer and increased mortality [133]. Adoptive transfer
of iNKT cells abolished the suppressive activity of MDSCs,
restored IAV-specific immune responses, reduced IAV titer,
and increased survival rate. The cross-talk between iNKT
cells and MDSCs was CD1d- and CD40-dependent [133]. Ko
et al. also showed that iNKT cells activated by 𝛼-GalCer-
loaded CD11b+Gr-1+MDSC could convertMDSC into stim-
ulatory APC [134]. Such reprogrammed MDSC upregulated
the expression of CD11b, CD11c, and CD86. Hence, iNKT
cells can acquire the ability to enhance suppression or con-
vert immunosuppressive MDSCs into immunity-promoting
antigen-presenting cells.

MDSCs are also an abundant cell subset during bone
marrow cell (BMC) transfer. MDSCs are essential for iNKT
cells-mediated Foxp3+ Treg cell expansion in recipient mice
of transplantation tolerance [135]. NKT cells act through
bone marrow-derived cells to suppress NK cell activity in the
liver and exacerbate hepatic melanoma metastases [136]. The
development of melanoma liver metastases was associated
with upregulation of IL-10 in the liver and an elevated expres-
sion of IL-10 receptor on liver NK cells. Hepatoprotective
effect of certain diet molecules such as the enzymatic isolate
of soybeans DT56a was also associated with changes in
NKT cells and Tregs [137]. iNKT cells are also capable of
diminishing adverse autoimmune responses by increasing
both total Tregs and follicular Tregs (Tfr) as shown in the
cGVHD murine model that recapitulates several aspects of
autoimmunity and internal organ fibrosis [138].

5. iNKT Cells and Autoimmune Liver Disease

Autoimmune liver diseases (AiLD) include autoimmune
hepatitis (AIH), primary biliary cholangitis (PBC), formerly
known as primary biliary cirrhosis, and primary sclerosing
cholangitis (PSC). The aetiopathogeneses of these condi-
tions have not been fully defined but appear to involve
genetic, immunological, and environmental factors working
in unison [32–43]. It is widely believed that an imbalance of
proinflammatory and anti-inflammatory immune responses

within the liver plays a large role in the development of AiLD,
with an upregulation of proinflammatory immune responses
and decreased or defective anti-inflammatory responses.

(Tregs) dysfunction also appears to play a role [139–142].
In AiLD, self-antigens are presented by antigen-presenting
cells that directly or indirectly activate innate immune cells
resident within the liver, which also include NKT cells [58,
143, 144]. Tissue-resident immune cells in general have a cru-
cial role in local and systemic immune responses. The liver,
in particular, can host a significant number of iNKT cells, but
the mechanisms that regulate their survival and homeostasis
have not been completely elucidated. Hepatocyte-specific
expression of IL-15R𝛼 and localized availability of IL-15 are
required to maintain the homeostasis of NK and NKT cells
in the liver [145, 146]. Within the liver, NKT cells are mostly
found in the sinusoids and are able to produce various
cytokines (both proinflammatory and anti-inflammatory)
[143]. NKT cells are capable of activating other innate and
adaptive immune cells resident within the liver and regulate
or enhance immune responses [65, 147, 148]. iNKT cells
have been shown to activate hepatic stellate cells [77], and
direct hepatocyte killing has been observed by iNKT cells
or by NK cells stimulated by iNKT cells [9, 71]. Durante-
Mangoni et al. [149] found low CD1d and iNKT cells but high
CD161+CD56+NKT cells in the healthy human liver, with an
upregulation of CD1d on biliary epithelial cells next to portal
tract fibrotic areas in patients with chronic HCV. Hepatic
type 2 NKT cells produced large amounts of IFN-gamma and
less IL-13 and IL-4 [149]. It was suggested that hepatic cells
infected with HCV could increase CD1d and process CD1d
liver antigens for presentation [149]. Another study reports
that iNKT cells tend to localize in peripheral tissues (such as
the liver) as opposed to lymphoid tissue and found that iNKT
cells stimulate intrahepatic CD8 T cell effector responses to
liver antigens [150].

Liver iNKT cells have also been shown to constitutively
express the costimulatory TNF superfamily receptor OX40
[52]. OX40 stimulation results in massive pyroptotic death
of iNKT cells, characterized by the secretion of proinflam-
matory cytokines that induce liver injury. The OX40/NKT
pyroptosis pathway plays a fundamental role in concanavalin
A-induced murine hepatitis as well. The poly(ADP-ribose)
polymerase (PARP) proteins also induce cell death and
inflammation. Chemical inhibition of PARP activity has
been shown to be protective against liver injury during
Con-A-induced hepatitis, where inflammation and induced
hepatocyte death are mainly mediated by the activated iNKT
cells lymphocyte population [19].

The precise role of iNKT cells in the liver during
AiLD, specifically whether they are proinflammatory or anti-
inflammatory, has not been fully clarified (Figure 1). Most
studies are based on animal models and appear to indicate
varying roles for iNKT cells in the AiLD (Table 1).

6. Autoimmune Hepatitis

Most studies regarding iNKT cells in AIH have been based on
the murine model of Con-A-induced AIH [11, 12] and/or fur-
ther genetic modifications of important signaling molecules
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Table 1: Summary of studies in murine models supportive of a significant role of iNKT cells in the pathogenesis of AiLD.

Model iNKT cells number iNKT cells cytokine Liver injury References

Con-A-treated mice ↑
IFN-𝛾 ↑ IL-4 ↑

TNF-𝛼 ↑ ↑ [11–13]

Con-A-treated mice
CCL2/MCP-1
neutralized

↑
IFN-𝛾 ↓ IL-4 ↑

TNF-𝛼 ↓ ↑ [14]

Con-A-treated
CD1-deficient
mice

(--) (--) ↓ [15]

Con-A-treated
SOCS1 cKO mice NS IFN-𝛾 ND IL-4 ND ↑ [16]

Con-A-treated
SOCS3 cKO mice NS IFN-𝛾 ↑ IL-4 ↑ ↑ [17]

Con-A-treated
PKC-𝜃(-/-) mice ↓ IFN-𝛾 ↓ TNF-𝛼 ↓ ↓ [18]

Con-A-treated
Parp2(-/- )mice ↓ IFN-𝛾 ND ↓ [19]

Con-A or CCl(4)-
treated mice ↑

IL-33 ↑
(hepatocytes) ↑ [20]

Con-A-treated
tpl2(−/−) mice ↓ IFN-𝛾 ↓ IL-4 ↓ ↓ [21]

Con-A-treated
PGAM5(−/−) mice ↓ IFN-𝛾 ↓ TNF-𝛼 ↓ ↓ [22]

Ripk3(-/-) mice ↓ IFN-𝛾 ↓ TNF-𝛼 ↓ ↓ [23]
dnTGF-𝛽RII mice ↑ IFN-𝛾 ↑ ↑ [24]
Xenobiotic-induced
C57BL/6 mice and
CD4 and CD8 KO mice

↑ IFN-𝛾 ↑ IL-4 ↑ ↑ [25, 26]

NOD.c3c4 mice ↑ NS ↑ [27]
↑: increased; ↓: decreased.
(--): absent; NS: not specified; ND: not different fromWT.

such as PKC𝜃 [18] and SOCS1, 3 [16, 17], as well as the carbon
tetrachloride (CCl(4)) model of induced acute hepatitis [20,
151]. Kaneko et al. [13] found that Con-A induces hepatic
NKT cells to produce IL-4, which in turn induced an increase
in the expression of granzyme B and Fas ligand (FasL),
promoting hepatocyte cytotoxicity. Ajuebor et al. [14] used
the Con-A model to study iNKT cells function and found
that Con-A activates iNKT cells, resulting in increased IL-
4 and decreased IFN-𝛾 production when CCL2/MCP-1 is
neutralized. An interesting study by Takeda and colleagues
[15] found that CD1d-deficient mice lack NKT cells and
are resistant to Con-A-induced hepatitis. Transfer of NKT
cells from wild-type to CD1d-deficient mice rendered them
susceptible to Con-A hepatitis, an event not observed if mice
were FasL-deficient [15]. Con-A administration resulted in
increased FasL expression on the NKT cells surface and
increased FasL-mediated cytotoxicity [15]. Similar results
were reported by Biburger et al. [152] who found that 𝛼-
GalCer enhanced TNF-𝛼 secretion, which in turn increased
FasL expression on NKT cells. That group proposed that
FasL on NKT cells interacts with Fas-expressing hepatocytes,
inducing hepatocyte cell death, which raises the possibil-
ity that natural autoantigens take the place of 𝛼-GalCer,

being presented to NKT cells by CD1d [152]. In another
recent study, TPL2, a MAPKKK kinase that has also been
acknowledged for its activating role in macrophage cytokine
production [153], was shown to be a crucial signaling factor
in iNKT cells and mediator of hepatic inflammation [21].
Genetic ablation of TPL2 ameliorated liver injury induced
by Con-A without affecting NKT cells development in the
thymus. The receptor-interacting protein kinase 3 (RIPK3)
also plays an important role in programmed necrosis and
innate inflammatory responses. Very little is known about
the involvement of RIPK3 in NKT cell-mediated immune
responses, but recent research has indicated that RIPK3
influences NKT cells function via activation of themitochon-
drial phosphatase phosphoglycerate mutase 5 (PGAM5) [23].
PGAM5-mediated programmed necrosis of hepatocytes has
been recently documented to be able to drive acute liver
injury [22]. PGAM5 was highly expressed in hepatocytes
of patients with AIH and in mice with Con-A-induced
experimental hepatitis. Deficiency of PGAM5 protectedmice
from Con-A-induced hepatocellular death and liver injury.
Lately, evidence has been provided to support the role ofNKT
cells as detectors to sense traumatic injury and to modulate
the local immune response toward a restitution phase by
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Figure 1: Schematic representation of phenotypic and intracellular IL-10 expression analysis in NKT (CD3+CD56+) and NK (CD3- CD56+)
cells from a healthy donor and an AIH patient at diagnosis 6 months after immunosuppressive treatment, at the time of remission.

affecting the local cytokine milieu [154]. Recently, betulin,
an immunomodulatory compound extracted from Hedyotis
hedyotidea,was shown to be able to ameliorate concanavalin-
A-induced autoimmune hepatitis in mice through inhibition
of NKT cells- and T cell-derived IFN-𝛾, TNF-𝛼, and IL-6
cytokine expression [155]. Of interest, transient expression of
transgenic IL-12 in murine liver triggered an inflammatory
response mimicking human autoimmune hepatitis, where
IFN-𝛾was identified as an essential mediator of liver damage,
and CD4 and CD8 T cells but not NK, NKT, or B cells were
essential executors of hepatic injury [156].

7. Primary Biliary Cholangitis

The role of iNKT cells in PBC has not been fully examined.
An early study has reported increased frequency of iNKTcells
in the livers of PBC patients, with a decreased number in the
peripheral blood [8]. Three distinct subpopulations of iNKT
cells have been noted in PBC patients so far: CD4-CD8+,
CD4-CD8-, and CD4+CD8- [8]. An immunohistochemical
study by Harada et al. [157] demonstrated CD3+CD57+ cells
within the portal tracts and parenchyma of PBC patients
and controls, with more pronounced presence of these
cells within the portal tracts of PBC patients. CD3+CD57+
cells congregated around areas of injured interlobular bile
ducts in PBC cases but not in healthy and pathological
controls [157]. Improved detection methods have allowed
accurate cytokine measurements from liver CD1d-restricted

intrahepatic lymphocytes (IHL), revealing the ability to pro-
duce IFN𝛾, aswell as variable levels of IL-10, IL-4, and IL-13 ex
vivo [158, 159]. In murine models of PBC, iNKT cells appear
to exacerbate murine autoimmune cholangitis, fibrosis, and
liver injury [24–26, 160]. Infection of mice with N. aro-
maticivorans induced signature antibodies against microbial
PDC-E2 and its mitochondrial counterpart but also triggered
chronic T cell-mediated autoimmunity against small bile
ducts [161]. Disease induction required NKT cells, which
specifically respond to N. aromaticivorans cell wall alpha-
glucuronosyl ceramides presented by CD1d molecules [161].
Mice immunized with 𝛼-GalCer demonstrated profound
disease exacerbation with increased CD8+ T cell infiltrates,
portal inflammation, granuloma formation, and bile duct
damage [25]. Immunized mice also showed increased levels
of anti-mitochondrial antibody (AMA) production [25].That
group suggests that iNKT cells contribute to the perpetuation
of PBC following an initial loss of tolerance to PDC-E2
and that iNKT cells play a critical role in PBC recurrence
following liver transplantation [25].

8. Primary Sclerosing Cholangitis

Limited data have been obtained regarding the role of iNKT
cells in PSC, despite the fact that cholangiocytes express
CD1d and present lipid antigens to NKT cells [162]. In one
model of ulcerative colitis with cholangitis in CD1mice given
2.0% dextran sulfate sodium, researchers found decreased
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IL-4 levels and increased IFN-𝛾, with increased numbers of
CD4+CD8+ cells in the liver but not in the colon. [163].
The same group of researchers analyzed numbers, surface
markers, and cytokine production ofmononuclear cells in the
mouse model of cholangitis, which had also been given 𝛼-
GalCer [164]. There was increased survival and weight gain
noted in the 𝛼-GalCer treated mice, with decreases in IFN-𝛾
release, CD4/CD8 ratio, and NK and NKT cells populations
[164]. Those authors suggest that NKT cells treated with 𝛼-
GalCer may promote a reduction in Th1 and an increase in
Th2 cytokine activity [164]. Additionally, in NOD.c3c4 mice
that spontaneously develop biliary inflammation in extrahep-
atic and intrahepatic bile ducts, iNKT cells were more abun-
dant and displayed an activated phenotype [27]. Activation
or blocking of NKT cells with 𝛼-galactosylceramide or anti-
CD1d antibody injections, however, did not affect the biliary
phenotype of NOD.c3c4 mice.

9. Vitamin D and iNKT Cells Function: A Role
in Autoimmune Liver Disease?

As noted by several studies above, iNKT cells activation
or suppression may induce an alteration in the cytokine
milieu, in a direction that is either proinflammatory or anti-
inflammatory, which appears to be disease-dependent. If
the immunomodulatory properties of these cells are vali-
dated, they could become the target of novel therapeutic
interventions. The question remains as to what therapeutic
agents may be used in these conditions, if the notion that
their immunomodulatory properties are therapeutic holds
true. Recent studies have examined the role of vitamin D
in immunomodulation [143], including the development and
regulation of iNKT cells [91, 143–146]. Indeed, iNKT cells and
CD4/CD8 intraepithelial lymphocytes are developmentally
and functionally dependent on sufficient levels of vitamin
D [147]. There has been ongoing research into the role of
vitamin D and vitamin D deficiency in the development
of autoimmune disease [44, 165, 166]. Multiple studies
have noted the rising incidence of autoimmune disease
with increasing distance from the equator, which has led
to speculation that vitamin D deficiency may play a role
in immunomodulation. Interestingly, multiple studies have
noted vitamin D deficiency as well as vitamin D receptor
(VDR)mutations in patients with autoimmune diseases (well
reviewed in [166]), the most notable of which (mutations) are
documented in MS [44, 166–169]. A relatively recent review
also highlights the potential role the vitamin D deficiency
likely plays in the development of AiLD [44]. ApaI polymor-
phism of the vitaminD receptor has been also recently shown
to affect health-related quality of life in patients with primary
sclerosing cholangitis [170]. Low vitamin D levels are also
found to be common in patients with PBC and correlated
with advanced disease, lack of response to UDCA therapy,
and autoimmune disease comorbidity [45]. This alluded to
the plausible scenario for a significant role for vitamin D
as a prognostic marker of the severity of PBC and possibly
the severity of other AiLDs. Recent studies have examined
the role of vitamin D in immunomodulation [171], including
the development and regulation of iNKT cells [94, 171–174].

Indeed, iNKT cells and CD4/CD8 intraepithelial lympho-
cytes are developmentally and functionally dependent on
sufficient levels of vitamin D [175].

Animal models found that vitamin D is required in utero
for normal iNKT cells development, with subsequent treat-
ment (such as during clinically evident autoimmune dis-
ease) having little benefit [94, 174, 176]. The mechanisms
underlying this have been well defined in studies examining
the development of iNKT cells and the effect of vitamin D
deficiency, as well as that of VDR knockout.The development
of iNKT cells begins in the thymus, where they arise from
conventional CD4+/CD8+ (double positive or DP) T cells
[177]. These early TCR-positive iNKT cells are DPdim and
CD24+ and undergo rapid expansion at this stage [47]. Yu
and Cantorna [174] found that, in subjects with adequate
vitamin D levels, 91% of DPdim iNKT cells go on to become
mature CD24- iNKT cells, with most (61%) apoptotic cells
being CD24+. In vitamin D deficiency, only 60% go on to
become the CD24- mature type, with equal rates of apoptosis
between CD44+ and CD24- cells [174]. Further maturation
from CD44-NK1.1- to CD44+NK1.1- occurs in thymic pre-
cursors, which is then followed by CD44+NK1.1+ iNKT cells
development [177, 178]. Interestingly, vitamin D knockout
mice harbor iNKT cells blocked at the CD44+NK1.1- stage
[94, 173, 174]. These iNKT cells were functionally defective
with regard to the amount of cytokine secretion [173].
Cytokine deficiency and low iNKTcells numbers characterize
VDR knockout mice, in contrast to vitamin D-deficient mice
that only have decreased iNKT cells numbers but preserved
IL-4 and IFN-𝛾producing function [174]. Recently, protective
effects of 1,25-dihydroxyvitamin D3 in experimental autoim-
mune encephalomyelitis in mice have been attributed to the
presence of NKT cells [179].

Although the effects of vitamin D on iNKT cells devel-
opment have been elucidated, it is not clear as to whether
vitamin D deficiency (or VDR knockout) results in a proin-
flammatory or anti-inflammatory state. In models of asthma
and lung inflammation, abnormal iNKT cells number and
function due to VDR knockout have been shown to ame-
liorate the disease [94, 180–183]. VDR knockout mice are
unable to generate airway inflammation due to failed iNKT
responses, with VDR knockout mice having decreased iNKT
cells [94]. Also, Th2 cells in VDR knockout mice (with the
C57BL/6 background) produced less IL-4, a reduction also
found in iNKT cells (with BALB/c and C57BL/6 back-
grounds) [92]. Additionally, iNKT cells were unable to pro-
duce IL-5 and IL-13 (BALB/c background), as well as IL-17
(C57BL/6 background) [94]. However, vitamin D deficiency
and consequent abnormal iNKT cells numbers have been
suggested to contribute to MS development [184–189], as
well as hastening the clinical course of EAE [184]. Vitamin
D ameliorates EAE, reduces the Th1 and Th17 cell response,
and increases the Treg population [190–192]. A study byTork-
ildsen and colleagues [176] demonstrated that three patients
with vitamin D-dependent rickets went on to develop MS,
despite vitamin D supplementation, which adds to the debate
on the effectiveness of early (in utero) vitamin D supplemen-
tation versus later treatment during clinical disease.



8 Canadian Journal of Gastroenterology and Hepatology

Recent research on vitamin D receptor- (VDR-) depen-
dent signaling suggests that VDR functions to constrain the
inflammatory response by targeting the miRNA-155-SOCS1
(suppressor of cytokine signaling 1) axis. The VDR-miRNA-
155-SOCS1 pathway was investigated in the context of the
autoimmune response associated with PBC. VDR/miRNA-
155-modulated SOCS1 expression was decreased in PBC,
leading to insufficient negative regulation of cytokine sig-
naling [193]. 1,25-(OH)(2)-vitamin D(3) also prevented acti-
vation of hepatic stellate cells in vitro and ameliorated
inflammatory liver damage but not fibrosis in the Abcb4(-
/-) murine model of inflammation-induced cholestatic liver
injury, fibrosis, and cancer [194].

10. Conclusion

The role of iNKT cells in autoimmune disease appears to
be multifaceted, with these cells being involved not only
in shaping the cytokine environment to be either Th1 or
Th2 predominant but also in influencing B cell function
and autoantibody production. Whether iNKT cells exert
a proinflammatory or anti-inflammatory function varies
between autoimmune diseases. The role of iNKT cells in
AiLD remains to be elucidated. With the characterization of
the functional phenotype of iNKT cells in AiLD and their
relationship with disease activity, researchers may be able to
establish immunomodulatory therapies to reduce the severity
of disease or halt its progression. The immunomodulatory
role of vitamin D is intriguing and appears to be highly
relevant in this context, further underlying the need for more
research.
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