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Piperlongumine (PL) is an anticancer compound whose activity is related to the inhibition

of human glutathione transferase of pi class (GSTP1) overexpressed in cancerous tumors

and implicated in the metabolism of electrophilic compounds. In the present work,

the inhibition mechanism of hydrolyzed piperlongumine (hPL) has been investigated

employing QM and QM/MM levels of theory. The potential energy surfaces (PESs)

underline the contributions of Tyr residue close to G site in the catalytic pocket of the

enzyme. The proposed mechanism occurs through a one-step process represented by

the nucleophilic addition of the glutathione thiol to electrophilic species giving rise to the

simultaneous C-S and H-C bonds formation. Both the used methods give barrier heights

(19.8 and 21.5 kcal mol−1 at QM/MM and QM, respectively) close to that experimentally

measured for the C-S bond formations (23.8 kcal mol−1).

Keywords: glutathione S-transferase, piperlongumine, hydrolysismechanism, inhibitionmechanism,MDDFT, QM,

QMMM

INTRODUCTION

Glutathione-S-transferases (GSTs) is a ubiquitous family of multifunctional enzymes of phase II
detoxification system that conjugate reactive substrates with reduced tripeptide glutathione (GSH)
in most cells, especially those in the liver and kidney (Hayes et al., 2005; Oakley, 2005; Stoddard
et al., 2017). In particular, they catalyze the nucleophilic attack of the thiol group arising from
cysteine residue (Cys) of the GSH on electrophilic substrates leading to formation of conjugates,
that are less toxic and more water-soluble than the parent species, facilitating their elimination
from cells (Broxterman et al., 1995; Townsend and Tew, 2003; Wang et al., 2017). Their role in
protecting the cells from oxidative attack, in association with their overexpression in many cancer
cells, makes them good candidates as cancer biomarkers (McIlwain et al., 2006; Lo and Ali-Osman,
2007). Furthermore, glutathione-S-transferases are associated with multidrug resistance of tumor
cells and are involved in drug detoxification and in apoptosis control (Townsend and Tew, 2003;
Mejerman et al., 2008). Mammalian cytosolic GSTs isoenzymes belong to different families or
classes (alpha, mu, pi, theta, kappa, sigma, zeta, and omega) (Wilce and Parker, 1994; Armstrong,
1997; Sheehan et al., 2001) based on their molecular masses, isoelectric points and other properties.
Every isoenzyme subunit contains an active site entailing a binding site for the cofactor GSH (G-
site) and one for the electrophilic substrate (H-site) (Dirr et al., 1994; Wilce and Parker, 1994).
In particular, the Glutathione S-transferase P1 (GSTP1) is overexpressed in different human
malignancies affecting important organs as lung, colon, stomach, kidney, ovary, mouth, and testis
(Green et al., 1993; Katagiri et al., 1993; Grignon et al., 1994; Okuyama et al., 1994; Zhang
et al., 1994; Inoue et al., 1995; Ruiz-Gomez et al., 2000). This overexpression has been linked to
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acquire multidrug resistance to chemotherapeutic agents
(cisplatin, chlorambucil, and ethacrynic acid) (Ban et al., 1996;
Oakley et al., 1997; Mejerman et al., 2008; Karpusas et al.,
2013; Pei et al., 2013; Perperopoulou et al., 2018). GSTP1 has
additional role in maintaining the cellular redox state (Tew,
2007) and “nonenzymatic” antiapoptotic activity through its
interaction with the c-Jun NH2-terminal kinase (JNK), a key
enzyme implicated into the apoptotic cascade (Adler et al., 1999;
Wang et al., 2001). For these reasons, GSTP1 is considered as
a promising target for inactivation in cancer treatment and
numerous researchers have spent considerable effort to propose
potent inhibitors of this enzyme (Bezerra et al., 2007; Federici
et al., 2009; Raj et al., 2011; Adams et al., 2012; Boskovic et al.,
2013; Liao et al., 2016; Harshbarger et al., 2017; Zou et al., 2018).
Among these, piperlongumine (PL) is a natural alkaloid isolated
from Piper longum L. characterized by the presence of two α,
β- unsaturated functionalities (see Figure 1) and recently has
been reported as a promising anticancer molecule by targeting
the stress response to ROS, inducing apoptosis (Adams et al.,
2012; Boskovic et al., 2013; Liao et al., 2016; Harshbarger et al.,
2017).

This molecule also represents a promising lead compound in
the developing potent GSTP1 inhibitors stimulating the synthesis
of a huge number of its structural analogs (Bezerra et al., 2007;
Adams et al., 2012; Boskovic et al., 2013; Liao et al., 2016;
Harshbarger et al., 2017; Stoddard et al., 2017). PL acts as Michael
acceptor because can undergo heteroconjugate addition with the
peptide-like molecules including nucleophilic thiols of cysteine
residues in irreversible or reversible fashion. From stable isotope
labeling (Raj et al., 2011) the anti-cancer effects of PL were
related to the promotion of reactive oxygen species (ROS) and
to the reduction of GSH cellular levels (Harshbarger et al., 2017).
PL contains a trimethoxyphenyl head and two reactive olefins
moieties (C2-C3 and C7-C8) that revealed to be essential for
differentiating the cellular activity (Adams et al., 2012). The C2-
C3 bond is critical for toxicity, ROS elevation and protein S-
glutathionylation while C7-C8 is not necessary for these activities
and is believed to enhance the toxicity (Adams et al., 2012;
Harshbarger et al., 2017). This means that the two present
olefins can be identified as the minimum pharmacophore of PL
so that their modifications can originate analogs with different
biological response (Adams et al., 2012). Furthermore, it can
act as GSTP1-cosubstrate in both displacement and addition
reactions. In this case, GSH bound in the G site of GSTP1 is the
target of the inhibitor (Adams et al., 2012; Harshbarger et al.,
2017). Recently, the high resolution X-ray crystal structure of
GSTP1 (PDB code 5J41) in complex with PL and GSH proposed
as the inhibition occurs without GSTP1 covalent modification
by PL but, rather unexpectedly, PL results to be hydrolyzed to a
trimethoxycinnamic acid (TMCA) deprived of the C2-C3 olefin
(Harshbarger et al., 2017). This finding does not completely fit
the behavior of PL toward other cysteine-containing peptides that
react with the C2-C3 reactive bond in vitro conditions (Adams
et al., 2012). Harshbarger et al. provided the first structural model
for the interactions between PL, GSH and GSTP1 (Harshbarger
et al., 2017). From this study emerged that PL acts as a prodrug.
In fact, after entrance in the cell it undergoes hydrolysis giving
rise to the TMCA that in turns reacts with GSH, located in the

G site of GSTP1, affording the hPL:GSH conjugate as product
of the addition reaction and confirming that no covalent bond
formation occurs between PL and GSTP1. Although the presence
in the literature of many scientific works (Bezerra et al., 2007;
Federici et al., 2009; Adams et al., 2012; Boskovic et al., 2013;
Peng et al., 2015; Liao et al., 2016; Harshbarger et al., 2017;
Zou et al., 2018) on the piperlongumine selective inhibition
of tumor growth in different types of cancers, the molecular
mechanism involved in PL mediated cancer cell death remains
still poorly understood. With the aim to contribute to a better
knowledge, at atomistic level, of the inhibition mechanism of
GSH by the hydrolyzed product of PL into the GSTP1 enzyme,
a theoretical investigation in the framework of density functional
theory (DFT) was undertaken. In addition, a MD simulation of
initial enzyme-inhibitor (EI) complex has been also performed.

METHODOLOGY

Active Site
The enzyme structure includes two identical homodimers, with a
total mass of 48 kDa. The active sites are located in the interfaces
between the two domains. Each active site in turn consists of two
sub-sites: the G site, where GSH is located, in proximity to the
outer side of protein surface and in direct contact with solvent
molecules, and the H site, where the electrophilic inhibitor can
be accommodated (Harshbarger et al., 2017). The interactions
betweenGSH and hPLwith different residues of the cavity of both
sites were treated at quantum mechanical level in both QM and
QM/MM calculations. In particular, the QM region includes: the
Arg13 which is engaged in hydrogen bonds with the N-terminal
portion of GSH and the carboxyl group of inhibitor, the Lys44
which is anchored to C-terminal part of GSH, the Tyr7 with its
OH moiety oriented toward the S atom of GSH-cysteine in such
amanner to establish H bond between them, and Tyr108 which is
involved in π-π interaction with inhibitor aromatic ring. Finally,
the QM portion, contains also the Ile104 since its crucial role in
correctly orienting hPL (in H site) during the conjugation phase
with GSH (Harshbarger et al., 2017). Due to the closeness of
active site to the protein surface, several water molecules present
in the catalytic cavity were considered in the QM/MM model.
Starting from the available crystallographic structure of GSTP1
by Homo Sapiens (Harshbarger et al., 2017; PDB code 5J41, 1.19
Å resolution), the preparation of the models (see Figure 2) is
described by the following procedure.

MD Calculations
As first step of the work it was necessary to perform the C8hPL-
SGSH bond cleavage and then to relax the enzyme:GSH:inhibitor
supramolecular system at the molecular mechanics (MM) level
of theory before starting the MD simulation because the
used X-ray structure was related to the final product of the
inhibition process. Furthermore, the presence of the inhibitor
molecule of non-protein nature implied its optimization
at HF/6-31G(d) level of theory in order to derive the
parameters by Antechamber tool, as implemented in AMBER
16 package (AMBER 16, 2016). Intramolecular Lennard-Jones
parameters and atomic charges were obtained using, respectively,
General Amber Force Field (GAFF) (Wang et al., 2004)
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FIGURE 1 | Chemical Species involved in the inhibition reaction of GSTP1.

FIGURE 2 | The two models used. The QM/MM model (A) includes the whole protein with the water molecules, the red box defines the QM region used in both

cluster (B) and QM/MM calculations. The amino acid residues of the QM portion are shown with ball and sticks representation.

and Restrained Electrostatic potential (RESP) method (Bayly
et al., 1993). The obtained parameters of hPL are collected in
Table S1.

The amber ff14SB (Maier et al., 2015) force field was applied
using the Xleap module and hydrogen atoms were added to the
whole system. The protonation state of each amino acid has
been assigned using the H++ web server (Gordon et al., 2005;
Myers et al., 2006; Anandakrishnan et al., 2012; H++ vesion
3.2, 2016). A rectangular box (85 × 70 × 80Å) was filled with
TIP3P (Jorgensen et al., 1983) water molecules within 12.0 Å
from the surface of the enzyme. The classical MD simulation
was applied for 100 ps in NVT ensemble with a progressive
heating phase, from 0 to 310K. A final MD production of 20
ns was obtained in NPT ensemble (1 bar and 310K). During
the simulations, a cutoff radius for non-bonded interactions
was fixed at 12 Å and Particle Mesh Ewald summation method

(PME) (Ewald, 1921) and SHAKE algorithm (Ryckaert et al.,
1977) were employed to constrain the motion in H-including
bonds, in order to use a 2 fs integration step The root-mean-
square deviation (RMSD) analysis of the whole protein and
the H and G active sites residues was performed to verify the
stability of the system during the MD simulation (Figure S1).
To better examine the conformational behavior of the inhibitor-
protein system, a MD simulation has been also performed on
the alone enzyme. The obtained root-mean-square fluctuation
(RMSF) is shown in Figure S2. Furthermore, in order to verify
conformational homogeneity for inhibitor binding modes in
to the catalytic pocket, 20 structures were selected along MD
simulation (Figure S3). Clustering results confirmed that the last
frame, obtained at 20 ns, is a good representative configuration
as to be adopted as starting configuration for creating QM cluster
and QM/MMmodel.

Frontiers in Chemistry | www.frontiersin.org 3 December 2018 | Volume 6 | Article 606

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Prejanò et al. GSTP1 Inhibition Mechanism

FIGURE 3 | Hydrolysis mechanism of PL in neutral (bold line) and acidic conditions (dashed line).

FIGURE 4 | B3LYP-D3/6-311+G(2d,2p)//B3LYP/6-31+G(d,p) (SMD,ε = 78) energy profiles of PL hydrolysis in neutral conditions (blue line) and acid conditions (red

line). The final energies contain ZPE and D3 corrections.

QM Cluster and QMMM Models
The amino acids considered in the QM region (Tyr7,
Arg13, Tyr103, Ile104, Lys44) were truncated as depicted in
Figure 2. The missing hydrogens were added manually and
one water molecule (lying at 3.601 Å from the GSH) was
explicitly considered, being implicated in direct interaction with
nucleophilic agent while the other waters are located away than 4
Å. The C atoms labeled with “∗” were kept fixed during geometry
optimizations, applying the locking scheme, to prevent artificial

movements (Siegbahn and Himo, 2011; Piazzetta et al., 2015;
Himo, 2017). The QM cluster model was found to be adequate
in the elucidation of the catalytic mechanism followed by other
enzymes (Amata et al., 2011; Lan and Chen, 2016; Prejanò et al.,
2017). The obtained model consists of 136 atoms with a total
charge equal to zero.

The QM/MM model was obtained applying the two layers
ONIOM formalism (Svensson et al., 1996) as implemented in
Gaussian09 code (Frisch et al., 2013), maintaining the same
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FIGURE 5 | Proposed mechanisms for GSTP1 inhibition by hPL.

FIGURE 6 | Superposition of the ternary adduct (EI) from MD (violet) with the

X-ray structure (yellow) related to the P S-conjugate product.

atoms mentioned in QM cluster model setup. The entire enzyme
and a number of water molecules within 5 Å from the catalytic
site were considered (Figure 2). During the optimization, all the
water molecules and residues out of 18 Å sphere from the active
site were kept frozen, applying the standard procedure for single
conformation PES studies (Sousa et al., 2017). The final model
contains 7811 atoms.

Technical Details
Gaussian 09 (Frisch et al., 2013) software package was used
to perform calculations using B3LYP (Lee et al., 1988; Becke,
1993) hybrid functional in QM region of both used models.

For S, N, H, O and C atoms, 6-31+G(d,p) basis set was used
during the optimizations. Linear transit scans were performed,
in order to detect stationary points along reaction coordinates.
To confirm the nature of intermediates or transition states,
frequencies calculation was performed at the same level of theory,
for each stationary point intercepted along potential energy
surface (PES). To obtain more accurate electronic energies single
point calculations with 6-311+G(2d,2p) larger basis set were
performed. The final energy profiles include the zero point energy
(ZPE) and dispersion corrections (evaluated using the DFT-D3
procedure; Grimme et al., 2011) and solvation energy.

The electrostatic embedding as implemented in Gaussian 09
was employed to evaluate the Coulomb interactions betweenMM
and QM regions in all calculations (Vreven et al., 2006). For
the QM cluster calculations, single point calculations adopting
the SCRF-SMD solvation model with a dielectric constant
ε = 4, simulating the enzyme environment, was used (Marenich
et al., 2009). The same level of theory was adopted during the
optimizations of species involved in hydrolysis of PL, considering
the dielectric constant of 78.0, as successfully proposed in
other studies (Ritacco et al., 2015; Marino et al., 2016). NBO
(NBO version 3.1, 2001) and non-covalent interaction (NCI)
(NCIPLOT, version 3.0, 2011) analyses were performed on all
the stationary points of the investigated PESs at both QM and
QM/MM levels.

As far as the proton affinity calculations for establishing the
oxygen carbonyl to be considered in the hydrolysis mechanism
at acidic conditions, the proton affinities as binding energies (BE)
have been estimated as indicated by the following expression:

BE = −(1HhPL−H+ − 1HhPL)

The BE is calculated as the difference between the enthalpy of the
protonated system and that of the neutral one. In the calculations,
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the H+ contribution does not appear since we evaluated the
energetic difference, therefore the obtained binding energies
represent the energy involved in the formation of the protonated
systems.

RESULTS AND DISCUSSION

Hydrolysis of Piperlongumine
Following the recent experimental indications that demonstrate
as the PL suffers hydrolysis out of the enzyme pocket,
(Harshbarger et al., 2017) we firstly study this process in aqueous
media. The considered reaction mechanism is illustrated in

Figure 3. As from the experimental evidence, (Harshbarger et al.,
2017) we considered the hydrolysis mechanism of PL to occur
on the oxygen of the carbonyl (C6) functionality next to C7-
C8 olefin, under both neutral and acidic conditions to take into
account the different intracellular pH conditions, since the acid
pH values are observed in cancer cells (Townsend and Tew, 2003;
Wang et al., 2017).

On the contrary, our computed BE shows that the carbonyl
moiety next to C2-C3 olefin has minor proton affinity (about 4
kcal mol−1) with respect to that next to C7-C8 one, indicating
as under the same conditions the favored protonation site is the
oxygen of C6.

FIGURE 7 | /B3LYP-D3/6-311+G(2d,2p)//B3LYP/6-31+G(d,p) (SMD,ε = 4) (top) and B3LYP-D3/6-311+G(2d,2p):ff99SB//B3LYP/6-31+G(d,p):ff99SB (bottom)

energy profiles of GSTP1 inhibition process by hPL for (A,B) mechanisms. In the black window are depicted the energy profile related to the reaction unassisted by the

enzyme. The final energies contain ZPE and D3 corrections.
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The optimized geometries of the stationary points are
reported in (Figures S4, S5), while the calculated energy profiles
are depicted in Figure 4. As shown from Figure 3, we propose
at acid pH a mechanism occurring in a multistep process
contrary to that at neutral conditions occurring in only one
step. In both cases the product is the hPL, while the leaving
group is 1,2,5,6-tetra-hydro-pyridin-2-ol (t-PyrOH) neutral and
protonated, respectively. For clarity, in the text the remaining
double bond in the hPL upon hydrolysis will retain the same
numeration than in PL, (C7-C8). The processes are exothermic
although at pH acid the exoergonicity is more pronounced
(Figure 4). From our results, the acidic hydrolysis is strongly
favored as suggested by lower activation barriers (by about 10
kcal mol−1) than that found at neutral pH (see Figure 4). The
calculated barrier in acidic environment well-agrees with those
characterizing other anticancer molecules acting as prodrug
(Alberto and Russo, 2011; Ritacco et al., 2015; Marino et al.,
2016). Once the hydrolyzed product is formed, the process of
GSH-conjugation favored by GSTP1 starts through the attack to
the C7-C8 double bond.

GSTP1 Inhibition
To underline the role of GSTP1 during the inhibition process
by hPL, we have considered, at both QM and QM/MM
levels, two different reaction mechanisms (A, and B) as
presented in Figure 5. In particular: (A) describes the nucleophile
addition to the double bond of inhibitor by -SH group of
GSH without involving any amino acid residue while path
(B) takes into account the participation of the Tyr7 residue
in the formation of the covalent adduct. In all the cases,
the inhibition reaction occurs in a one-step process by the
Michael addition of the thiol from GSH at the C7-C8 olefin
of hPL. In all the considered mechanisms, the starting species
is the ternary enzyme-hydrolyzed inhibitor-GSH complex (EI)
obtained after the geometry optimization of the frame isolated
by the previous MD cycle at 20 ns. From Figure 6, that
illustrates the superposition of the crystallographic structure
with the last MD snapshot, it is possible to note that hPL
interacts with the binding cleft of the H site and no water
molecules are close to the reaction center, in agreement with the
hydrophobic nature of site (Tyr7, Tyr108, and Ile104 residues).

FIGURE 8 | B3LYP/6-31+G(d,p):ff99SB optimized geometries of EI, P, TSA, TSB. For the transition states the imaginary frequencies are reported.
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As expected, the crystallographic pose (obtained with the
reaction product) deviates in this moiety (see Figure 6). At the
contrary, the GSH region is well-superimposed confirming that
this molecule is well-positioned with a correct orientation of the
thiol.

The energy profiles obtained employing QM and QM/MM
tools for the two considered mechanisms, are reported in
Figure 7. The reported QMMM energy values do not include
the entropic contribution. In order to quantify this the Grimme
procedure has been employed (Grimme, 2012). Results (see
Table S2) evidence that the T1S terms slightly affect the
previously obtained energy values. QM/MM structures of the
initial complex (EI), the final S-conjugated product (P) and that
of the transition states are reported in Figure 8. All the QM
optimized geometries are given in (Figure S6).

In EI the carboxylate moiety of the hPL is oriented in such
a way to establish hydrogen bonds with Tyr7 (1.599 Å) and
SH group of GSH (2.138 Å). Furthermore, van der Waals and
hydrophobic interactions, such as those between the inhibitor
and the Ile104 and Arg14 residues (see Figure 8) contribute to
optimally accommodate the inhibitor into the H binding site.
In fact, now the key reacting atoms, C8 of the hPL and SH
nucleophile species, are placed in suitable way (at 4.271 Å)
to allow the deactivation reaction. In path A the intercepted
transition state (TSA) represents a four-centered structure where
the sulfur addition to the C8 (1.880 Å) and the C7-H bond
formation (1.467 Å) simultaneously occur. The corresponding
frequency analysis confirms a first-order saddle point with
an imaginary frequency (1510i cm−1) which corresponds to
a vibrational mode involving a strong C7–H coupling and a
relatively weaker C8–S one. The C8-S bond is already established
and the forming C-H one can be evinced by the elongation
of the C7-C8 bond (1.544 Å). This barrier results to be 64.4

FIGURE 9 | Superposition of the ONIOM optimized structure of the final

hPL:GSH conjugated product (violet) with its corresponding crystallographic

structure characterized (yellow).

kcal mol−1 at QM/MM level and 70.9 kcal mol−1 at QM one.
Both values are very close to that computed for the reaction
unassisted by the catalyst (76.0 kcal mol−1, see Figure 7). The
resulting product (P), shown in Figure 8, evidences that the
C-S bond is formed (1.818 Å) and the C8-C7 is elongated
(1.532 Å) confirming the occurred sp3 hybridization of the
two involved carbon atoms. The exothermicity is evaluated to
be 10.8 kcal mol−1 (5.8 kcal mol−1 in the QM cluster). The
mechanism B (Figure 5) involves the participation of the Tyr7
residue. In Figure 8 is reported the optimized structure of the
TSB connecting the EI and the covalent final complex (P). The
nucleophilic attack to C8 occurs by GSH-thiolate (1.914 Å) since
the hydrogen of the S-HGSH group (2.019 Å) has been delivered
to oxygen (OTyr) of the side chain of Tyr7 (1.090 Å). In fact, the
OH group of Tyr7, oriented via hydrogen bonding to carboxylate
moiety of the inhibitor (1.599 Å), in the TS becomes 1.310 Å
and points toward C7 atom for delivering its hydrogen atom
(O-H and H-C7 distances are found to be 1.310 and 1.174 Å,
respectively) while the C7-C8 bond is elongated (1.535 Å) (see
Figure 8). The TS located along the mechanism B lies at 21.5
kcal mol−1 (QM) and 19.8 kcal mol−1 (QM/MM) above the
EI. Both values are very close to the available experimental one
(23.8 kcal mol−1) concerning the C-S bond formation (Huskey
et al., 1991). The superposition of our optimized glutathionil-
conjugated product P with the corresponding crystallographic
structure (Harshbarger et al., 2017; see Figure 9) reveals a good
RMSD value in both GSH and H site regions. The exothermicity
10.8 kcal mol−1 means that the reverse reaction can be accessible
but much slower also for the high barrier required in the reverse
process P EI (30.6 kcal mol−1). TSB evidence as the formation
of the S-C8 bond is strictly related to the deprotonation of
the SH moiety of GSH at the expense of the Tyr7 acting as
proton shuttle with a consequent reduction of barrier (19.8 kcal
mol−1).

This is in agreement with previous works on other GST
enzymes (Zheng and Ornstein, 1997; Angelucci et al., 2005;
Dourado et al., 2008) revealing the importance of the acidic
properties of a Tyr during the catalysis of glutathione-S-
Transferase. Furthermore, our findings corroborate the
hypothesis advanced by the previous structural analysis
(Harshbarger et al., 2017) revealing as no covalent bond
formation between hPL and GSPT1 was observed and that
PL acts as prodrug. With the aim to evaluate the nature of
the interactions present inside the catalytic pocket during the
process, in Figure 10 we have reported the density of isosurfaces
arising from NCI analysis, indicating the different contributions
of the residues retained in the QM region.

In every characterized stationary point, it can be noted the salt
bridges occurring between the side-chains of Lys44 and Arg13
with the carboxyl moiety of carboxyl- and amino-terminal of
GSH (blue region indicates strong attractive interactions while
the red isosurfaces account for the repulsive interactions related
to the center of π systems of Tyr7 and Tyr108 and the inhibitor
molecule, as usually for aromatic systems strong non-bonded
overlap is indicated (Johnson et al., 2010). Further information
arises from the green regions indicative of the van der Waals
forces characterizing the cavity containing the inhibitor molecule
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FIGURE 10 | Nonbonding interaction plot calculated for the stationary points at B3LYP-D3/6-311+G(2d,2p)//B3LYP/6-31+G(d,p) level for the B mechanism. The red

circle defines the portion where the bonds breaking and formation occur.

and identified by the hydrophobic residues Tyr108 and Ile104.
It is interesting to underline as the interaction involving the
Ile104 becomes more intense as the reaction proceeds. At the
contrary no relevant contributions arise from the NBO analysis
(see Table S3) except for a little bit increased nucleophile nature
of the sulfur atom of GSH in the enzyme and a decreased
negative charge on the C7-C8 bond of the hPL species with
the respect to the corresponding values obtained for the process
unassisted by enzyme. In the TSB species, a more attractive
interaction appears in proximity of the region interested in the
chemical events (circled in red in Figure 10) symptomatic of the
occurring S-C8 bond formation. Furthermore, the interatomic
distances, during the mechanism, between the residues of the
QM region and the GSH and hPL species, reported in Table S4,
highlight how no significant change occurs in the catalytic
pocket.

CONCLUSION

This study focuses on the inhibition mechanism of the
glutathione-S-transferase Pi 1 by the hydrolyzed product of

piperlongumine. We propose the mechanism following the
most recent experimental evidences taking into account in
particular the role of Tyr7 on the complex formation between
the glutathione and the inhibitor inside the catalytic pocket of
enzyme.

The hydrolysis of PL for giving hPL has been considered in
neutral and acid conditions. The last one provided the better
energetic path.

The agreement between cluster QM and the more
computational demanding hybrid QM/MM methods is quite
good. Structural and energetic computed properties are in line
with the available experimental data.

The lowest energy reaction mechanism for reaction of hPL
with GSH corresponds to that in which the Tyr7 residue is
involved in the inhibition reaction deprotonating the GSH and
donates the proton, in a concerted fashion, to the C7 substrate
atom. The computed barrier heights result 19.8 and 21.5 kcal
mol−1 in both QM/MM and QM models, respectively. Both
computations clearly indicate the same reaction mechanism by
TSB as the preferred one with difference in the barrier eight is of
only 1.7 kcal mol−1and propose an exergonic reaction.
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We hope that the obtained new insights on the reaction
mechanism of human GSTP1 inhibition with natural
piperlongumine substrate can be useful in the design of
new selective and more potent inhibitors.
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