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Combinatorial CRISPR/Cas9 Screening Reveals Epistatic
Networks of Interacting Tumor Suppressor Genes and
Therapeutic Targets in Human Breast Cancer
Xiaoyu Zhao1,2, Jinyu Li1, Zhimin Liu2,3,4,5, and Scott Powers1,2,6

ABSTRACT
◥

The majority of cancers are driven by multiple genetic altera-
tions, but how these changes collaborate during tumorigenesis
remains largely unknown. To gain mechanistic insights into
tumor-promoting genetic interactions among tumor suppressor
genes (TSG), we conducted combinatorial CRISPR screening
coupled with single-cell transcriptomic profiling in human mam-
mary epithelial cells. As expected, different driver gene altera-
tions in mammary epithelial cells influenced the repertoire of
tumor suppressor alterations capable of inducing tumor forma-
tion. More surprisingly, TSG interaction networks were com-
prised of numerous cliques—sets of three or four genes such that
each TSG within the clique showed oncogenic cooperation with
all other genes in the clique. Genetic interaction profiling indi-
cated that the predominant cooperating TSGs shared overlap-
ping functions rather than distinct or complementary functions.
Single-cell transcriptomic profiling of CRISPR double knockouts
revealed that cooperating TSGs that synergized in promoting
tumorigenesis and growth factor independence showed tran-

scriptional epistasis, whereas noncooperating TSGs did not.
These epistatic transcriptional changes, both buffering and syner-
gistic, affected expression of oncogenic mediators and therapeutic
targets, including CDK4, SRPK1, and DNMT1. Importantly, the
epistatic expression alterations caused by dual inactivation of TSGs
in this system, such as PTEN and TP53, were also observed in patient
tumors, establishing the relevance of these findings to human breast
cancer. An estimated 50% of differentially expressed genes in breast
cancer are controlled by epistatic interactions. Overall, our study
indicates that transcriptional epistasis is a central aspect ofmultigenic
breast cancer progression and outlines methodologies to uncover
driver gene epistatic networks in other human cancers.

Significance: This study provides a roadmap for moving beyond
discovery and development of therapeutic strategies based on single
driver gene analysis to discovery based on interactions between
multiple driver genes.

See related commentary by Fong et al., p. 6078

Introduction
With a few exceptions, such as early-phase chronic myeloid leu-

kemia, human cancer involves the alteration of multiple driver
genes (1, 2). For many driver gene alterations, certain features of how
they collaborate to promote cancer are known. These features include
their relative timing during cancer progression and their functions in
different oncogenic signaling pathways (1, 3, 4). However, the degree
to which cancer results from genetic interactions (GI; epistasis)
between driver genes as opposed to the sum of individual driver gene

effects is largely unknown (5, 6). Greater knowledge of epistatic
interactions among driver gene alterations is necessary to accurately
predict which phenotypes and therapeutic vulnerabilities are to be
expected based on a patient’s cancer genome (7, 8). However, unco-
vering these epistatic interactions and understanding their contribu-
tion to cancer progression has not previously been possible due to a
lack of suitable tools.

Over the past several years, combinatorial CRISPR screening
methods have been developed that enable the systematic analysis of
GIs in mammalian systems (9–13). However, combinatorial CRISPR
on its own cannot address the biology underlying those GIs. Recently,
high-content phenotyping approaches that integrate pooled CRISPR
screening with single-cell transcriptome readouts have emerged,
enabling the growth-based phenotypic effects to be analyzed in
parallel with transcriptome-wide changes (14–16). These tools and
techniques presented us with an opportunity to systematically analyze
how combinations of inactivated tumor suppressor genes (TSG)
changed the growth properties and gene expression profiles of
human mammary epithelial cells, with the goal of identifying general
mechanisms of driver gene cooperation. Human breast cancer genome
data guided our study and was also used to benchmark experimental
transcriptome results.

Materials and Methods
Cell lines

MCF10A cells were purchased from ATCC (ATCC CRL-10317),
and viral packaging cell lines HEK293T and GP2-293 were purchased
from Takara, and MCF10A PTEN�/� cells were a generous gift from
Michele I. Vitolo. All cells were used within three passages of the
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original stock. MCF10A derivatives (MCF10A-vector, MCF10A-
PIK3CA, and MCF10A-MYC) were generated from MCF10A by
retroviral transfection of the plasmids pMSCVneo (Clontech), pLP-
LNCX-PIK3CA-H1047R (neo) (Addgene #25635), and MSCV-neo-
HA-Myc (deposited with Addgene), respectively. All cells were
checked forMycoplasma contamination on a monthly basis using the
LookOut Mycoplasma PCR Detection Kit (Sigma).

Single-guide RNA design
Single-guide RNAs (sgRNA) were designed to target functional

protein domains using the online tool developed in Chris Vakoc’s
laboratory at Cold Spring Harbor Laboratory (17) in conjunction with
the optimized sgRNA design tool developed byDoench and colleagues
at the Broad Institute (18). Approximately five unique sgRNAs were
chosen for eachTSGbased on the combined ranks using the twodesign
tools. Nontargeting control sgRNAs were selected from a previous
publication (19).

In vivo combinatorial CRISPR screening
TSG dual sgRNA cell libraries of MCF10A-vector, MCF10A-

PTEN�/�, MCF10A-PIK3CA and MCF10A-MYC were used for
in vivo screenings. Three to 5 million cells in 50 mL of Matrigel
(Corning, catalog no. 354230)/PBS (1:1) were inoculated orthotopi-
cally into the third and fourth mammary glands of athymic nude-
Foxn1nu mice. Mice were humanely euthanized at 6 to 8 weeks after
injection, such that themaximumvolume of the tumors did not exceed
2 cm3 (following Institutional Animal Care and Use Committee
procedures and protocols). Dual sgRNA abundance in the tumors
was determined by next-generation sequencing.

In vitro combinatorial CRISPR screening
MCF10A-vector TSG dual sgRNA cell libraries were used for

in vitro screenings. Two 15-cm dishes containing cells at day 0 were
harvested to determine the initial dual sgRNA distribution before
screening. Cells were then seeded at different densities in 15 cm dishes
for screenings in the three different conditions. In the first condition, 5
million cells were seeded into each of two 15-cm dishes with full
medium and passed at a ratio of 1:5 every 3 days. Two plates of cells
were sampled at days 3, 6, 9, 12, and 15. In the second condition, 1.5
million cells were seeded into each of 40 15-cm dishes with full
medium. After the cells attached overnight, the media were replaced
with minimal assay medium. The minimal medium was composed of
DMEM/F-12, 1% charcoal-stripped dextran-treated FBS (Hyclone)
and 100 units/mL penicillin and 100 mg/mL streptomycin. Eight plates
of cells were harvested on days 3, 6, 9, 12, and 15. In the third condition,
5 million cells were seeded into each of two 15-cm dishes with full
medium. Themediawere removed and replacedwithMCF10Agrowth
media supplemented with 5 ng/mL TGFb1 (R&D) after overnight.
Cells were cultured and passed at a ratio of 1:5 every 4 days and two
plates of cells were sampled on days 4, 8, 12, 16, and 20. Two biological
replicates of screens were performed for each condition. Dual sgRNA
abundance in the cell samples was determined by next-generation
sequencing.

Construction of combinatorial CROP-seq cell library
A cell library expressing dual CROPseq-sgRNAs was con-

structed by infecting CROPseq-Guide-Puro-sgRNAs viruses and
CROPseq-Guide-Blasti-sgRNAs viruses sequentially. MCF10A-vector-
Cas9-Venus cells were infected with 15 different CROPseq-Guide-
Puro-sgRNA viruses CROPseq-Guide-Puro-(sgNF1_1, sgPTEN_5,
sgSMAD4_5, sgCASP8_5, sgCBFB_2, sgCDH1_5, sgRB1_3, sgTP53_3,

sgNF2_2, sgTBX3_3, sgUSP9X_3, sgTP53_4, sgTP53_5, sghRosa26_2,
sgCTRL0002) individually, and selected in 1.5 mg/mL puromycin
for 4 days. Cells were then passed for the next round of infection
of CROPseq-Guide-Blasti viruses. After 24 hours of infection,
blasticidin (15 ng/mL) was added to the medium for selection. In
total, 72 pairwise sgRNA combinations were included in our combi-
natorial CROP-seq cell library and 68 unique ones were detected
by sequencing.

Profiling single-cell transcriptomes with the combinatorial
CROP-seq cell library

The combinatorial CROP-seq library of cells was cultured in
MCF10A growth medium. When they grew confluent, 2 � 105 cells
were seeded into three 10-cm dishes and were further grown in three
different conditions: full medium, minimal medium, and medium
containing 5 ng/mL TGFb1 for 6 days. Before seeding, some cells were
harvested for the sample for single-cell RNA sequencing (scRNA-seq)
on day 0 (S1_full_D0). On day 6, cells in the different conditions were
harvested for the other three scRNA-seq. scRNA-seq experimentswere
performed according to 10� Genomics’ protocol, with holding 10 ng
of full-length cDNA from the downstream shearing and library prep
steps to providematerial for barcode-enrichment PCR.Approximately
16,000 cells for each sample were loaded into 10� Chromium chips
enabling the profiling of transcriptomes of 5,000 to 9,000 single cells
for each sample.

Data availability statement
Raw pair-end amplicon sequencing data in combinatorial screen-

ings are available and can be downloaded from the NCBI Sequence
Read Archive (SRA) database with the BioProject ID: PRJNA691742.
Raw scRNA-seq, raw enrichment PCR sequencing data, and processed
combinatorial CROP-seq data via 10�Cell Ranger count are available
and can be downloaded from the NCBI Gene Expression Omnibus
(GEO) database with the accession ID: GSE164996. Relevant code and
instructions that are used to reproduce the principal results presented
in this study, are provided on GitHub: https://github.com/Xiaoyu-
Zhao/Oncogenic_GI_screening.git.

Additional information can be found in the Supplementary
Materials and Methods.

Results
Establishing an in vivo screening platform for testing the tumor-
forming ability of combinatorial TSG perturbations

MCF10A, harboring a homozygous deletion of the CDKN2A/B
locus encoding p16INK4a, p14ARF, and p15INK4b TSGs (20, 21), is an
immortalized, nontumorigenic human breast epithelial cell line (22).
Because normal human cells can require five oncogenic alterations to
become fully transformed (23), we were concerned that inactivation of
two TSGs would not be sufficient to fully transform MCF10A, and
therefore constructed three MCF10A derivatives with one additional
oncogenic alteration (MCF10A-PTEN�/�, MCF10A-PIK3CA, and
MCF10A-MYC). We selected 52 TSGs and/or candidate TSGs based
on theirmutation andhomozygous deletion frequency in breast cancer
(Supplementary Table S1). We designed five sgRNAs on average for
each TSG and synthesized a pool of dual sgRNA oligonucleotides
comprised of 34,937 double knockouts (DKO) targeting all pairwise
combinations of the 52 TSGs, 801 single knockouts (SKO) targeting a
single TSG, and 88 nontargeting controls (Fig. 1A). We constructed a
CRISPR/Cas9 plasmid library from these oligonucleotides and gen-
erated lentiviruses that were transduced into MCF10A and its deri-
vatives that stably expressed Cas9 nuclease, followed by selection for
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Figure 1.

Perturbations in TSG pairs promote tumorigenesis in vivo. A, Schematic of combinatorial CRISPR screening in vivo. B, Cumulative distributions of dual
sgRNA abundance in the plasmid library and tumors. �, P < 0.05; Kolmogorov–Smirnov test. C, Percentage of dual sgRNAs with log2 RPM � 1 in the
PTEN�/�, PIK3CA, and MYC cell libraries and tumors. Data are presented as mean � SEM. Mean values were calculated from nine PTEN�/�, three PIK3CA,
and six MYC tumors. � , P < 0.01; one-sided Student t test. D, Relative percentage of DKO/SKO normalized counts in the PTEN�/�, PIK3CA, and MYC cell
libraries and tumors. � , P < 0.01; one-sided Student t test. E, Heatmap of Euclidean distances between all the cell and tumor samples (PTEN�/�). F, The
effect size (LFC) of DKOs and SKOs in the PTEN�/� context. A total of 71 oncogenic perturbations are highlighted in red. G, The top 10 tumor-promoting
DKOs and corresponding SKOs in the PTEN�/� context. The mean is plotted along with the 95% CI. H, Heatmap comparing the single-gene tumorigenic
effects in the PTEN�/�, PIK3CA, and MYC contexts. I, Scatter plot of average log2 RPM in the PTEN�/� tumors versus preinjected cell libraries. A total of
71 oncogenic perturbations shown in F are highlighted in red, and the top 6 ones are labeled. The linear regression line is shown (dashed). J, Scatter
plot and correlation analysis of the tumorigenic effects measured by quantile analysis versus average based regression (PTEN�/�).
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stable integration (Fig. 1A). All four library-transduced cell popula-
tions successfully integrated over 98% of the dual sgRNAs from the
plasmid library, with slight shifts in the cumulative distribution curves
of the relative abundance of dual sgRNAs (Supplementary Fig. S1A).
Dual sgRNAs containing sgRNA targeting TP53 were noticeably
enriched in the library-transduced cell populations compared with
the plasmid library, whereas other dual sgRNAs, such as those
targeting NF2, PTEN, SMAD4, or RB1, were not enrich-
ed (Supplementary Fig. S1B–S1D). However, this enrichment
was much lower than that reported for CRISPR screening in the
hTERT-immortalized epithelial cell line RPE1, which also retains a
wild-type TP53 gene, perhaps because the CDKN2A/B deletion damp-
ened the p53-mediated DNA damage response in MCF10A (24).

Perturbations in TSG pairs promote tumorigenesis in vivo
Cells from each of the four TSG library-transduced cell populations

were orthotopically injected into murine mammary pads (n ¼ 20).
At 6 to 8 weeks after injection, none of the library-transduced paren-
tal MCF10A cells had formed tumors, while each of the library-
transduced MCF10A derivatives had formed tumors. The cumulative
frequency curves of the dual sgRNAs in all tumors were remarkably
skewed compared with those of the plasmid library or with those
of the corresponding transduced cells (Fig. 1B; Supplementary
Fig. S1A). Only a small fraction of the dual sgRNAs were detected
in the tumors (5%–12%), while over 94% were detected in the cell
populations (Fig. 1C). Interestingly, we observed that normalized
counts of DKOs relative to SKOs increased substantially in tumors
compared with the preinjected cell populations. In the preinjection
cells, the ratio of DKO/SKO normalized counts was close to 1:1; in
contrast, DKO normalized counts comprised 89% to 97% of the total
in tumors (Fig. 1D). These results show that for this platform, per-
turbing a pair of TSGs promotes tumorigenesis much more strongly
than perturbation of single TSGs.

Determining the tumor-promoting strengthof TSGperturbation
pairs

We used hierarchical clustering to examine the similarities of the
dual sgRNAs present in preinjected cells and tumors. In the PTEN�/�

group, all nine tumors clustered closely together and separately from
the two duplicates of the preinjected cell populations, indicating
similar biological selection for the enriched sgRNAs in the tumor
replicates (Fig. 1E). Similar results were obtained for tumors obtained
from the two other MCF10A derivatives (Supplementary Fig. S2A and
S2B). We next employed two different methods to quantify the effect
size and statistical significance of perturbations on tumorigenicity at
the gene level. The first method used quantiles, specifically the 70th
quantile, tominimize the noise contributed by PCR jackpot effects and
the preponderance of zero counts, coupled with bootstrap procedures
to determine significance. Tumorigenic hits were identified as pertur-
bations that induced a significant positive log2 fold change (LFC) in the
relative quantile-based abundance between tumors and cells (Fig. 1F).
For all three MCF10A derivatives, between 56 and 71 of the DKOs
showed tumor-promoting ability, compared with only zero to three
SKOs (Supplementary Table S1). In the PTEN�/� group, the top 10
tumor-promoting effects were all from DKOs, and their effects were
notably larger than any SKOs (Fig. 1G). Moreover, the stronger
tumorigenic effects of these DKOswere selectively driven by particular
TSG partners. For instance, only a few of the 52NF2-TSGperturbation
pairs hadmuch higher tumor-promoting capability than theNF2 SKO,
while most of them displayed similar or even less tumorigenicity
(Supplementary Fig. S2C). In the other PIK3CA andMYC groups, the

top tumor-promoting effects also came from DKOs (Supplementary
Fig. S2D and S2E). Notably, some TSG perturbations capable of
promoting tumorigenesis were shared by different groups, but others
were distinct in the threeMCF10A derivatives. Perturbations targeting
NF2, BAP1, or SMAD4 were largely independent of the sensitizing
oncogenic alterations, whereas perturbations affecting CBFB were
found more often in the PTEN�/� tumors, whereas perturbations
affecting TP53 were predominant in the MYC tumors, and perturba-
tions affecting APC, ATM, and PTEN were found only in the PIK3CA
and MYC tumors (Fig. 1H).

For the second method of quantifying tumorigenic effect size, we
employed linear regressionmodeling of the average relative abundance
in tumors and cells. Tumor-promoting perturbations displayed pos-
itive residuals in the regression analysis, indicating their overrepre-
sentation in the tumors (Fig. 1I; Supplementary Fig. S2F and S2G).
Because there were strong correlations between the LFCs determined
by quantile analysis and the residuals computed from the linear
regression model, we have confidence in our determination of the
tumor-promoting ability of the different dual TSG knockouts (Fig. 1J;
Supplementary Fig. S2H and S2I).

Tumor-promoting TSGs form GI networks
We next determined which of the tumor-promoting dual TSG

alterations showed evidence of positive epistasis, such that the DKO
effect was significantly greater than the individual SKO effects (Sup-
plementary Fig. S3A–S3C).We computed theGI scores p of 1,325 TSG
pairs and graphed the tumor-promoting epistatic networks for all three
MCF10A derivatives (Fig. 2A–C). One of the most striking features of
these networks is the absence of any bipartite subgraphs (25), which
often correspond to between-pathway interactions—a common fea-
ture of the global synthetic lethal GI network in yeast (26) and the type
of interaction proposed to underlie PARP and BRCA synthetic
lethality (27). Instead, we observed numerous three-gene cliques, such
that all three genes within the clique show oncogenic cooperation
(positive epistasis) with each other. In the PIK3CA network, there was
a single four-gene clique, where ATM, PTEN, TP53, and NF2 each
displayed oncogenic cooperation with each other (Fig. 2B). This latter
type of network subgraph has been termed within-pathway interac-
tions and in the yeast global interaction network has been observed for
genes encoding members of the same complex, such as the spliceo-
some (26). For all three networks, the genes with the most interactions
or hubs interacted with each other (Fig. 2A–C), a network property
that is termed assortative and that is a property of social networks but
not a property of most described biological networks (25).

To further compare the three networks, we determined the degree
centrality score of each TSG node, which reflects the number of its
connections. The twomost central nodes were different for each of the
three networks: NF2 and CBFB were most central for the PTEN�/�

network; NF2 and PTEN were most central for the PIK3CA network;
and TP53 was by far the most central node in the MYC network, with
PTEN and NF2 approximately tied for the second most central node
(Fig. 2D). The absence of PTEN in the PTEN�/� network was because
its sgRNAs had no or little tumorigenicity in PTEN�/�MCF10A cells.
Moreover, we found that the edges or epistatic relationships among
TSGs also varied considerably. Only three of the total 39 interactions—
NF2-TP53,NF2-SMAD4, and BAP1-TP53—commonly occurred in all
three networks; 12 interactions were shared by only two of the net-
works and 24 were unique to specific networks (Fig. 2E). The most
common reason for the absence of TSG pairs in a particular network
was that they were nontumorigenic in that particular background
(�73% of the cases; Supplementary Table S1). For example, the two
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pairs APC-ROBO1 and APC-TP53 were only tumorigenic in the MYC
background, possibly because of the tight interaction ofMYC andWnt
signaling in breast cancer (28). In addition, it is likely that the reason
why TSG pairs containing ATM did not appear in the PTEN�/�

network is the synthetic lethality between ATM inhibition and PTEN

loss (29). This synthetic lethality is related to PTEN’s function in DNA
repair that is independent of Akt, which explains why ATM pairs are
present in the PIK3CA network. Another relatively common reason
for missing TSG pairs (�22% of the cases) was that although the TSG
pair was tumorigenic, there was not any positive epistasis between the

Figure 2.

Tumor-promoting TSGs form GI networks. A–C, Oncogenic GI networks in the PTEN�/�, PIK3CA, and MYC contexts, respectively. The top two central
nodes are highlighted in red. D, Comparison of degree centrality scores of TSG nodes in the three GI networks. Six nodes commonly shared in the three
networks are enclosed in the red dashed frame. E, Comparison of edges (interactions) in the three networks. Three common interactions are enclosed in
the red dashed frame. F, Validation of four oncogenic GIs in vivo. �� , P < 0.05; one-sided Student t test. G, CRISPR mutational profiles induced by sgNF2_2
and sgTP53_4 in the PTEN�/� tumors.
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pair. The tumorigenic effects were either additive or suppressive when
one TSG perturbation significantly inhibited the tumorigenicity of the
other—for example, BAX significantly inhibited NF2 in the PTEN�/�

background (Supplementary Table S1). Aminor technical point is that
in 5% of the cases, to have the PIK3CA network be of the same size as
the other two, we only included interactions with strong epistasis (the
full PIK3CA network including the weaker epistatic interactions is
included in Supplementary Table S1). Interestingly, the interactive
degree of the TSG nodes did not always fall in line with the size of their
tumor-promoting effects. For example, CBFB not only showed strong
tumor-promoting function but also cooperatedwithmany otherTSGs,
particularly in the PTEN�/� network, whereas TP53 acted as the
master central node in the MYC network, though its perturbation-
induced tumorigenicity was not as robust as that seen with NF2.

Functional validation of cooperative tumor-promoting dual TSG
perturbations

We next performed validation experiments to ensure that our
CRISPR/Cas9 GI screening platform was pinpointing bona fide coop-
erative TSGs. We chose four dual TSG perturbations (NF2-TP53,
CBFB-NF2, CBFB-TP53, and NF2-SMAD4) that were detected in the
MCF10A PTEN�/� derivative and at least one of the other two
derivatives. For each TSG pair, equal mixtures of DKO, SKO1, SKO2
and control MCF10A PTEN�/� cells were orthotopically injected into
mammary fat pads, and tumors formed 6 to 8 weeks after injection
were harvested to determine by deep sequencing their relative abun-
dance. All tumors displayed the similar histopathologic features of
invasive carcinoma (Supplementary Fig. S3D). For all four groups, the
abundance of DKOs in the resultant tumors were significantly greater
than their respective SKO counterparts and were in fact greater than
the additive effect of two SKOs, validating both their tumor-promoting
ability and the epistatic interactions (Fig. 2F). We also performed
validation experiments to ensure that our CRISPR/Cas9 GI screening
platform was creating the expected Cas9-mediated deletions. We
determined the sequence of the target regions in tumors formed in
the NF2-TP53 group. We found that the NF2 sgRNA (sgNF2_2)
induced mutations within the FERM-M domain of the NF2 gene in
approximately 80% of the tumor cells, consisting of 96% deletions, 1%
insertions, and 3% substitutions. We found that the TP53 sgRNA
(sgTP53_4) induced mutations within the DNA-binding domain of
TP53 in approximately 78% of the tumor cells, consisting of 97%
deletions, 2% insertions, and 1% substitutions (Fig. 2G).

Ascertaining in vitro growth-promoting GI networks
As stated in the Introduction, we wanted to address the biology

underlying TSG GIs by high-content phenotypic screening using
single-cell CRISPR-Cas9 knockouts integrated with scRNA-seq, so
that growth-based phenotypic effects could be analyzed in parallel with
transcriptome-wide effects. For this purpose, in vivo screening was
problematic, since only 5% to 12% of the TSG perturbation pairs were
detected in tumors (Fig. 1B) and we would not be able to profile
transcriptomes of the underrepresented nontumorigenic cells, which is
the cornerstone of our approach. Therefore, we tested different in vitro
culture growth conditions for their ability to represent the tumor-
promoting GIs we observed in vivo. To generate results that would not
be biased to any specific MCF10A derivative we used in vivo, we
employed the parental MCF10A cell line. Two important hallmarks of
cancer are sustaining proliferative signaling and evading anti-growth
signaling (30). To test for the ability to sustain proliferative signaling,
we assayed growth in medium deprived of multiple growth factors
(minimal medium). To test for the ability to evade antigrowth

signaling, we assayed growth in the presence of TGFb1 (5 ng/mL).
These two restrictive growth conditions were compared with growth
in standard full medium. Dual sgRNA representation was tracked
at six different time points, and two independent screenings were
performed for each condition. The cell trajectories over time revealed
that the growth dynamics of the approximately 36K cell lineages
expressing unique dual sgRNAs were noticeably different in the two
restrictive growth conditions: some cell lineages appeared to have
acquired strong growth advantages in contrast to the more even
trajectories in the full medium (Fig. 3A–C).

We determined the fitness “f ” of each dual sgRNA lineage by
fitting a linear model to its growth curve, and then used the average
sgRNA fitness to determine gene-level fitness. The gene-level fitness
values of the 1,378 perturbations, including SKOs, DKOs, and
nontargeting controls, ranged from �0.09 to 0.07 in full medium;
however, a much broader fitness range was detected in both
minimal medium (�0.18 to 0.22) and TGFb1 medium (�0.19 to
0.16; Fig. 3D). The gene-level fitnesses in replicate library screens
were highly correlated (Supplementary Fig. S4A). The top five
single-gene effects on growth promotion in full medium came
from deletions of PTEN, SMAD4, NF2, RB1, or TP53 (Fig. 3E;
Supplementary Fig. S4B). In minimal medium, the top five genes
were nearly identical to the full-medium genes, but their effects on
growth were more pronounced (Fig. 3E; Supplementary Fig. S4B).
CRISPR-mediated inactivation of SMAD4 was the only single-gene
effect that significantly increased fitness in the presence of TGFb1
(Fig. 3E; Supplementary Fig. S4B). In contrast to the strong enrich-
ment for DKOs seen in tumor formation, we did not observe
this for the in vitro conditions (Fig. 3F). We used unsupervised
clustering to examine the relationship between the 52 SKO effects
in the three in vitro conditions and three in vivo conditions.
Notably, we found that the single-gene effects in minimal medium
resembled the in vivo effects more than those of the other two
in vitro conditions (Fig. 3G).

Determining which in vitro growth-promoting networks
resemble in vivo tumor-promoting networks

We computed the GI scores p of 1,325 TSG pairs under the three
growth conditions. As was the case for gene-level fitness, the GI scores
in the two biological replicate library screens were highly correlated
demonstrating the reproducibility of our experimental and analytic
procedures (Supplementary Fig. S4C). We observed in total nine
growth-promoting GIs in full medium, in which TP53 acted as a
central node in the network, and nine GIs that cooperatively promoted
growth factor independence in minimal medium (Fig. 4A and B).
There were no significant epistatic interactions detected in the pres-
ence of TGFb1, likely because the single deletion of SMAD4 had
already conferred upon MCF10A cells the maximal ability to evade
TGFb1 growth suppression.

We compared the full and minimal medium in vitro growth-
promoting GI networks to the in vivo tumor-promoting GI networks
with respect to both nodes (single TSGs) and edges (interactions).
Most nodes in the growth factor–independent in vitro network
were also found in the tumor-promoting GI networks, ranging
from 5 of 8 to 7 of 7; in contrast, fewer nodes of the full medium
network were found in the in vivo networks (between 3 of 6 to
4 of 7; Fig. 4C). The difference between full and minimal medium
was even more pronounced when comparing edges. Between 4
to 6 of the nine growth factor–independent edges were also found
in the in vivo networks, compared with only one to four edges
of nine edges in the full medium network (Fig. 4C). The MYC
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tumor-promoting network showed less of a difference than the
other two networks in matching nodes and edges between the
control and minimal growth factor conditions, perhaps because
both PIK3CA and PTEN are more directly involved in growth factor
signaling. Overall, 83% of the TSG nodes and 67% of the edges of
the network in minimal medium were found in the in vivo networks,
while 55% of the TSG nodes and 27% of the edges in the standard
culture condition were detected in vivo (Fig. 4D). This GI analysis
further supports the conclusion that growth in minimal medium is
the best match for in vivo growth. The perturbation pairs of NF2-
TP53, PTEN-TP53, and NF2-PTEN were particularly effective at
promoting both growth factor independence and tumorigenicity.
We validated the synergy between dual inactivation of NF2 and
TP53 in conferring growth factor independence by comparing the
growth curves and the degree to which cells could reach confluence
in minimal medium (Fig. 4E and F). Dual deletion of NF2 and TP53

cooperatively reduced the percentage of cells in the G1-phase of the
cell cycle (Fig. 4G).

GI profiles segregate TSGs according to function
One of the most useful insights gained from genome-scale GI

analyses in yeast is that genes that had similar GI profiles (for a given
gene, the set of GI scores for every other gene) shared common cellular
functions, and that GI profile similarities provided a means to con-
struct a functional map of the cell (31). To explore the utility of GI
profiling of TSGs, we constructed profiles of the GIs of each TSG with
all other TSGs, and by correlation and clustering analysis, generated
heatmaps displaying relationships between the TSGs for each of the
three in vitro conditions (Fig. 4H; Supplementary Fig. S4D and S4E).
Notably, all three paralog pairs that are functionally similar (BRCA1
and BRCA2;RB1 andRBL2;ROBO1 and ROBO2) clustered together in
all three conditions with one informative exception. In two cases, the

Figure 3.

Growth-promoting effects of TSG perturbations in vitro. A–C, Representative trajectories of cell lineages expressing unique dual sgRNAs grown in full,
minimal, and TGFb1-supplementedmedia, respectively.D,Distribution of gene-level fitness of 1,378 perturbations in the three conditions. E, The top five single-gene
effects on fitness in the three conditions. Data are presented asmean� SEM. F,Relative percentage of DKO/SKO normalized counts in the three conditions. Data are
presented as mean � SEM. G, A heatmap that shows the comparison of growth-promoting effects in vitro and tumorigenic effects in vivo of SKOs.
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paralogs formed a two-gene clade, indicating the highest degree of
similarity (such asBRCA1 andBRCA2 inFig. 4H), in two cases a three-
gene clade, and another two cases a five-gene or eight-gene clade (RB1
andRBL2 andROBO1 andROBO2 inFig. 4H). The lone exceptionwas

found with TGFb1 medium, where BRCA1 and BRCA2 were
completely separated (Supplementary Fig. S4E). Unlike BRCA1,
BRCA2 binds to and enhances the transcriptional function of SMAD3,
so its loss of function would be expected to decrease the growth-

Figure 4.

Growth-promoting networks in minimal medium resemble in vivo tumor-promoting networks. A and B, Growth-promoting GI network in full and minimal
media. The top three central nodes are highlighted in red. C, Comparison of growth/tumor-promoting GI networks in vitro and in vivo, with respect to nodes
(left) and edges (right). D, Percentage of nodes and edges in vitro that were discovered in GI networks in vivo. Data are presented as mean � SEM. �, P < 0.05;
one-sided Student t test. ns, not significant. E–G, Growth curves, crystal-violet staining, and cell-cycle cytometric analysis of NF2-TP53 DKO, NF2-CTRL, or
TP53-CTRL SKO and control cells in minimal medium. Data are presented as mean � SEM in E. � , P < 0.1; �� , P < 0.05; one-sided Student t test. H, GI profiles of
52 TSGs in minimal medium.

Epistatic Networks of Driver Genes in Breast Cancer

AACRJournals.org Cancer Res; 81(24) December 15, 2021 6097



inhibitory signaling of TGFb1 (32). In TGFb1 medium, BRCA2 co-
clusters with NCOA3, a transcriptional coactivator that binds directly
to SMAD3 (33). These results demonstrate that GI profiling can
pinpoint functionally similar TSGs and that these relationships change
depending upon the physiologic context.

Interestingly, five of the six top nodes of the in vivo networks, PTEN,
NF2, TP53, SMAD4, and CBFB are tightly clustered within a six-gene
clade in minimal medium (Fig. 4H). With few exceptions, all five of
these TSGs cooperate with each other, indicating that these predom-
inant cooperating TSGs share overlapping function, rather than
distinct or complementary function.

Single-cell transcriptomic analysis provides insights into the
growth-promoting mechanisms underlying TSG perturbations

To address the biology underlying TSG GIs, we performed com-
binatorial CROP-seq, such that the single-cell transcriptomes of
thousands of cells with different dual and single TSG perturbations
could be assayed.We focused on 11 genes and their pairwise combina-
tions (55 DKOs), including six genes that were present in all or nearly
all of the growth-promoting and tumor-promoting networks (TP53,
NF2, SMAD4, PTEN,RB1,CBFB), three genes in only one or two of the
networks (CASP8, NF1, TBX3) and two negative controls (CDH1,
USP9X). We screened in the three different in vitro conditions: full
medium, TGFb1-supplementedmedium, andminimal medium (Sup-
plementary Fig. S5A).WeusedUniformManifoldApproximation and
Projection (UMAP) to project mean expression profile and identified
stable clusters of transcriptionally similar perturbations using the
Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) algorithm (Fig. 5A and B; Supplementary
Fig. S5B). Perturbations affecting SMAD4 formed a distinct cluster
in the presence of TGFb1 and showed an increased ability to grow in
the presence of TGFb1 and an increased number of differentially
expressed genes (DEG; Fig. 5A). Similarly, when cultured in minimal
medium, the transcriptomes of perturbations affectingNF2 and PTEN
formed two separate clusters that both showed increases in transcrip-
tional alterations and fitness (Fig. 5B). We observed that fitness
measurements were strongly correlated with the extent of transcrip-
tional changes in both restrictive conditions, but less so in full medium
(Fig. 5A and B; Supplementary Fig. S5B). Collectively, the close
relationship between fitness and transcriptional alterations suggests
that transcriptional changes can shed light on the mechanisms by
which single and dual TSG knockouts overcome growth restrictions.

Pathway analysis indicated that the major transcriptional
alterations induced by TGFb1 included the induction of epithelial–
mesenchymal transition and hypoxic response genes and the sup-
pression of genes involved in oxidative phosphorylation (Fig. 5C;
Supplementary Fig. S5C and S5D). These alterations appeared to be
either entirely or largely due to canonical TGFb1 pathway signaling, as
CRISPR-mediated SKO of SMAD4 counteracted all of these changes
(Fig. 5C). CRISPR-mediated SKO of NF2 reversed some of the
suppression of genes involved in oxidative phosphorylation, but was
otherwise ineffective, as were other SKOs (Fig. 5C). By examining all
expression changes induced by TGFb1, and the corresponding effects
of SMAD4 inactivation, we observed a remarkably complete reversal of
TGFb1-induced expression changes (Fig. 5D). These results substan-
tiated the sensitivity and reliability of our combinatorial CROP-seq
platform and analytical pipeline.

Pathway analysis showed that growth factor withdrawal resulted in
downregulation of genes involved in mTOR signaling, glycolysis,
oxidative phosphorylation, adipogenesis, fatty acid metabolism, and
Myc signaling, as well as upregulation of inflammatory genes and the

cell-cycle inhibitor CDKN1A (Fig. 5E; Supplementary Fig. S5E and
S5F). The SKOs that conferred significant growth factor independence
displayed variable ability to reverse the gene expression changes caused
by growth factor withdrawal (Fig. 5E). The NF2 SKO showed the
greatest increase in fitness inminimalmedium and also had the biggest
effect in reversing expression changes caused by growth factor with-
drawal, followed by PTEN SKO, which was especially effective at
reversing changes affecting oxidative phosphorylation (Fig. 5E and F).
Interestingly, the endoplasmic reticulum stress response gene NUPR1
was upregulated by growth factor removal, but downregulated by all
five SKOs that increased fitness, suggesting that relieving growth factor
deprivation-induced stress is a prerequisite to increasing fitness
(Fig. 5E). Nevertheless, the ability of SKOs to reverse the expression
changes caused by growth factor deprivation was not as comprehen-
sive as that seen in TGFb1 medium with the SMAD4 SKO.

Notably, the double deletions ofNF2-PTEN,NF2-TP53, and PTEN-
TP53 induced stronger reversal of the downregulation of genes caused
by growth factor withdrawal when compared with SKOs (Fig. 5G;
Supplementary Table S1). These threeDKOs also induced significantly
higher expression of E2F targets and G2–M checkpoints than their
SKO counterparts (Fig. 5H). Compared with the simpler growth
barrier induced by a single factor (TGFb1), the more complex barrier
created by deprivation of multiple growth factors was better counter-
acted by two driver gene alterations.

Transcriptional GIs correlate with fitness GIs
Because several tumor-promoting DKOs showed positive epistatic

effects on tumor growth as well as growth in minimal medium, we
wanted to investigate whether DKOs also had epistatic effects on
transcription. Toward this end, we determined for each expressed gene
the transcriptional deviations (TD) of the DKOs from their corre-
sponding SKOs using a linear regression model developed by the
Weissman group (Fig. 6A; ref. 16). For some DKOs like CDH1-TP53,
there was little divergence of the observed expression changes from the
changes predicted by a linear fit of the two SKOs, whereas for other
DKOs, such as NF2-TP53, there was noticeable divergence (Fig. 6B).
We calculated a summary statistic of the TDs for each DKO, which we
termed the transcriptional interaction (TI) score. We observed that TI
magnitudes were significantly correlated with fitness GI scores for the
DKOs cultured in minimal medium (Fig. 6C) and to some extent for
TGFb1-containing medium (Supplementary Fig. S6A). In contrast,
there was not a significant correlation between the GI and TI scores of
DKOs cultured in full medium (Supplementary Fig. S6A).

To probe deeper into the biology underlying these epistatic inter-
actions, we further examined three DKO perturbations (NF2-PTEN,
NF2-TP53, and PTEN-TP53), which showed significant growth-
promoting genetic and transcriptional interactions in minimal medi-
um (Fig. 6C). We classified upregulated genes (LFC > 0.03) into three
categories: additive, showing little or no transcriptional deviations
from the linear fit (�0.05 < TDs < 0.05); synergistic, with positive
TD scores (TDs � 0.05); and buffering, with negative TD scores
(TDs ≤ �0.05; Fig. 6D). The percentage of upregulated genes that
fell into these three categories were largely similar for the three DKOs:
41% to 50% for synergistic, 3% to 5% for buffering, and 45% to 54% for
additive (Fig. 6E). Although most of these upregulated genes were
unique to each of the DKOs, there were a number of shared upregu-
lated genes, including 148 synergistic and 74 additive genes commonly
shared between all three DKOs (Fig. 6F; Supplementary Fig. S6B).
Overall, we observed 3- to 4-fold less downregulated genes (LFC <
0.03) thanupregulated genes,with themajority (62%–66%)being addi-
tive (�0.05 < TDs < 0.05), 21% to 32% synergistic (TDs � �0.05),
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Figure 5.

Single-cell transcriptional analysis reveals growth-promoting mechanisms underlying TSG perturbations. A and B, Relationship between transcriptional states and
fitness in TGFb1 andminimalmedium, respectively. First column, UMAPprojection ofmean expression profiles for all the perturbationswhere transcriptionally similar
clusters are highlighted in an identical color; second column, number of significant DEGs induced by each perturbation; third column, fitness measurements of each
unique perturbation; and fourth column, correlation between fitness and number of significant DEGs. C, Representative DEGs in different biological pathways
induced by TGFb1 and recovered by the 11 SKO dual sgRNAs. EMT, epithelial–mesenchymal transition.D, Scatter plot of TGFb1-induced LFCs and LFCs recovered by
sgSMAD4. Genes with LFCs > 0.1 are highlighted in blue. E, DEGs in different biological pathways induced by growth factor (GF) deprivation and recovered by
the 11 SKO and 3 DKO dual sgRNAs. DN, down. F, Scatter plots of growth factor withdrawal–induced LFCs and LFCs recovered by sgNF2 and sgPTEN. Genes with
LFCs > 0.1 are highlighted in blue. G and H, Comparison of gene expression pathways involved in growth factor independence and cell cycle induced by sgNF2,
sgPTEN, and sgTP53 and their dual combinations. Data are presented as mean � SEM. � , P < 0.05; one-sided Student t test.
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and 4% to 13% buffering (TDs � 0.05; Fig. 6E). Most of the down-
regulated genes were unique to each of the DKOs; however, there were
nine commonly shared synergistic and 28 commonly shared additive
genes (Fig. 6G; Supplementary Fig. S6B).

The result that oncogenic GIs were associated with epistatic
transcriptional alterations led us to hypothesize that epistatic tran-
scriptional alterations induced stronger oncogenic as well as weaker
tumor-suppressive functions, underpinning the phenotypic

Figure 6.

Epistatic transcriptional interactions correlate with fitness GIs. A, Schemata of the quantitative model used to measure TDs. B, TDs of DKO examples—NF2-PTEN,
NF2-TP53, PTEN-TP53, CDH1-TP53, CDH1-RB1, and CBFB-CDH1—in minimal medium. C, Correlation of TI scores and fitness GI scores in minimal medium.
D, Categorization of DEGs based on their TDs. E, Percentages of synergistic, additive, and buffering genes of upregulated DEGs (top) and down-
regulated DEGs (bottom) for NF2-PTEN, NF2-TP53, and PTEN-TP53 DKOs. F, Number of upregulated synergistic DEGs in NF2-PTEN, NF2-TP53, and
PTEN-TP53 DKOs. G, Number of downregulated synergistic DEGs in NF2-PTEN, NF2-TP53, and PTEN-TP53 DKOs. H, Gene ontology term enrichment analysis
of the 148 common upregulated synergistic genes. I, Expression of the enriched protein classes in NF2-PTEN, NF2-TP53, and PTEN-TP53 DKOs and their
SKO counterparts. � , P < 0.1; �� , P < 0.05; one-sided Student t test. J, Expression of the nine common downregulated synergistic genes in NF2-PTEN,
NF2-TP53, and PTEN-TP53 DKOs and their SKO counterparts. � , P < 0.1; �� , P < 0.05; one-sided Student t test.
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cooperation of two TSGs in promoting both growth in minimal
growth factor medium and tumor progression. To test this hypoth-
esis, we performed gene set enrichment analysis. We found that the
148 commonly upregulated synergistic genes were enriched in
multiple protein classes including RNA splicing factors, transla-
tional and cytoskeletal proteins (Fig. 6H). Their comparative
expression in the three SKOs versus three DKOs clearly shows
their synergistic upregulation (Fig. 6I). Splicing factors play a key
role in mammary cell transformation and breast cancer metasta-
sis (34), as do proteins in the other enriched categories (35–37).
The 74 common additive genes showed enrichment only for
translational proteins but to a much lesser degree of significance
(FDR ¼ 3.6e-02). The nine commonly shared downregulated
synergistic genes included TP53TG1 and MALAT1, which have
been reported to suppress breast cancer progression and metas-
tasis (38, 39) and were synergistically downregulated in all three
DKOs (Fig. 6J).

Transcriptional synergies caused by dual inactivation of
cooperating TSGs in our model system are also observed in
patient tumors

To determine whether the synergistic expression alterations we
observed for the three DKOs in our experimental system could be
observed in human breast cancer, we examined the METABRIC
human breast cancer genomic dataset that integrates RNA expres-
sion, mutational status, and copy-number status (40, 41). Tumors
were categorized as being altered for TP53 and PTEN based on their
mutational and copy-number status. Because NF2 mutations or
homozygous deletions are rare in breast cancer, and because NF2
belongs to the Hippo pathway, we instead used the much more
common genetic alterations of the Hippo pathway in human breast
cancer—amplification status of the interacting transcriptional activa-
tors YAP1 and TAZ (WWTR1) for the categorization of NF2 alter-
ation (42). To examine whether the oncogenic alterations of PTEN,
TP53, and YAP1/TAZ show signs of cooperation in human cancer
data, we performed co-occurrence/mutual exclusivity analysis using
cBioPortal (43). This analysis indicated that these oncogenic altera-
tions had a strong tendency to co-occur (Supplementary Table S1).

The average expression level of the 148 common synergistically
upregulated genes was significantly higher in tumors with dual
alterations than in tumors with single alterations (Fig. 7A–C). As
further evidence of relevance to human breast cancer, the expres-
sion of the 148 common synergistically upregulated genes, but not
the 74 common additively upregulated genes, was associated with
poorer relapse-free survival in patients with breast cancer (Fig. 7D).
In parallel, the average expression of the nine commonly shared
synergistically downregulated DEGs was lower in tumors with
dual alterations than in tumors with single alterations (Supplemen-
tary Fig. S6C) and was also associated with poorer relapse-free
survival in patients with breast cancer, and as before, this associa-
tion was not seen with the 28 common additive downregulated
genes (Fig. 7E). These results demonstrate that the epistatic expres-
sion effects observed in our experimental system reflect the tran-
scriptional synergies induced by epistatic interactions of driver gene
alterations in human breast cancer.

Transcriptional epistasis is associated with specific
transcription factors

We hypothesized that the established primary transcription
factors (TF) of each of the three pathways—p53, FOXO1, and
YAP—would play a role in mediating the epistatic expression

alterations we observed. To test this, we counted how many epi-
static expressed genes were direct transcriptional targets of these
major individual TFs by querying the ChIP-Atlas database (44).
For the downregulated genes, there was selective enrichment of
p53 targets among the 20 synergistically downregulated genes
shared between PTEN-TP53 and NF2-TP53 DKOs (TP53-specific
DKOs) and also selective enrichment of FOXO1 targets among
the 17 synergistically downregulated genes in the PTEN-specific
DKOs (Fig. 7F; Supplementary Fig. S6D and S6E). Although YAP
is generally considered to be a transcriptional activator, it has been
shown to also be a transcriptional repressor at roughly equal fre-
quency (45), and we found over 4-fold enrichment of YAP targets
for the synergistically downregulated genes in the NF2-specific
DKOs (Fig. 7F; Supplementary Fig. S6F).

Unlike FOXO1 or YAP, which can act as either activators or
repressors, p53 does not act as a direct transcriptional repressor.
Instead, the genes that are repressed by p53 function, including
many cell-cycle genes, are mediated by promoter binding of the
transcriptional repressor complex DREAM (DP, RB-like, E2F4,
and MuvB; refs. 46, 47). Accordingly, we tested whether the genes
synergistically upregulated in the TP53-specific pair of DKOs were
selectively enriched for genes that are targets of the DREAM com-
plex and found that they were more than 2-fold enriched (Fig. 7G;
Supplementary Fig. S6D). Although FOXO1 is generally consider-
ed to be a transcriptional activator, it has been shown to also be a
transcriptional repressor when bound to the SIN3A corepressor
factor (48), and FOXO1 targets were enriched in the genes syner-
gistically upregulated in the PTEN-specific pair of DKOs (Fig. 7G;
Supplementary Fig. S6E). In addition, YAP targets were enriched
in the genes synergistically upregulated in the NF2-specific pair of
DKOs (Fig. 7G; Supplementary Fig. S6F).

TP53 cooperated with NF2 and/or PTEN to synergistically
regulate expression of therapeutic drug target genes

Intriguingly, expression of genes encoding multiple drug tar-
gets were synergistically regulated by DKOs. For instance, CDK4,
a potent drug target in estrogen receptor–positive, Her2-negative
(ERþ/HER2�) breast cancer and DNMT1, a drug target in triple-
negative breast cancer were synergistically increased in the two
TP53-specific DKOs (Fig. 7H; Supplementary Fig. S6G). Expression
of CDK4 or DNMT1 was also higher in patients with breast cancer
with mutant TP53 in combination with alterations affecting the
PTEN or Hippo pathways, such that patients with both alterations
had higher expression than patients with single alterations (Fig. 7I;
Supplementary Fig. S6H; Supplementary Table S1). Expression of
SRPK1, another potential breast cancer drug target, was synergis-
tically upregulated in NF2-TP53 DKO (Supplementary Fig. S6I) as
well as patients with breast cancer with dual alterations in TP53 and
Hippo pathways (Supplementary Fig. S6J; Supplementary Table S1).
In addition, according to previous studies and the ChIP-Atlas
database (44), the CDK4 promoter contains binding sites for the
DREAM complex, E2F1, FOXO1, and YAP in human cells (46, 49).
Thus, we propose mechanistic models for the transcriptional syn-
ergy of CDK4 expression induced by NF2-TP53 and PTEN-TP53
DKOs (Fig. 7J). Dual deletion of TP53 and NF2 induces dissociation
of the DREAM repressor from E2F-binding sites and recruits free
activating E2F1–3 and YAP to the CDK4 promoter, cooperatively
activating its transcription. Similarly, simultaneous loss of PTEN
and TP53 causes the repressive TFs FOXO1/SIN3A and DREAM
complex to be replaced with the transcriptional activator E2F1 on
the CDK4 promoter, synergistically boosting its expression. These
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Figure 7.

Transcriptional synergies in patients with breast cancer. A–C, Average expression of the 148 common upregulated synergistic DEGs and 74 common
upregulated additive DEGs in human tumors with the indicated dual and single genetic alterations. �� , P < 0.05; one-sided Student t test. ns, not significant.
D, Relapse-free survival (RFS) of patients with breast cancer with differential expression of 148 common upregulated synergistic and 74 common upregulated
additive genes. E, RFS of patients with breast cancer with differential expression of 9 common downregulated synergistic and 28 common downregulated
additive genes. F, Enrichment of targets of TFs (p53 activator, FOXO1 activator, and YAP repressor) in the TP53-specific, PTEN-specific, and NF2-specific

downregulated synergies. � , P < 0.1; �� , P < 0.01; x2 test. G, Enrichment of targets of TFs (DREAM complex, FOXO1 repressor, and YAP activator) in the

TP53-specific, PTEN-specific, and NF2-specific upregulated synergies. �� , P < 0.01; x2 test. H and I, Synergistic expression of CDK4 in TP53-deleted DKO
cells and TP53-mutated patients with double-mutant breast cancer. � , P < 0.1; �� , P < 0.05; one-sided Student t test. J, Proposed mechanistic models
for transcriptional synergy of CDK4 induced in TP53-deleted DKOs—NF2-TP53 and PTEN-TP53.
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results suggest that oncogenic cooperation between TSGs can be
mediated by corresponding TF interactions.

Discussion
The goal of our study was to identify general mechanisms of driver

gene cooperation by systematically analyzing how combinations of
inactivated TSGs altered the tumorigenic growth characteristics and
transcriptomes of breast epithelial cells. Our experimental approach
combined combinatorial CRISPR screening for in vivo and in vitro
growth phenotypes with parallel profiling for transcriptional altera-
tions using scRNA-seq. We found that the driver gene combinations
that cooperatively promoted tumorigenicity were those that showed
transcriptional epistasis—that is, hundreds of genes that were differ-
entially expressed in a way that could not be predicted by the additive
combination of the effects of the individual driver genes. The same
patterns of epistatic expression changes were observed in patients with
breast cancer, establishing that these cooperative transcriptional inter-
actions do occur in patients and were not just an anomaly of our
experimental system. Our results indicate that approximately 50% of
DEGs in cancer cells are influenced by transcriptional epistasis. On the
basis of gene set enrichment analysis and association with poor
prognosis, transcriptional epistasis is a functionally important medi-
ator of oncogenesis. Together, these results argue that transcriptional
epistasis is a central aspect of multigenic cancer progression and a
general mechanism for how driver genes cooperate to promote
tumorigenicity. In addition, we found shared epistatic transcriptional
changes that are independent of specific driver genes, affecting alter-
native splicing, cytoskeletal assembly, and protein translation—
processes that are commonly altered in cancer (37, 50, 51). This result
suggests that shared epistatic transcriptional alterations may underlie
the ability of diverse configurations of driver gene alterations to
converge upon common cancer phenotypes.

Our results also suggest that cooperation between driver genes
involves some degree of functional relatedness. GI profiling indicated
shared function(s) between the five genes with the most tumor-
promoting interactions (PTEN, NF2, TP53, SMAD4, and CBFB). In
addition, tumor-promoting epistatic networks contained numerous
three-gene cliques, such that all three genes showed oncogenic coop-
eration with each other, as in the “within-pathway” groups of genes
found in the yeast global GI network (26, 52). These results appear to
conflict with earlier proposed mechanisms of oncogenic cooperation
that posited separate functions rather than functional relatedness. The
mechanism of distinct complementary function was based on the
observation that oncogenes that cooperated to transform primary
rodent fibroblasts either complemented mutant HRAS or comple-
mented overexpressed MYC, but never both (53). However, this
functional distinction was later blurred by the experiments showing
that overexpression of BMI1 or homozygous deletion of CDKN2A
could cooperate with both mutant HRAS and MYC in transforming
primary rodent fibroblasts (54, 55). Similarly, the oncogene comple-
mentation groups initially identified by retroviral tagging were called
into question by the discovery that overexpression of RUNX2 coop-
erated with all of the groups (56). Another earlier idea at odds with our
results was the notion that alterations in driver genes within the same
functional pathway rarely, if ever, occurred; however, as more cancer
genomes have been sequenced, co-occurrences of driver gene altera-
tions within the same functional pathway have become more the rule
rather than the exception. For example, PIK3CA or PIK3R1 aberra-
tions frequently co-occur with PTEN mutations in breast cancer,
consistent with our finding that inactivation of PTEN is a powerful

driver in MCF10A cells overexpressing mutant PIK3CA (41). Apart
from RB1 mutations, other alterations in the RB1 pathway, such as
amplification of CCND1 or CDK4 amplification or CDKN2A deletion
can frequently co-occur (57). Finally, driver genes that have been
studied extensively, such asTP53 andKRAS, are highly pleiotropic and
are involved in most of the hallmarks of cancer, including metabolism,
apoptosis, invasion, and the tumor microenvironment (58–60). Given
such extensive pleiotropy, it is not surprising that there is some degree
of functional overlap between many driver genes.

We found that tumor suppressor GI networks have properties that
are different than those observed in most molecular interaction net-
works (e.g., protein–protein interaction or synthetic lethal interaction
networks). In these latter networks, highly connected nodes (hubs)
tend to link to nodes with fewer interaction partners rather than to
other hubs, and this has been proposed to enhance the robustness of
the network by localizing the effects of deleterious perturbations (61).
In contrast, the hubs of TSG networks tend to link to other hubs, a
network property termed assortative, and assortative networks (which
include social networks) show superior resilience to the removal of
nodes (62).Wepropose that during the evolution ofTSGnetworks that
an assortative network structure provided optimal protection from
mutations of one, two, or even multiple TSGs.

Therewas a striking difference between the dramatic enrichment for
double TSG knockouts relative to single knockouts during tumor
formation, compared with the lack of any corresponding enrichment
in the in vitro conditions. We believe that in vivo tumor formation is a
more complex phenotype than restrictive growth in culture. Others
have found that by imaging with luciferin that when luciferase-tagged,
weakly oncogenic derivatives of MCF10A cells are injected into mice
that there is a loss in the luciferin signal over the first week, which likely
results from cell death (63). Unlike cells in tissue culture, the cells
in vivo are in hypoxic conditions, have less nutrients (e.g., glucose), and
lack the cell–cell and substrate contact found in culture. Our data
indicate that double TSG knockouts are superior to single TSG
knockouts for inducing this complex phenotype. While minimal
growth factor medium reflects the in vivo effects better than any other
in vitro condition tested, it does not provide a complete explanation.

One of the limitations of our current study is that injection of a
single-cell suspension into the mammary gland is not how breast
cancer normally develops. Future work using different models that
select for tumor progression in a more physiological relevant tissue
context will be needed. However, it is clear from our results that GI
fitness networks determined using standard cell culture conditions
are not representative of GIs in vivo, and that using the restrictive
condition of growth factor deprivation generates results that are
significantly more representative of in vivo networks. An additional
limitation is that we compared networks from different cell culture
conditions using the original MCF10A cell line, whereas the in vivo
networks were generated out of necessity with MCF10A derivatives
containing an additional oncogenic alteration. How these additional
oncogenic alterations would have influenced the in vitro results
will need to be addressed in the future. Another limitation of our
study is that we did not determine a detailed molecular mechanism
of how specific transcriptional epistasis occurs. We showed that
for some genes, transcriptional epistasis can be linked to the pro-
moters binding the primary transcription factors that mediate
driver gene function, but more detailed work needs to be done
regarding molecular mechanism(s).

One of the important outcomes of our study is that it demonstrates
that driver gene interactions in any cancer can be systematically
mapped using combinatorial CRISPR screening of tumor growth or
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other physiologically relevant growth effects in parallel with tran-
scriptome-wide changes (14–16). While it is possible to find epistatic
expression changes without screening, we believe it is important that
future work be systematic. Three groups have previously published on
genes differentially expressed as a result of alterations in bothTP53 and
KRAS, and although these reports describe interesting cancer biology
associated with these expression changes, they were not systematic
analyses comparing several paired alterations, and their relevance to
understanding driver gene cooperation and multigenic tumor pro-
gression was limited (64–66). It should be noted that one of these
groups went on to show synergistic transcriptional alterations induced
by the cooperating genetic alterations BCR-ABL and NUP98-HOXA9
in leukemia, suggesting that the synergy they observed with TP53 and
KRAS may be a more general phenomena of oncogenic coopera-
tion (67). Their work and our work here suggest that new cancer drug
targets might be identified from systematic analyses of transcriptional
epistasis caused by driver gene interactions. One of the genes that we
found synergistically upregulated in breast cancer cells by the com-
bination of alterations in TP53 and other TSGs was CDK4, which
encodes the target of FDA-approved drugs used to treat metastatic
ERþ/HER2� breast cancer. However, we have no data at this time to
indicate whether TP53 status would serve as useful biomarker for
CDK4 inhibitors. We acknowledge that our work is only the first step
in opening this field and understand that clinical applications are a
long way off. In the near term, it will be important to rigorously test the
functional impact and druggability of synergistically altered genes to
determine whether they could be useful targets for inhibiting
tumorigenicity.
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