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Abstract

The extensive acquisition of high-throughput molecular profiling data across model systems 

(human tumors and cancer cell lines) and drug sensitivity data, makes precision oncology possible 

– allowing clinicians to match the right drug to the right patient. Current supervised models for 

drug sensitivity prediction, often use cell lines as exemplars of patient tumors and for model 

training. However, these models are limited in their ability to accurately predict drug sensitivity of 

individual cancer patients to a large set of drugs, given the paucity of patient drug sensitivity data 

used for testing and high variability across different drugs. To address these challenges, we 

developed a multilayer network-based approach to impute individual patients’ responses to a large 

set of drugs. This approach considers the triplet of patients, cell lines and drugs as one inter-

connected holistic system. We first use the omics profiles to construct a patient-cell line network 

and determine best matching cell lines for patient tumors based on robust measures of network 

similarity. Subsequently, these results are used to impute the “missing link” between each 

individual patient and each drug, called Personalized Imputed Drug Sensitivity Score (PIDS-

Score), which can be construed as a measure of the therapeutic potential of a drug or therapy. We 

applied our method to two subtypes of lung cancer patients, matched these patients with cancer 

cell lines derived from 19 tissue types based on their functional proteomics profiles, and computed 

their PIDS-Scores to 251 drugs and experimental compounds. We identified the best representative 

cell lines that conserve lung cancer biology and molecular targets. The PIDS-Score based top 

sensitive drugs for the entire patient cohort as well as individual patients are highly related to lung 

cancer in terms of their targets, and their PIDS-Scores are significantly associated with patient 

clinical outcomes. These findings provide evidence that our method is useful to narrow the scope 

of possible effective patient-drug matchings for implementing evidence-based personalized 

medicine strategies.
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1. Introduction

Owing to the inherent tumor complexity and molecular heterogeneity, the main goal of 

precision oncology (or targeted cancer therapy) is to treat a patient by selectively inhibiting 

molecular (e.g., gene and protein) alterations that contribute to cancer development and 

progression.1 Recent advances in high-throughput multi-omic technologies (e.g. genomics, 

transcriptomics, proteomics and metabolomics) have accelerated the implementation of 

precision medicine-based strategies.2 Large-scale investigations of molecular, mutational 

and oncogenic landscapes across human cancers, such as The Cancer Genome Atlas 

(TCGA)3 and International Cancer Genome Consortium (ICGC)4 have provided extensive 

molecular characterization of thousands of cancer and normal samples spanning >30 cancer 

types. These datasets have a rich catalogue of molecular alterations that provide an 

opportunity to quantify and assess drug responses in patients within and across tumor types. 

On the other hand, since the clinical datasets of patient drug responses are time-consuming 

to generate, expensive and limited in the scope of drugs that can be tested on patients, these 

datasets are still relatively small and present challenges to be used as reliable training data 

for drug sensitivity prediction models.5 As an alternative, researchers have sought to match 

patients to effective drug therapies by generating large pharmacogenomics databases from 

tumor-derived cell lines, such as Cancer Cell Line Encyclopedia (CCLE)6 and Genomics of 

Drug Sensitivity in Cancer (GDSC)7, based on the premise that cell lines can serve as 

suitable in-vitro models to understand the therapeutic responses of patient tumors to drugs.8

Recently a few studies have used molecular profiles of cancer cell lines to fit supervised 

machine learning models and predict drug responses in patients.9–10 However, since the drug 

sensitivity data used for testing are available for only a few drugs and the model 

performance has high variability across different drugs, these models are limited in their 

ability to accurately predict the drug sensitivity of individual cancer patients over a large set 

of drugs. In addition, it would be time-consuming and costly to conduct preclinical (or 

experimental) tests to validate all possible patient-drug combinations. These challenges 

underscore the urgent need for developing reliable in-silico methods to examine or re-

evaluate the drug responses of individual cancer patients to a large set of drugs, in order to 

narrow down the number of optimal therapies for implementing evidence-based personalized 

medicine strategies.

To address the above challenges, we developed a multilayer network-based approach to 

impute individual patients’ responses to a large set of drugs, by considering the triplet of 

patients, cell lines and drugs as one inter-connected holistic system. In the conceptual 

scheme shown in Figure 1(a), cell lines serve as an intermediary layer to assess sensitivities 

of drugs (bottom layer) in their highly matching patients (top layer). The analysis consists of 

two main steps as shown in Figure 1(b), which is a novel conflation of two network 

modeling strategies. First, patients and cell lines are matched based on a multiscale 

Liu et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



community detection algorithm11, which investigates topological structures of the patient-

cell line network at multiple scales. This allows for a more efficient assimilation of network-

connectivity information to obtain matching scores, which we call adjusted co-clustering 

scores, between patient tumors and cell lines. In the second step, a locally linear weighted 

model is used to impute the “missing link” between each individual patient and each drug, 

called Personalized Imputed Drug Sensitivity Score (PIDS-Score). This score can be 

construed as a measure of the therapeutic potential of a drug or therapy. To compute the 

PIDS-Score of a patient to a specific drug, all cell lines are used; cell lines that have higher 

matching scores with the given patient hold more weight during imputation. The weights of 

cell lines are determined by a flexible weight function, which is modulated by a rate 

parameter optimized for prediction.

We applied our method on 687 lung cancer patients from two subtypes of lung cancer (lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)), 648 cell lines derived 

from 19 different types of cancer, and 251 drugs and experimental compounds. Matching 

patients and cell lines can be based on any type of multi-omic data. As a proof-of-concept, 

we here used the Reverse Phase Protein Arrays (RPPA)-based functional proteomic data 

taken from The Cancer Proteome Atlas (TCPA)12–13 and MD Anderson Cancer Cell Lines 

Project (MCLP)14, which characterize proteins that are clinically actionable and druggable.
15 We computed PIDS-Scores of 687 patients to all drugs. We identified the top 

proteomically matched cell lines and top sensitive drugs (based on their PIDS-Scores) for 

the entire patient cohort as well as individual patients. These identified cell lines were 

mainly derived from lung cancer, and the top ranked drugs were indeed highly related with 

the lung cancer treatment in clinics, confirming the clinical relevance of PIDS-scores. 

Finally, we conducted an exploratory validation by associating our PIDS-Scores with patient 

clinical outcomes and found significant associations between them.

2. Methods

2.1. Matching Patient Tumors with Cell Lines

In this section, we detail the steps of our analytical framework presented in Figure 2. We 

start with a brief overview of spectral graph wavelets. Then, we describe the algorithm of 

wavelet-based multiscale community detection, and matching patient tumors with cell lines 

based on the network-based communities. As Figure 2(a–c) shows, the omics profiles of 

patient tumors and cell lines (input data) are pre-processed and batch-corrected before 

calculating the correlations, and more details of data preprocessing and integration are 

deferred until Section 3.1.

2.1.1. Spectral Graph Wavelets Defined in Graph Fourier Space—Let G = (V, 

E, A) be an undirected, complete weighted graph with node set V = {P1, …, Pn, C1, …, Cm} 

(N = n + m), edge set E and weighted adjacency matrix A, where P1, …, Pn represents n 
patient tumors and C1, …, Cm represents m cell lines. To aid exposition, the indices used for 

P1, …, Pn, C1, …, Cm are 1,2, …, N respectively. In this paper, we used distance 
correlation16 as a measure of weight (the entry of A) between any pair of patients and cell 

lines based on their omics profile (Fig. 2(d)). Unlike the Pearson correlation in which 
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uncorrelatedness does not imply independence, a zero distance correlation implies that two 

random vectors are independent, and this property enables it to explain both linear and 

nonlinear relationships between random vectors. Additionally, distance correlation returns a 

bounded metric between 0 and 1. Then, the graph Laplacian matrix is defined as L = D − A, 

where D is the diagonal degree matrix with Dii = Σj≠i Aij measuring the connectivity of a 

certain node, and a normalized version of L can be constructed by taking D−1/2LD−1/2 with 

its eigenvalues bounded by 0 = λ1 ≤ λ2 ≤ ··· ≤ λN ≤ 2 and corresponding eigenvectors 

denoted by χ1, χ2 … χN.17 In graph Fourier space, λi is considered as the frequency at 

node i, and χ = (χ1 χ2 …|χN) represents the matrix of graph Fourier modes, both of which 

are used to leverage the multiscale information based on spectral graph wavelets.

Spectral graph wavelets were first proposed by Hammond et al.18, and Tremblay et al.11 

further developed the theory and computational algorithms, which we briefly overview here. 

Let Ψs = (ψs, 1 ψs, 2 … ψs, N ) = χGsχT  be the wavelet basis at scale s, where (ψs, a)a = 1, 2, …N
represents the wavelet at scale s centered around node a or the feature vector for node a at 

scale s, and Gs = diag(g(sλ1), …, g(sλN)) represents the filer based on a band-pass filter kernel 

g (·) and s from the scale set S = {s1, s2, …, sM} with scales’ total number M (M = 100 in 

this paper). In our analysis, we adapted the algorithm used by Tremblay et al. to determine 

the function g(·) as well as the scale set S = {s1, s2, …, sM}, and more details about the 

estimation can be found in their paper11.

2.1.2. Multiscale Community Detection—Unlike spectral clustering, which only uses 

first k eigenvectors of L to construct k clusters at one scale, multiscale community detection 

uses different filtered information from all eigenvalues and eigenvectors of L at different 

scales based on spectral graph wavelets. At large scales, the wavelets or the node feature 

vectors correspond to a coarser description of the global connectivity; more connected 

components and large size communities will always be detected. Conversely, at small scales 

we expect small size communities, hence exploring a more nuanced local connectivity. 

Given a large network, Ψs computed from Section 2.1.1 is always computationally 

inefficient due to its high-dimensionality. Hence, we used the fast community detection 

procedure to obtain the set of partitions P = {Ps}s ∈ S across all scales, where Ps represents 

the clustering result at scale s. The fast community detection algorithm, which needs to be 

repeated for all scales, has three steps:11

1. At a given scale, generate a matrix of φ (relatively smaller than N) Gaussian 

random vectors r with zero mean and variance σ2 = 1:R = (r1 r2 …|rφ) ∈ ℝN × φ .

Compute the dimension-reduced feature vector fs, i
⊤ = ψs, i⊤ R for node i ∈ V.

2. Estimate the distance matrix Ds = (Da, b
s )a, b = 1, …, N with Da, b

s  calculated by:

Da, b
s ≈ 1 − (fs, a − fs, a)⊤(fs, b − fs, b)

|ss, a − fs, a | 2 |fs, b − fs, b | 2
(1)

where the constant vector fs, a is equal to the average of fs,a.
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3. Perform hierarchical clustering on DS using a graph-cutting strategy, and obtain 

the set of partitions P = {Ps}s ∈ S across all scales.

2.1.3. Co-clustering Scores and Their Adjustment based on Partition 
Stabilities—The co-clustering score between two nodes measures the proportion of scales 

at which each pair of patient tumors and cell lines are clustered into the same group. 

Because this score combines all the network clusters at multiple scales, it is a robust measure 

of connectivity between nodes. Unlike the co-clustering score which treats scales the same, 

different weights are assigned to scales when calculating the adjusted co-clustering score; 

the scale, at which the graph has a higher partition stability (or clearer community structure), 

is given more weight. The calculation of the adjusted co-clustering score between nodes a 
and b is done as follows:

1. Consider J sets of φ random signals from Section 2.1.2. Compute the partition 

stability γ(s), which is defined as the mean similarity between all pairs of 

partitions of {Ps
j}j ∈ [1, J] . 11

2. Repeat the step 1 for each scale s. The adjusted co-clustering score for nodes a 

and b is:

Adjusted Co‐clustering Score: η0(a, b) = 1
J ∑j = 1

J ∑s = 1
M Is

j(a, b)ws (2)

where ws = γ(s)/∑S = 1
M γ(s) is the weight given to the scale s, and Is

j is the 

indicator function. Is
i(a, b) = 1 (0) if nodes a and b are in the same (different) 

cluster (s) at scale s of partition j.

3. Get η0 for all pairs of nodes, and then multiply the largest η0 to 1 by a constant 

number k. The final adjusted co-clustering score for nodes a and b is 

η(a, b) = kη0(a, b) . The reasoning for this adjustment is that the only meaningful 

metric is the relative difference between patient-cell line co-clustering levels.

Since patients and cell lines serve as nodes in our network, the adjusted co-clustering scores 

are computed for all pairs based on the algorithm in Section 2.1.

2.2. Imputing Drug Sensitivity in Individual Patients

This section details the steps of imputing patient drug sensitivity (Figure 3), where the co-

clustering results from Section 2.1 serve as our input dataset. For clarity of exposition, we 

only introduce the pipeline of imputing the sensitivity of a given drug D in an individual 

patient P. As Figure 3(a) shows, our imputation method takes advantage of network 

topologies (1) between patient P and cell lines, (2) within cell lines, and (3) between cell 

lines and drug D.

2.2.1. Locally Weighted Linear Model—Recent work has utilized a locally weighted 

linear model based on a dual-layer integrated cell line-drug network to predict the drug 

sensitivity of a new cell line to a known drug.19 In this study, we generalized this model to a 

new locally weighted linear model based on our three-layer network so that the drug 
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sensitivity of patient P to drug D can be imputed. Cell lines to be used are those available in 

both patient P-cell line network and cell line-drug D network (Figure 3(a)). Under the 

assumption that a given patient tumor and its highly matching cell lines will react similarly 

to the same drug, the main formula of the locally weighted linear model used to impute the 

drug sensitivity of patient P to drug D is:

Sens(P , D) =
∑Ciω(P , Ci)Sens(Ci, D)

∑Ci ω(P , Ci)
(3)

where ω(P, Ci) is the weight parameter based on the adjusted co-clustering score between 

patient P and cell line Ci, and Sens(Ci, D) is the experiment-based sensitivity of cell line Ci 

to drug D for which any appropriate drug sensitivity metrics can be used.19 Since there is no 

agreement with respect to the optimal metric for summarizing the information from the dose 

response curve, in this study we used pIC50 = −logIC50, a commonly used metric to measure 

the potency of compound inhibition.20 Specifically, IC50 represents the concentration of a 

drug required for 50% inhibition of cell growth, and a larger pIC50 corresponds to a more 

potent compound.

In order to build an appropriate and flexible weight function of the adjusted co-clustering 

score between patient P and cell line Ci, we followed two criterions: 1) the function should 

be increasing since a cell line Ci highly matched to patient P is expected to have a high 

impact on the imputation of drug sensitivity in patient P; 2) the function should be flexible 

according to nonlinear dependency controlled by one or more free parameters. Similar to the 

“weight” in locally weighted linear regression, an appropriate choice of the weight function 

in our model is ω P , Ci = e−
1 − η P , Ci

2

2τ2 , where η(P, Ci) is the adjusted co-clustering score 

between patient P and cell line Ci, and τ is the rate parameter which controls the rate at 

which ω(P, Ci) decays with distance of patient P from cell line Ci.19 As shown in Figure 

3(c), if η(P, Ci) is close to 1, ω(P, Ci) will be close to 1, which means the cell line Ci has a 

great contribution to imputing the drug sensitivity in patient P. In contrast, if η(P, Ci) is 

small, ω(P, Ci) could be close to 0 even though η(P, Ci) is not close to 0, which implies that 

a cell line moderately matched with patient P may have very low impact on the imputation.

Rate parameter determination:  The rate parameter τ in the weight function ω is 

determined by leave-one-out cross-validation, which requires both observed and predicted 

drug responses. Since true patient drug sensitivity data are not available in our model, only 

the network of cell lines and drugs is used to find the best value of τ. However, because 

patient tumors and cell lines have the same type of omics profile and the same definition of 

edges in their network, we considered the value of τ determined by the cell line-drug 

network as an appropriate choice of τ used to impute the drug sensitivity of patient P to drug 

D. In the leave-one-out cross-validation procedure19, each cell line-drug pair is held out to 

serve as the test data while other edges in the cell line-drug network are used to predict the 

link between the cell line and the drug that are left out.

2.2.2. Standardization—For different drugs, their values of pIC50 to a given set of cell 

lines are potentially on different scales, which percolates to the imputed patient drug 
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sensitivity (Sens(P , D)) derived from these values (Eq. (3)). To standardize (SensP , D), it is 

then compared to the sensitivities of drug D in all cell lines. Similar to the formula for 

computing z-scores, the standard function is defined as follows:

PIDS−Score(P , D) = Sens(P , D) − E(Sens(Ci, D))
S(Sens(Ci, D)) (4)

where Sens(P , D) is the (unstandardized) imputed drug sensitivity, E(Sens(Ci, D) is the mean 

value of the sensitivities of drug D, and S(Sens(Ci, D)) is the standard deviation of the 

sensitivities of drug D across all cell lines. The PIDS-Score measures how many standard 

deviations from the imputed drug sensitivity of drug D in patient P to the mean sensitivity. 

Similar to z-scores, PIDS-Scores always fall between −2 and 2 where a higher value 

indicates a higher drug sensitivity.

3. Results

3.1. Functional Proteomics and Drug Sensitivity Datasets

In our approach, the two main steps (Figure 1(b)) use different types of input datasets. First, 

while our method of matching patient tumors with cell lines can be applied on any types of 

omics profiles, here we used Reverse Phase Protein Array (RPPA)-based functional 

proteomics data for two primary reasons: 1) this type of data can adequately capture 

downstream aberrations of proteins missed by (upstream) genomics and transcriptomics 

data; 2) aberrations in proteomic markers are more closely related to eventual clinical 

phenotypes or outcomes. The dataset of patient tumors taken from TCPA12,13 contains 

>8,000 samples of 32 cancer types, and the dataset of cell lines taken from MCLP14 includes 

>650 independent cell lines derived from 19 different tissues. To illustrate our approach, we 

focused on two subtypes of lung cancer: lung adenocarcinoma (LUAD) and lung squamous 

cell carcinoma (LUSC), both of which are non-small cell lung cancer (NSCLC), one of the 

most common human cancer types. The combined proteomics datasets from TCPA and 

MCLP were then pre-processed for missing value imputation and batch correction using 

kNN imputation21 and ComBat22, respectively. After preprocessing, there are 687 patient 

tumors, including 362 LUAD samples and 325 LUSC samples; 648 cell lines derived from 

19 different tissues; and 165 overlapping proteins, which serve as features for patient tumors 

and cell lines. In addition, the drug sensitivity data for cell lines were obtained from GDSC 

portal, which provides the drug sensitivities (IC50) of 251 drugs and compounds in 293 cell 

lines recorded by both MCLP and GDSC.

3.2. Network-based Matching of LUAD and LUSC Patients with Cell Lines

Following the pipeline in Section 2.1, we matched 687 NSCLC patients with 648 cell lines 

using their functional proteomics profiles, and obtained adjusted co-clustering scores 

between all patient-cell line pairs. Figure 4(a) shows a heat map of the adjusted co-clustering 

scores (between 0 to 1), where rows represent patients from the two subtypes (shown in 

green and purple bands on the left) and columns represent cell lines derived from 19 

different tissues. We observed a high-level connectivity (colored in red) between LUAD 

patients and two types of cell lines, lung and head and neck, which is consistent with 

Liu et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previous findings1 that head and neck cancer samples and many lung cancer samples belong 

to the same molecular subgroup. In contrast, adjusted co-clustering scores are only high 

between LUSC patients and a few cell lines mainly derived from lung tumors.

We also plotted the patient-cell line networks for the two subtypes of lung cancer. As shown 

in Figure 4(b-c), the edge between two samples is connected when their adjusted co-

clustering score is higher than 95% of scores computed from all pairs of samples; the size of 

a green triangle (cell line) depends on the number of edges connected to it. In the LUAD 

patient-cell line network (Figure 4(b)), there is a relativity large community (highlighted) 

consisting of approximately 100 patient samples and approximately 70 cell lines. In Figure 

4(c), the LUSC patient-cell line network has a clearer community structure than LUAD with 

6–8 well separated communities, where one of the communities (highlighted) has relatively 

large size triangles (cell lines connected to >80 LUSC patients). From these networks, we 

selected the top 10 matching cell lines for the LUAD and LUSC cohorts, based on the mean 

adjusted co-clustering scores (Figure 4(d-e)).

For LUAD, unsurprisingly, all listed cell lines are derived from lung tumors (Figure 4(d)). 

H1993 (ranked #1 based on mean adjusted co-clustering scores), a cell line derived from a 

metastatic LUAD patient, has been frequently used to study MET gene activation in 

NSCLC.23,24 For LUSC (Figure 4(e)), while most of the top matching cell lines were 

derived from lung tumors, one highly matching cell line was derived from a breast tumor 

(CAL851, ranked #10). H1623, the top matching cell line for LUSC patients, was derived 

from a metastatic NSCLC patient, and H1650 (ranked #2) has often been used to test the 

efficacy of gefitinib in inhibiting EGFR pathway.23,25

3.3. Drug Sensitivity Imputation for LUAD and LUSC Patients

To impute the drug sensitivity scores for patients (Section 2.2), we selected 293 overlapping 

cell lines with drug response profiles across MCLP and GDSC (as training data) and used 

the patient-cell line matching results (above) to compute PIDS-Scores of the 362 LUAD 

patients and 325 LUSC patients to 251 different drugs and experimental compounds. In 

Figure 5(a), we plotted the heat map of PIDS-Scores to provide a global overview of the 

imputed drug responses across the 251 drugs and compounds for both cohorts. As Figure 

5(a) shows, there are three clear patterns: 1) for a given drug, its PIDS-Scores appear to be 

consistent across patients from the same cohort – clear vertical (column-wise) banded 

structure in the heat map; 2) among different drugs, their PIDS-Scores vary significantly for 

a given patient (row-wise); and 3) within each subtype of patients, a few (2–3) patient sub-

clusters show different patterns of overall drug response profiles, indicating the existence of 

within-subtype heterogeneity with regard to drug responses.

Based on the mean PIDS-Scores, we selected top 10 sensitive drugs for both LUAD and 

LUSC patients, which are shown in Figures 5(b) and 5(c) respectively. A total of 16 unique 

drugs are ranked in these two top 10 lists. Three of them (erlotinib, afatinib and gefitinib) 

have been approved by the Food and Drug Administration (FDA) for the treatment of 

NSCLC.26 In addition, multiple clinical and translational studies have verified that all listed 

targets of these 16 drugs are related with the pathogenesis of lung cancer; EGFR, which 

appears 9 times as various top drugs’ targets in Figure 5(b-c), is frequently overexpressed in 
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lung cancer, and many NSCLC studies over the last decade have been focused on treating 

EGFR mutations;27 proteasome, a protein degradation complex, has become an attractive 

therapeutic target in both NSCLC and small cell lung cancer (SCLC);28 mTOR is a kinase 

which regulates normal cell growth, and its dysregulation often occurs in lung cancer;29 

IGF1R, a type of tyrosine kinase receptors, is also highly expressed in lung cancer.30

Patient-specific analyses: The PIDS-Scores can also be used for patient-specific 

inferences and potential drug recommendations, above and beyond the assessment of 

average drug sensitivity across patient cohorts. To facilitate this functionality, we have 

developed a web-based visualization tool using R-shiny (https://qingzliu.shinyapps.io/psb-

app/) to provide patient-specific drug summaries. In Figure 6, we plotted two flow diagrams 

to show one patient example, an LUAD patient (TCGA ID: TCGA-44–2657). The left panel 

demonstrates the connectivity between a given patient, the patient’s top matching cell lines 

and PIDS-Score based top sensitive drugs. Among the top selected drugs for this patient, 

three of them (vinorelbine, trametinib and docetaxel) have been approved by FDA for 

NSCLC treatments.26 The target of trametinib is MEK1/2 while the target of vinorelbine and 

docetaxel is microtubule stabilizer. Interestingly, both of these targets are not among the 

listed top 10 drugs for LUAD patients shown in Figure 5(b). This highlights the fact that 

even within a given clinical subtype, patients could be heterogenous and thus respond 

differently to different drugs – hence emphasizing the importance of precision medicine-

driven strategies.31

3.4. Association with Ex-vivo Patient Outcomes

Given the lack of in-vivo drug response data from patients, there was no absolute ground 

truth for validating our PIDS-Scores. As an exploratory validation, we associated PIDS-

Scores of each drug across all LUAD or LUSC patients with their survival outcomes 

(survival times and statuses), using univariate Cox proportional hazards models. We found 

that the PIDS-Scores of LUSC patients to alectinib (β = −1.50, adjusted P-value < 0.001) 

and CX-5461 (β = −0.63, adjusted P-value = 0.007) are significantly associated with their 

survival data using a false discovery rate adjustment. These regression coefficients are 

negative and hence in the right direction, i.e. higher (lower) PIDS-Scores are associated with 

longer (shorter) survival times, indicating their relative therapeutic potential. Indeed, 

alectinib has been approved by FDA for the treatment of NSCLC.26

4. Discussion

We propose a network-based approach to identify, calibrate and narrow the therapeutic 

potential of investigational drugs, by integrating omics data across patient tumors and cancer 

cell lines. Using a robust multi-scale strategy, we identified best representative cell lines and 

used this information to impute in-vivo drug sensitivities (PIDS-Scores) for individual 

patients from two subtypes of lung cancer. We show that our identified cell lines and top 

sensitive drugs are in concordance with established lung cancer cell lines and drugs with 

lung cancer-related targets. We also found significant associations between PIDS-Scores and 

patient clinical outcomes. These results suggest that our new computational approach is 
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promising to help optimize the individual patient-drug recommendations and to aid precision 

oncology endeavors.

Our approach can be generalized and extended to other model systems and pan-omic data. 

For example, currently the imputation is based on cell lines, which might not entirely 

recapitulate the complex microenvironment in patient tumors.8 More clinically relevant 

systems such as organoids and patient derived xenografts, which can better recapitulate 

human physiology, could be used as these datasets mature. We also plan to expand our 

analyses to other cancer types and molecular levels, and investigate a wider range of drugs 

and experimental compounds. In addition, we can incorporate drug-drug interactions in the 

bottom layer of our network, which help further identify omics-guided combinational 

therapies at an individual patient level.
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Fig. 1. 
Conceptual framework (a) A conceptual organization of our multilayer networks, where the 

three hierarchical layers include patient tumors, cell lines and drugs (top to bottom). There 

are there different types of edges; edges in the network of patient tumors and cell lines (solid 

green lines) are estimated by our method; edges between cell lines and drugs (solid pink) are 

obtained from experimental data; missing edges between patients and drugs (dashed blue) 

are also imputed by our method. (b) Main steps of our approach. We first match patient 

tumors with cell lines, and then impute drug sensitivity in patient tumors based on matching 

results of patient tumors and cell lines as well as the dataset of drug sensitivity in cell lines.
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Fig. 2. 
Analytical framework for matching patient tumors with cell lines. (a) - (c) Data preparation 

for multiscale community detection. (d) - (e) Multiscale community detection procedure. (f) 

– (h) Steps to calculate the adjusted co-clustering score based on the multiscale community 

detection results and the partition stability at each scale.
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Fig. 3. 
PIDS-Score computation for a given patient-drug pair. (a) Input datasets for the computation 

include the patient-cell line matching results and the experiment-based sensitivities of drug 

D in cell lines. (b) - (c) A locally weighted linear model is used to estimate the sensitivity of 

drug D for patient P. The weight between patient P and cell line Ci in the model decreases as 

the matching score η(P, Ci) decreases, as shown in the left sub-panel (1). The right sub-

panel (2) shows that the rate parameter τ in the weight function is derived from an objective 

function using leave-one-out cross-validation, where the pink dashed line is the link to be 

predicted in each iteration. (d) Finally, the result from the locally weighted linear model is 

standardized to obtain the PIDS-Score that is used for interpretation and inference.
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Fig. 4. 
Network-based matching of patients and cell lines. (a) Heat map showing the adjusted co-

clustering scores between patient tumors and cell lines for both LUAD and LUSC subtypes. 

(b) - (c) LUAD patient-cell line network and LUSC patient-cell line network. (d) - (e) Bar 

plots showing the top matching cell lines for LUAD and LUSC patient samples. A mean 

adjusted co-clustering score is equal to the average of adjusted co-clustering scores between 

a given cell line and all patient tumors in a given subtype.
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Fig. 5. 
Visualization and summary of PIDS-Scores. (a) Heat map showing PIDS-Scores of all 

patient-drug combinations. (b) - (c) Bar plots showing the top sensitive drugs for LUAD and 

LUSC patient samples based on the mean PIDS-Scores. A mean PIDS-Score is equal to the 

average of PIDS-Scores between a given drug and all patient tumors in a given subtype. For 

listed drugs, their corresponding targets are also listed above the bars.
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Fig. 6. 
Flow diagrams illustrating the relationship between a given patient, the patient’s top 

matching cell lines and top sensitive drugs. The widths of edges between the patient and cell 

lines are based on the adjusted co-clustering scores (Panel a); the widths of edges between 

the patient and drugs are based on the PIDS-Scores (Panel b).
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