Discovery at the interface of physical and biological sciences

open access

www.bioinformation.net

Hypothesis

Volume 8(17)

Distribution and characterization of simple sequence repeats in *Gossypium raimondii* genome

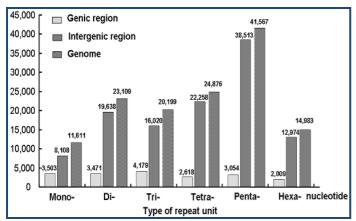
Changsong Zou, Cairui Lu, Youping Zhang & Guoli Song*

State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Guoli Song – Email: cs.zou@163.com; Phone: +86-(372)-2562375; FAX: +86-(372)-2562256; *Corresponding author

Received August 20, 2012; Accepted August 20, 2012; Published September 11, 2012

Abstract:

Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of *Gossypium raimondii*, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the *G. raimondii* genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of *G. raimondii*. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.


Key words: Gossypium raimondii, Simple Sequence Repeats (SSRs), distribution, molecular marker

Background:

Simple sequence repeats (SSRs) are tandemly repeated DNA motifs (1-6 bp long) which are present in both protein coding and non-coding regions of DNA sequences, and show a high level of length polymorphism due to mutations of one or more repeats. SSRs are easy to use and analyze by virtue of their multiallelic nature, reproducibility, high abundance and extensive genome coverage [1, 2]. The traditional methods of developing SSR markers are usually time consuming and laborintensive. Generally these processes involve genomic library construction, hybridization with the repeated units of nucleotides and sequencing of the clones. The computational approach for developing SSR markers from the genome sequence provides a better platform than the conventional approach. Several bioinformatic tools for the identification of microsatellites in genomic sequences have been developed. The most commonly used tools for SSR search are: SSRIT [3], TROLL [4], MISA [5], SSRFinder [6], Modified Sputnik I and II [7, 8], and SciRoKo [9]. SciRoKo is a user-friendly software tool for the identification of microsatellites in genomic sequences [9].

Cotton (*Gossypium spp.*) is a major world agricultural crop, and the annual planting area is about 3,300 million hectares [10]. In recent years, molecular marker technology has been widely applied to such studies on cotton as genetic mapping [11-13], genetic diversity analysis [14], MAS [15, 16], and gene tagging [17]. Due to the facts that the cotton genome is relatively large, with a 1C content of 2,250 Mb, and that intraspecific molecular polymorphism in this species is low, there is a major preoccupation for more highly polymorphic genetic markers for marker-assisted breeding programs. To date, approximately 17,000 pairs of SSR primers have been developed from four cotton species (*G. arboretum* L., *G. barbadense* L., *G. hirsutum* L., and *G. raimondii Ulbrich*) [18]. However, rare of them are able to

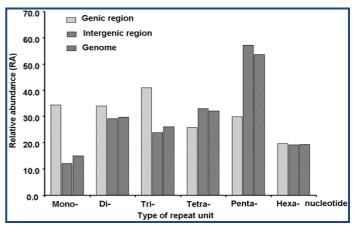
represent the large cotton genome adequately. In this study, the frequency and distribution of SSRs in the *G. raimondii* genome were characterized.

Figure 1: Frequency distribution of different repeat types identified in the *G. raimondii* genome

Methodology:

Data source

The genome sequence and annotation information of *G. raimondii* were download from the CGP (http://cgp.genomics.org.cn/page/species/mapview.jsp).


SSR scanning and analysis

The genome was scanned for SSRs 1oci with program software SciRoKo 3.4 (SSR Classification and Investigation by Robert Kofler) [9]. The parameters were set for detection of mono, di, tri, tetra, penta, and hexa -nucleotide (nt) motifs with a minimum of 15, 7, 5, 3, 3 and 3 repeats, respectively (under the mismatched and fixed penalty search mode). Initially, each SSR was considered to be unique and was subsequently classified according to theoretically possible combinations. The motif association statistic requires the standardizations. During standardization, the reverse complements of microsatellite motifs were considered, and similar microsatellite motifs are grouped together. For example, a poly-A repeat is equivalent to a poly-T repeat on a complementary strand, and an AAG is equivalent to AGA and GAA in different reading frames and to CTT, TCT and TTC on a complementary strand. Thus, there are two possible combinations for mono-nt repeats, four for di-nt repeats, and ten for tri-nt repeats, 33 for tetra-nt repeats, 102 for penta-nt repeats, and 350 for hexa-nt repeats. In this study, we defined two genomic location categories as genic (5'-Utr, exon, intron, and 3'-Utr) and intergenic regions. To locate the distribution of SSRs in different genomic regions, the position of SSRs were compared with the genome annotation by Perl scripts. To describe the abundance of SSRs in different genomic regions, we calculated the "relative abundance" (RA) by dividing the number of SSRs by the mega base-pair (MB) of sequences in our analyses.

Primer designing

Primer pairs were designed from the obtained SSR sequences by using Primer3. Perl scripts were used to operate Primer3 core code for batch designing primer. The major parameters for primer design were as follows: primer length, for which we selected 17-27 bp, with 20 bp being optimal, PCR product sizes of 100-250 bp, an optimum annealing temperature of 57°C, and a

GC content of 30%-65%, with 50% being optimal. Then the SSRs were searched for both forward and reverse primers.

Figure 2: Genome-wide distribution and relative abundance of SSR types by their unit size. Each bar represents the relative abundance of the SSR types in different genome locations. Relative abundance = number of SSR type/region size in mega bases (Mb)

Discussion:

A total of 136,345 microsatellites were identified in the 775.1 Mb (containing 4447 scaffolds) genomic DNA sequence of G. raimondii using the SciRoko programs. With the help of core primer3 and Perl scripts, 112,177 primer pairs were obtained (Data was not shown). Among the SSRs we analyzed, 113,766 (83.4%) were perfect repeats, 22,579 (16.5%) were mismatched repeats. The results showed that SSRs were abundant in the G. raimondii genome with about one SSR every 5.69 kb Table 1 (see supplementary material). The most abundant microsatellite was the penta-nt repeats of which 41,567 (30.5% of the SSRs) were identified, followed by the tetra-nt repeats (24,876, 18.2%) and di-nt repeats (23,109, 16.9%). The numbers of mono-nt, trint and hexa-nt repeats were 11,611 (8.5%), 20,199 (14.8%), and 14,983 (11.0%), respectively (Figure 1). The SSR loci were classified by repeat type and frequency of repeats per motif Table 2 (see supplementary material). We found 457 types of repeat motifs in these SSRs. Among the SSR groups (standardization), the most abundant repeat motif type was poly-A/T in mono-, ploy-AT/TA in di-, poly-AAT/TTA in tri-, poly-AAAT/TTTA in tetra-, poly-AAAAT/TTTTA in penta-, and poly-AAAAAT/ TTTTTA in hexa-nucleotides. For each SSR type, the less frequency the SRR has with number of repeats the more.

These SSRs put insight into the frequency distribution of different types of nucleotide repeats in *G. raimondii*. More SSRs were found in the intergenic regions (64.1%) than in the genic regions (35.9%) **Figure 1 & Table 3 (see supplementary material)**. The different SSR repeat units showed obviously differential or non-random distributions in the different genomic locations. The microsatellite analysis showed that the distribution of SSRs in exonic, intronic and intergenic regions of the genome were non-random and strongly biased, probably reflecting the functional significance of SSRs. In general, the relative abundances of 3-UTR, 5-UTR, and intron region were considerably higher than that of intergenic region **Table 1 (see supplementary material)**; the tri-nt repeats were the most abundant SSR type in the genic region, whereas, penta-nt

repeats were the most abundant SSR type in the intergenic region (Figure 2). The relative abundances of the tri-nt SSRs in the Coding Sequence (CDS) regions were 51.3 per Mb, which significantly higher other SSR types. The enhanced frequency of tri-nt SSRs in the coding regions might indicate the effects of selection against possible frameshift mutations.

In an attempt to analyze the differential distribution of SSRs more clearly, we characterized the distribution of the SSR types in each repeat unit across the different genomic locations **Table** 4 & Table 2 (see supplementary material). The results showed that the distribution of the different SSR types in the genome was non-random. For instance, of the two possible types of mono-nt SSRs, poly-A/T was the predominant form with 10,141 loci, about 89.6% of the total mono-nt loci. Of the ten possible of tri-nt SSRs, the poly-AAT/TTA accounted for 54.8% of the total tri-nt loci, followed by ploy-AAAT/TTTA accounted for 51.5% of the total terta-nucleotide. In genome, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs Table 2 (see supplementary material). In the genic region, the most frequently occurring trint repeat motifs were poly-AAG/TTC, which accounted for 27.1% of the total tri-nt SSRs in CDS region Table 2 (see supplementary material). Ignoring the mono-nucleotide repeats, the di- and tri- nucleotide repeat motifs with the highest frequencies were poly-AT/TA and -AAG/TTC in the genic region, respectively, which were identical with the previous reports [19].

Currently a number of studies are being reported regarding the development of EST-SSRs in cotton species using the computational tools [15, 19]. Microsatellite markers are very important for studing genetic mapping, genetic diversity analysis, molecular marker-assisted breeding (MAS) [13-16]. In the present study, 18,834 microsatellites were detected from the total protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. Although G. raimondii seeds contain no valuable fibers, the epidermal seed trichomes grow thickly. As one of the allotetraploid cotton donors, the D-subgenome has contributed important quantitative trail loci (QTLs) and/or genes to fiber development [20] With the help of gene function annotation, the putative functions of the genes could lead to find the important functional domain markers (FDM) related to gene ontology study such as stress response and fiber development, and develop the important FDM related to genetic diversity analysis and MAS for breeding in cotton species.

Conclusion:

Cotton commonly known as fiber crop is a plant of great commercial value. Up to now many works have been reported regarding the application of molecular markers in this plant for genetic mapping, gene discovery, genetic diversity analysis, and MAS. As such, the cotton research community has made efforts to develop many portable markers to overcome the

problem of low DNA polymorphism rates among various cultivated cotton breeding (http://www.cottonmarker.org/). SSRs are the most powerful genetic markers for genetic linkage analysis, diversity study and marker assisted selection. High-resolution mapping in cotton has not been got because of limited DNA polymorphism within a cotton species. To explore the genetic make-up of cotton, inter-species variability, evolutionary relationship, development and application of molecular markers are of immense importance. The genome-based SSRs developed in the present study will shed light into the discovery of the information. This investigation is laying the groundwork for developing large numbers of SSR markers in cotton. The growing collection of portable markers in cotton provides a cost-effective tool for genome mapping and gene discovery to understand and improve the cotton species.

Acknowledgement:

This work was supported by a grant from the Specical Forehead Investigation for 973 Program (Grant No. 2011CB111511), and also by the Central Public-interest Scientific Institution Basal Research Fund, China (Grant No. SJB1210). The authors are grateful to Dr. Qin Li for providing the necessary facilities about analyze the SSRs in genome.

References:

- [1] Kantety RV *et al. Plant Mol Biol.* 2002 **48**: 501 [PMID: 11999831]
- [2] Morgante M & Olivieri AM, *Plant J.* 1993 **3**: 175 [PMID: 8401603]
- [3] Temnykh S *et al. Genome Res.* 2001 **11**: 1441 [PMID: 11483586]
- [4] Castelo AT *et al. Bioinformatics.* 2002 **18**: 634 [PMID: 12016062]
- [5] Thiel T et al. Theor Appl Genet. 2003 **106**: 411 [PMID: 12589540]
- [6] Gao L et al. Mol Breed. 2003 12: 245
- [7] Morgante M et al. Nat Genet. 2002 30: 194 [PMID: 11799393]
- [8] La Rota M et al. BMC Genomics. 2005 6: 23
- [9] Kofler R *et al. Bioinformatics.* 2007 **23**: 1683 [PMID: 17463017]
- [10] http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1282.
- [11] Chee P et al. Genome. 2004 47: 449 [PMID: 15190362]
- [12] Yu JZ et al. J Anim Sci. 2012 2: 43 [PMID: 2384381]
- [13] Lin L et al. BMC Genomics. 2010 11: 395 [PMID: 20569427]
- [14] Liu S et al. Crop Sci. 2000 4: 1459
- [15] Zhang T et al. Theor Appl Genet. 2003 106: 262 [PMID: 12582851]
- [16] Guo W et al. Acta Agronomica Sinica. 2005 31: 963
- [17] Shen X et al. Mol Breed. 2005 15: 169
- [18] Blenda A et al. BMC Genomics. 2006 7:132
- [19] Wang C et al. Chinese Science. 2006 **51**: 557
- [20] Kohel RJ et al. Euphytica. 2001 121:163

Edited by P Kangueane

Citation: Zou et al. Bioinformation 8(17): 801-806 (2012)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited

Supplementary material:

Table 1: Summary of the SSR detection using SciRoKo

Motif	Counts	SS	R Length	Average mismatches	Kb/SSR	GC-content (%)
		Average (bp)	Standard deviation			
Mononucleotide	11611	18.41	6.88	0.18	66.76	11
Dinucleotide	23109	22.19	20.77	0.21	33.54	12
Trinucleotide	20199	26.89	34.4	0.5	38.38	16
Tetranucleotide	24876	20.26	34.81	0.26	31.16	12
Pentanucleotide	41567	18.41	9.22	0.16	18.65	21
Hexanucleotide	14983	23.67	14.65	0.28	51.74	19
Total	136345	21.22	23.06	0.25	5.69	16

Table 2: Frequency and distribution of 136345 SSRs identified in Gossypium raimondii genome

SSR									Numb	er of re	peats									Total
motif	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	>20	*
А	0	0	0	0	0	0	0	0	0	0	0	0	3610	2255	12	71	38	24	2205	10414
С	0	0	0	0	0	0	0	0	0	0	0	0	309	214	55 18	8 10	2 78	7 50	483	1197
AT	0	0	0	0	0	450	333	241	244	153	118	94	643	436	5 30	3 22	15	89	394	18432
						4	2	0	4	3	7	6			7	1	5			
AG	0	0	0	0	0	731	525	313	309	205	144	14 6	113	97	73	60	65	32	268	2982
AC	0	0	0	0	0	460	305	197	182	108	88	60	47	36	31	30	28	16	99	1687
CG	0	0	0	0	0	4	2	1	1	0	0	0	0	0	0	0	0	0	318	8
AAT	0	0	208 3	177 6	182 1	843	845	588	591	501	419	29 6	277	176	18 6	13 5	12 8	87	413	11070
AAG	0	0	115 5	950	688	377	283	181	141	93	83	44	33	22	38	21	17	15	111	4236
ATC	0	0	521	337	252	162	108	78	56	51	23	15	13	7	13	7	2	3	47	1664
AAC	0	0	369	251	158	90	55	38	33	17	17	14	10	6	3	1	1	3	33	1097
ACC	0	0	276	161	98	60	43	19	12	10	5	4	5	3	0	2	1	1	3	702
AGG	0	0	194	210	74	55	27	20	12	5	3	3	3	2	0	1	0	0	2	610
AGC	0	0	126	108	60	45	22	9	10	4	3	3	1	1	0	0	0	0	11	393
ACT	0	0	60	40	36	15	9	9	9	4	2	0	8	1	1	2	0	1	10	207
CCG	0	0	50	42	21	12	2	1	1	0	0	0	0	0	0	0	0	0	0	129
ACG	0	0	21	34	19	9	1	2	1	1	1	2	0	0	0	0	0	0	1	91
AAAT	0	720 1	323 7	143 2	514	222	96	47	25	16	5	3	4	0	0	0	0	0	5	12803
AAAG	0	217 4	733	398	220	129	69	45	15	11	8	4	6	5	2	2	1	0	6	3826
AATT	0	172 9	736	280	203	44	15	14	2	2	2	0	0	0	0	1	0	0	104	3030
ATAC	0	471	233	158	85	62	53	42	31	34	30	26	19	18	7	9	5	1	102	1386
AAAC	0	676	199	90	23	12	1	3	2	0	2	0	0	0	0	0	0	0	0	1008
AATG	0	492	218	54	30	7	12	4	6	2	0	0	0	0	0	1	0	0	0	826
AACC	0	150	111	9	3	1	1	0	0	0	0	0	0	0	0	0	0	0	1	275
ATGC	0	170	63	23	4	2	0	0	0	0	1	0	0	1	1	0	0	0	1	266
AATC	0	156	36	11	5	0	0	0	0	0	0	0	0	0	0	0	0	0	3	208
ATAG	0	85	46	26	13	8	4	5	0	3	2	0	1	2	0	0	0	0	3	198
AACT	0	99	56	19	7	4	6	2	2	0	0	0	0	0	0	0	0	0	0	195
AAGG	0	103	30	3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	140
AGGG	0	66	27	19	7	4	1	1	0	0	0	0	0	0	0	0	0	0	0	125
ATCC	0	74	28	10	6	3	0	1	1	0	0	1	0	0	0	0	0	0	1	124
Other Tetra-*	0	268	116	37	16	8	5	9	5	0	0	0	1	0	0	0	0	0	1	466
AAAAT	8101	413 8	125 6	337	126	43	14	5	6	2	1	1	0	1	0	0	0	1	0	14032
AAATT	3416	903	296	82	28	12	6	0	0	0	0	0	0	0	0	0	0	0	0	4743
AAAAG	2808	122 8	400	137	58	26	15	5	5	2	0	1	0	0	0	0	0	0	1	4685
CCCGG	1580	729	203	50	5	1	0	0	0	0	0	0	0	0	0	0	0	0	2	2569

									_		_	_								
AATAT	1080	395	209	119	63	59	31	20	8	16	5	5	2	0	1	1	0	0	3	2015
AATCG	712	724	385	61	15 -	3	4	0	0	0	0	0	0	0	0	0	0	0	2	1906
AAAAC	801	356	82	33	7	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1281
AATTC	525	170	70	49	11	4	0	0	1	0	0	0	0	0	0	0	0	0	0	830
AAATG	561	141	39	6	8	5	5	4	2	3	2	1	0	2	1	0	0	0	0	780
AATCT	577	64	10	5	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	661
AAGAG	477	101	32	12	6	3	1	0	0	2	0	0	0	0	0	0	0	0	0	634
AAATC	307	150	40	22	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	523
ACCGC	413	71	9	3	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	499
AGGGG	381	50	8	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	6	443
ATATC	206	108	41	27	14	13	4	2	7	3	4	1	0	0	0	1	0	1	6	438
AAAGG	307	66	22	7	8	2	1	0	1	0	0	0	0	0	0	0	0	0	0	414
ACCCG	235	112	35	12	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	397
AACCC	258	90	16	9	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	382
AAACC	177	47	19	5	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	252
AATGC	164	65	14	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	245
AAACT	142	40	15	3	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	203
AACAT	123	36	11	1	2	1	0	0	1	0	0	0	1	0	0	0	0	0	2	176
AATAC	108	33	11	7	1	0	2	0	0	0	0	0	0	0	0	0	0	0	2	164
AAAGC	100	39	21	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	162
AATGT	114	29	8	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	152
AATCC	91	32	8	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	135
AGAGG	78	27	8	3	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	118
AATAG	82	18	10	3	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	115
AAGGG	62	34	10	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	110
AACAC	80	21	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	108
AATGG	58	32	4	1	2	2	1	0	0	2	2	0	1	0	0	0	0	0	0	105
ATAGC	84	12	3	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	103
AGAGC	85	16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	102
Other	1357	485	143	54	21	11	3	3	2	2	0	0	1	0	0	0	0	0	3	2085
Penta-*																				
AAAAT	2057	100	268	100	39	25	10	13	5	2	2	3	0	1	0	1	0	2	1	3529
	707	1	101	OΓ	45	20	10	2	,	,	1	1	0	1	0	0	0	0	1	1740
AAAAA G	787	594	181	85	45	20	12	2	4	6	1	1	0	1	0	0	0	0	1	1740
AAAATT	514	343	100	27	8	6	3	0	0	0	0	0	0	0	0	0	0	0	0	1001
AAAATG	287	158	90	25	20	21	6	4	0	0	1	1	1	0	0	0	0	0	0	614
AAATAT	290	184	53	21	10	2	2	0	1	0	0	0	0	0	0	0	0	0	1	563
AAAAAC	187	150	29	19	11	3	4	4	1	2	0	0	0	0	0	1	0	0	1	412
AAATTT	233	127	33	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	399
AATTAT	182	142	32	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	6	368
AAAATC	95	106	50	29	5 15	8	5	4	2	2	1	2	1	1	1	0	0	0	7	327
ATATAC	99	99	49	22	8	11	6	2	6	3	4	1	1	1	1	0	0	0	2	315
AACCCT	120	97	34	16	5	1	0	0	0	0	0	0	0	0	1	0	0	0	0	274
AAAACT	66	149	32	13	5 10	1	1	0	0	0	0	0	0	0	0	0	0	1	0	274
AATATT	103	58	32 24	6	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	273 196
AAATTG	118		24 7	0	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	171
AAATTG		43						3		1	2									
	32	48	39 17	17	11	10	2		1			0	0	0	0	0	0	0	0	166
AAAAGG	71 25	44	17	5	2	1	0	1	0	0	1	1	0	0	0	0	0	0	0	143
AACAGT	35	62 41	13	6	5	5	1	0	0	0	0	0	0	0	0	0	0	0	0	127
AAGATG	61	41	14	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	123
AAAACG	83	28	5	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	119
AAATTC	78	30	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	117
Other	1653	134	563	227	103	44	22	16	5	8	1	5	1	3	1	0	0	0	6	4006
Hexa-*		8																		

^{*} Motifs with less 100 SSRs were not listed

Table 3: Relative abundance of SSR types in different regions of the *G. raimondii* genome

SSR	Genic region(101.9Mb)										Intergenic	Genome	
types	CDS (45.2Mb)		3-L	3-UTR (3.9Mb)			(3.9Mb)	lı	ntron (48.9M	b)	region (673.3Mb)	(775.2Mb)	
	count	RA*	count	RA	count	RA	count	RA	count	RA	count	RA	

Mono	17	0.4	345	88.5	468	120.0	2673	54.7	8108	12.0	11611	15.0
Di	30	0.7	245	62.8	385	98.7	2811	57.5	19638	29.2	23109	29.8
Tri	2318	51.3	192	49.2	328	84.1	1341	27.4	16020	23.8	20199	26.1
Tetra	58	1.3	188	48.2	319	81.8	2053	42.0	22258	33.1	24876	32.1
Penta	159	3.5	233	59.7	419	107.4	2243	45.9	38513	57.2	41567	53.6
Hexa	737	16.3	116	29.7	227	58.2	929	19.0	12974	19.3	14983	19.3
Total	3319	73.4	1319	338.2	2146	550.3	12050	246.4	117511	174.5	136345	175.9

^{*}Relative abundance = number of SSR type/region size in mega bases (Mb)

Table 4: Distribution of SSRs types in different genic regions of the G. raimondii genome

SSR motifs		egion repeat i	number		Total
	CDS	3-UTR	5-UTR	Intron	
А	13	304	420	2287	3024
С	4	41	48	386	479
AT	11	175	106	1690	1982
AG	17	46	227	654	944
AC	1	24	52	465	542
CG	1	0	0	2	3
AAG	628	31	161	354	1174
AAT	33	73	68	637	811
ATC	500	51	22	133	706
ACC	371	10	16	22	419
AAC	182	17	25	135	359
AGC	242	0	8	23	273
AGG	206	2	16	12	236
Other Tri-*	156	8	14	23	201
AAAT	3	50	110	856	1019
AAAG	13	39	90	270	412
ATAC	11	37	18	326	392
AAAC	3	15	27	191	236
AATT	1	8	9	97	115
Other Tetra-*	27	39	72	312	444
AAAAT	2	42	87	684	815
AAAAG	27	58	95	433	613
AAAAC	5	24	25	158	212
AAATT	1	7	15	146	169
Other Penta-*	124	102	202	817	1245
AAAAT	5	11	45	224	285
AAAAAG	9	26	47	152	234
Other Hexa-*	723	78	135	554	1490

^{*} Motifs with less 100 SSRs were not listed