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Abstract.—It is a classic aim of quantitative and evolutionary biology to infer genetic architecture and potential evolutionary
responses to selection from the variance–covariance structure of measured traits. But a meaningful genetic or developmental
interpretation of raw covariances is difficult, and classic concepts of morphological integration do not directly apply to
modern morphometric data. Here, we present a new morphometric strategy based on the comparison of morphological
variation across different spatial scales. If anatomical elements vary completely independently, then their variance
accumulates at larger scales or for structures composed of multiple elements: morphological variance would be a power
function of spatial scale. Deviations from this pattern of “variational self-similarity” (serving as a null model of completely
uncoordinated growth) indicate genetic or developmental coregulation of anatomical components. We present biometric
strategies and R scripts for identifying patterns of coordination and compensation in the size and shape of composite
anatomical structures. In an application to human cranial variation, we found that coordinated variation and positive
correlations are prevalent for the size of cranial components, whereas their shape was dominated by compensatory variation,
leading to strong canalization of cranial shape at larger scales. We propose that mechanically induced bone formation and
remodeling are key mechanisms underlying compensatory variation in cranial shape. Such epigenetic coordination and
compensation of growth are indispensable for stable, canalized development and may also foster the evolvability of complex
anatomical structures by preserving spatial and functional integrity during genetic responses to selection.[Cranial shape;
developmental canalization; evolvability; morphological integration; morphometrics; phenotypic variation; self-similarity.]

“The problem of individuality is merely an expression of
the fact that you do have a greater constancy at the higher
level of the organized individual system than you have
of its constituent parts. That is, identical twins are much
more similar than are any microscopic sections from
corresponding sites you can lay through either of them.”

Paul Weiss, 1956 (as quoted by Gerard, 1958, p. 140)

The coordinated development of complex anatomical
structures, such as the vertebrate cranium, requires
the integrated growth of spatially and functionally
related traits. At a mechanistic level, such a coordination
of individual development can arise from mechanical
interactions and chemical signaling across developing
tissues or from growth factors with systemic effects.
At the population level, integrated variation of
otherwise independent elements can result from the
evolutionary fine-tuning of pleiotropic gene effects
(Cheverud 1982, 1984; Zelditch et al. 2006; Hallgrimsson
et al. 2007b; Mitteroecker et al. 2012; Pavlicev and
Wagner 2012; Armbruster et al. 2014; Hall 2015;
Hallgrímsson et al. 2019). Some of these genetic and
developmental factors may have similarly directed
effects on related structures, causing coordinated
variation. For instance, long upper jaws co-occur with
long lower jaws, and vice versa, thus enabling proper
occlusion of teeth and effective mastication. For other
structures, compensatory growth processes may result
in covariation in opposite directions. For example, to
achieve a properly sized upper jaw, a relatively short

premaxilla may be compensated by a longer maxilla,
and a relatively long premaxilla by a shorter maxilla.
This compensatory variation at the level of components
(maxillary and premaxillary bones) leads to reduced
variation—canalization—at the larger scale (upper
jaw), thus stabilizing the development of functionally
relevant units. Without compensatory growth variance
accumulates across components, leading to an increase
of variance with spatial scale.

Even though both growth patterns, coordination and
compensation, are prerequisites of stable individual
development and integrated evolution, they are usually
lumped under the term “morphological integration”
in the morphometric and evolutionary literature. Most
studies in the Olson and Miller (1958) tradition have
interpreted a correlation of zero between traits as
evidence for genetic and developmental independence.
This interpretation is not warranted for many kinds
of measurements, particularly not for measurement
points (“landmarks”). Even if different anatomical
components should lack any common control, nearby
measurement points would still be correlated simply
because of their spatial adjacency (Mitteroecker and
Bookstein 2007; Mitteroecker et al. 2012; Bookstein 2015;
Gonzalez et al. 2019). However, a complete lack of
coregulation would manifest at another level: If all
parts vary completely independently, then their size
variance accumulates at larger scales; morphological
variation would be a function of the spatial scale at
which it is studied. But if appropriately corrected for
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scale, the variational properties would be the same
across different spatial scales or across structures of
different sizes (see the following sections for specific
models). In probability theory and signal processing,
this property is referred to as variational “self-similarity”
(e.g., Mandelbrot and Van Ness 1968; Leland et al.
1994; Embrechts and Maejima 2002; Mardia et al.
2006). In morphometrics, deviations from this pattern
of self-similar variation would indicate the action
of coordinating or compensatory growth processes
(manifested by an excess or deficiency of variation at
larger scales, respectively).

Formally, an intrinsic random process {X(t),t≥0} or
random field (a spatial random process in d dimensions)
{X(t),t∈R

d} is said to be self-similar if there exists �>0
such that the process or field {c−�X(ct)} has the same
distribution as {X(t)} for any c>0. In other words, for
a random self-similar process, the variable X, observed
once over a small temporal or spatial scale t, and once
over a larger scale ct, has the same variance, �2, if
appropriately corrected by a power function of the ratio
in scale, c:

�2
X(t) =

�2
X(ct)

c2�
. (1)

(e.g., Embrechts and Maejima 2002). The index � is
referred to as the self-similarity index; it is multiplied
by 2 because the formula refers to the variance (squared
unit). Deviations from this pattern of variational
self-similarity indicate nonzero correlation between
temporal or spatial increments, or in the present context,
some coregulation of the constituting anatomical parts:
coordination, compensation, or a combination of both.

Morphological variation at different spatial scales is
subject to different selective pressures and evolutionary
processes. For instance, the overall length of the
upper jaw in vertebrate animals is of functional
relevance for mastication and thus subject to natural
selection. As a result, parallel or convergent evolution
in different species is likely to lead to homoplasies
in jaw length (Wake 1991; Hodin 2000), regardless
of the relative contributions of premaxilla, maxilla,
and palatine to upper jaw length, which are of
less functional relevance. Compensatory variation of
these small-scale features may largely be selectively
neutral and more abundant than variation of functional
traits within a population. Hence, across populations,
compensatory variation of small-scale features may
largely be subject to evolutionary drift and convey a
more reliable phylogenetic signal than the functionally
relevant large-scale features. Morphometric studies of
adaptive evolution and phylogenetic history would thus
profit from a separation of large-scale from small-scale
aspects of organismal from. Contrasting morphological
variation across different spatial scales would also help
to identify morphological loci of stabilizing selection and
developmental canalization.

In this article, we present models of variational
self-similarity and the corresponding scaling factor,

�, for two kinds of morphometric measurements:
extensive measures (i.e., measurements that add up) of
length and area, and intensive measures of the shape
of landmark configurations. From these models, we
derive biometric strategies for studying morphological
variation at different spatial scales and for identifying
patterns of coordination and compensation. We apply
these methods to size and shape variation of human
crania and provide R scripts (R Core Team 2019).

A MODEL FOR EXTENSIVE SIZE MEASUREMENTS

Consider, first, a structure composed of two parts,
each of which can be represented by an extensive size
measure such as length, area, or volume. If the total size,
S, of the structure equals the sum of the sizes of its two
parts, S=A+B, then the sample average of total size is
given by the summed averages of the two parts, and the
sample variance of total size can be decomposed into the
variances of its components plus twice their covariance:

Var(S)=Var(A)+Var(B)+2Cov(A,B). (2)

Depending on the correlation between A and B, three
cases can be distinguished in this toy model:

1. The sizes of A and B are uncorrelated, as
it may occur—hypothetically—under completely
independent developmental control. In this case,
the variances of the parts add up to the variance
of the whole as the covariance term in equation
2 vanishes: Var(A+B)=Var(A)+Var(B). We refer
to this case as nonregulation because the two parts
vary completely independently, without common
regulation.

2. A and B are positively correlated, which we refer
to as coordinated variation. As a result, total size is
more variable than the summed variances of its
parts: Var(A+B)>Var(A)+Var(B).

3. A and B are negatively correlated due to
compensatory variation. In this case, the variance
of total size is smaller—more canalized—than
the summed variances of its parts because
the covariance term in equation 2 is negative:
Var(A+B)<Var(A)+Var(B).

The case of nonregulation separates the two opposite
scenarios of coordination versus compensation. In
practice, nonregulated variation rarely results from
completely independent developmental control but
from a balance between coordinating and compensating
processes, that is, from the canceling of genetic
or developmental factors inducing positive and
negative correlations (Cheverud 1984; Mitteroecker and
Bookstein 2007; Mitteroecker 2009; Pavlicev and Wagner
2012). Positive net correlations indicate the dominance
of coordinating over compensating processes, and vice
versa for negative net correlations.
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FIGURE 1. a) Ten random instances of a “one-dimensional” anatomical structure, each one consisting of 20 differently sized segments. Here,
these segments vary completely independently in length, drawn from a normal distribution with mean 1.0 and variance 0.04. b) For a sample
of 100 such structures, the cumulative length of the segments is plotted against segment number. Each of the resulting curves is equivalent to
a random walk, a stochastic increment process in which each step is independent of its current state. Because the segments vary independently,
both their means and variances add up; the expected variance of total length is a linear function of the number of segments. c) For increasing
segment number, the variance in length is plotted against mean length across the 100 random structures. The regression slope in this log–log plot
is 1.04, close to the expected value of 1 for a linear relationship, one in which both mean and variance relates linearly to the number of elements.

These considerations extend to structures composed
of multiple parts with sizes Pi, enumerated from i=1 to
n. Average total size can be expressed as the sum of all
the part’s averages,

S̄=
n∑

i=1

P̄i,

and the variance of total size equals the summed
variances of the parts plus all pairwise covariances:

Var(S)=
n∑

i=1

Var(Pi)+
n,n∑

i �=j

Cov(Pi,Pj).

Again, if all parts were mutually uncorrelated, their
variances would add up, just like their means. This
implies that for parts with homogeneous means and
variances, the variance of a composite structure would
scale linearly with its mean size: both are a function of
the number of parts, n.

Figure 1 illustrates this for simple “one-dimensional”
structures, such as a cross-sectional sample of segmented
worms. The length of each segment is drawn randomly
from a normal distribution with �=1 and �=0.2. Hence,
all segments have the same mean and variance, and
they all vary independently: they behave in a completely
nonregulated or uncoordinated way. For increasing
numbers of segments, Figure 1b plots total worm length
against segment number, illustrating how both the mean
and the variance of total length increase linearly with the
number of segments included. The regression of total
length on segment number has an expected slope of 1,
the mean segment length, �. The expected slope of the
variance of total length on segment number is 0.04, the
variance of segment length, �2. Hence, also mean and
variance of total length scale linearly, leading to a slope
of 1 and an intercept of log�2 on a log–log scale (Fig. 1c).

The linear relationship between mean and variance
for differently sized substructures in the case of
nonregulation resembles the well-known properties of a
random walk with linear drift: a random process {X(t)}
with independent and identically normally distributed
increments (the discrete version of a Wiener process
or Brownian motion). For such a process, both the
variance and the mean of X(t) are linear functions of the
number of increments, t. Also, the covariance between
X(t) and X(s) is just a function of the lag or “distance”
|s−t| (this property characterizes an “intrinsic” random
process).

In such a system, the variance of a substructure
relative to its average size—the scale-corrected variance
�2

c =Var(S)/S̄—would be constant across differently
sized structures, consistent with the definition of self-
similarity if �= 1

2 (equation 1). (Note that this statistic
differs from the more commonly used coefficient of
variation, which expresses the standard deviation, not
the variance, as a fraction of the mean.) An anatomical
structure with this self-similar property would vary in a
completely uncoordinated way; every part is growing
independently of all others, without any common
control. Clearly, this behavior does not reflect the well-
coordinated ontogeny of 3D tissues and organs in
multicellular organisms. But it serves as a null model
in-between the two alternatives of coordinated versus
compensatory growth.

If the parts of an organism grow in a coordinated
way (Fig. 2a–c), leading to positive correlations among
parts, the variance of total size increases faster than
linearly with mean size, and the slope of log variance
on log mean size is larger than 1. Hence, also the scale-
corrected variance increases with the average size of
the structure. By contrast, if compensatory processes
dominate over coordinated ones, correlations among
parts tend to be negative, and the scale-corrected
variance decreases with scale: the larger the structure,
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FIGURE 2. a) Another 10 instances of a segmented structure as in Figure 1, but here the segments are not independent, they show positive
correlations instead. In other words, the segments show a certain degree of coordination in length. In comparison with Figure 1a, the total length
of these structures is more variable, which is also apparent in (b): the variance increases faster than linearly with the number of segments. c) As
a result, the regression slope of log variance on log mean length is larger than 1. d) Here the segments show negative correlations, reflecting a
compensation in length. Total length thus is less variable than in Figure 1. e, f) Variance in length increases with mean length only for the first few
elements and then levels off, leading to a slope of less than 1 in the log–log plot.

the more it is canalized (the slope of log variance on log
mean size is smaller than 1; Fig. 2d–f). The corresponding
compensatory curves in Figure 2e are autoregressive
processes of order 1 (here with a mean-reversion rate
of 0.07), the discrete version of an Ornstein–Uhlenbeck
process (a mean-reverting continuous-time stochastic
process). Note that an autoregressive process has a
stationary variance, that is, after a certain number of
increments (seven in this example) the expected variance
stays constant.

This model of self-similarity can be applied to study
linearly extending segmented anatomical structures,
such as the vertebral column, tooth rows, or limbs
as well as to simple segmented organisms, such as
annelids. But the model can also be applied to measures
of area, volume, or mass of more complex structures
or organisms, as in the empirical example below.
Self-similar variation of area or volume with �= 1

2
(linear relationship between mean and variance) would
result from an aggregation of independently varying
elements without apparent geometric constraints, or
from the independent variation of loosely connected
organs (so that they could vary independently without
any constraints owing to shared boundaries).

In empirical studies of structures that can be
decomposed exhaustively into nonoverlapping parts,
a cross-sectional variance of total size exceeding the
summed variances of the parts indicates an excess of
coordinating processes over compensating ones, and vice
versa for a lower variance of total size. For overlapping
parts or nonexhaustive partitionings, scale-corrected
variances can still be compared among differently sized
parts, and log-transformed variances can be regressed
on log mean sizes. Slopes larger or smaller than 1
indicate a dominance of coordinated or compensatory
variation, respectively. The intercept is determined by
the average variance per size unit (and measurement
error, see below). Similar approaches, including such
log–log plots, have a long tradition in signal processing
(e.g., Hurst 1951; Leland et al. 1994; Cannon et al. 1997).

A MODEL FOR SHAPE

In addition to size variation, shape variation among
landmark configurations can be decomposed into
different spatial scales, but such analyses are limited
to the nonaffine (i.e., local) aspects of shape variation.
Affine transformations are linear transformations (linear
scaling and shearing); they are the same at all locations



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:08 13/8/2020 Sysbio-OP-SYSB200006.tex] Page: 917 913–926

2020 MITTEROECKER ET AL.—VARIATION AT DIFFERENT SPATIAL SCALES 917

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

log BE-1

non-affine shape variation

non-affine  variation

lo
g

PW
 v

ar
ia

n
ce

1
23

456
78

9101112

13
14

15

1617

1819

20

21
22

-1 0 1 2 3

- 6

- 5

- 4

- 3

- 2

a) b)

c)

d)

FIGURE 3. Self-similar variation of a 5×5 grid of landmarks. a) Nine landmark configurations showing random self-similar variation around a
regular square grid (for formulas see Supplementary material available on Dryad). b) Nonaffine “Boas” coordinates (nonaffine shape coordinates
rescaled to their original size) of the lower left four landmarks (red points, left panel) and the lower right four landmarks (blue points, right
panel) for 1000 such random grids. The blue landmark configurations are, on average, twice as large as the red landmark configurations, and
the nonaffine landmark variation is four times as large as that of the red landmarks. c) When scaled to the same size, the small and the large
configurations show the same amount of nonaffine shape variance. d) The 22 PWs of these 25 landmarks are shape features with increasing
spatial scale (specified by inverse bending energy, BE−1, as a measure of squared scale). For self-similar variation, the variance of these PWs
increases linearly with inverse BE, leading to a slope of 1 in the regression of log variance on log BE−1.

and also at all spatial scales (their spatial scale is
infinite; Bookstein 1991; Rohlf and Bookstein 2003). Only
nonlinear shape transformations can be localized and
thus show a finite spatial scale; these are the nonaffine
transformations (see Supplementary Fig. S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.j6q573n8s).
The comparison of shape variation across different
spatial scales thus is inherently limited to the nonaffine
component of shape variation (Bookstein 2015).

For the size measures in Figure 1, the one-dimensional
random walk gave rise to a linear relationship between
the variance and the number of elements (“scale”);
the scale-corrected variance was the same at all scales.
Figure 3 shows the analog of a 1D random walk for 2D
shape: a self-similar distribution of landmark variation
(see Bookstein 2015 or Supplementary material available
on Dryad for computational details). The configurations
in Figure 3a consist of 25 landmarks each, arranged as the
vertices of 5×5 grids. Like the increments of a random
walk, every grid cell has the same nonaffine shape
distribution, and the variance of larger grid elements
composed of multiple grid cells (larger squares with
corners on the grid) is a linear function of the number of
cells (area or squared scale). Note that we refer here to
the variance (summed over all landmark coordinates)
after removing the affine term and standardizing the
configurations for location and orientation, but not scale
(referred to as “Boas coordinates” in Bookstein 2018).
After correcting for scale, the magnitude of nonaffine
shape variation is the same at all scales.

For instance, the area of the polygon spanned by
the blue landmarks (delineating a 2×2 grid) is, on
average, four times as large as that of the red landmarks
(delineating a 1×1 grid), and also the nonaffine Boas
variance of the blue landmarks is four times that of the
red landmarks (Fig. 3b). After scaling them all to the

same size, they show the same amount of nonaffine
shape variance (Fig. 3c), just like the scale-corrected
variance of a random walk. These relationships apply
as well to every other square landmark configuration,
such as one at 45◦ to the grid.

Under a model of self-similar landmark variation, the
linear association between squared scale and nonaffine
Boas variance holds only for configurations with the
same mean shape, such as the four vertices of the
grid cells. But self-similarity of shape variation can also
be studied by exploiting the self-similar property of
the thin-plate spline interpolation (Kent and Mardia
1994; Mardia et al. 2006; Bookstein 2015). Nonaffine
shape variation (with 2k−6 degrees of freedom for k
2D landmarks) can be decomposed into an orthogonal
set of shape features with increasing spatial scale, the
principal warps (Bookstein 1989, 1991). Computationally,
the principal warps are the k−3 eigenvectors of
the bending energy (BE) matrix (see Supplementary
material available on Dryad) and are each associated
with a bending energy (the corresponding eigenvalue),
which is an inverse measure of squared spatial scale.
Large BEs correspond to principal warps that describe
small-scale features (deformations of landmarks that
are close together), while a small BE characterizes
a large-scale deformation. Affine deformations have
zero BE because they are of infinite spatial scale (see
Supplementary Fig. S1 available on Dryad).

When expressing shape variation within a sample in
terms of these successive deformations, each principal
warp applies twice, once to the x-coordinates and
once to the y-coordinates; the corresponding partial
deformations are called partial warps (PWs). The 2(k−
3) PW scores are the orthogonal projections of the
shape vectors on the principal warp vectors, separately
for x and y. In other words, PW scores describe

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:08 13/8/2020 Sysbio-OP-SYSB200006.tex] Page: 918 913–926

918 SYSTEMATIC BIOLOGY VOL. 69

log BE-1

log BE-1

lo
g

PW
 v

ar
ia

n
ce

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

non-affine shape variation

non-affine  variation

non-affine shape variation

non-affine  variation

lo
g

PW
 v

ar
ia

n
ce

1 23 456 78 9101112 131415 1617 1819 20
2122

- 1 0 1 2 3

- 4.4

- 4.0

- 3.6

1
23

456
78

9101112

13
14

15

1617

1819

20

21
22

- 1 0 1 2 3

- 8

- 6

- 4

- 2

a)

e)

b)

f) h)

d)

g)

c)

FIGURE 4. Examples of compensatory (top) and coordinated (bottom) landmark variation. a) Nine configurations showing compensatory
variation. b) Here, nonaffine Boas variance does not increase with spatial scale; it is the same for squares of size 1 (red, left panel) and squares
of size 2 (blue, right panel). c) When scaled to the same size, nonaffine shape variance decreases with scale, that is, large structures show less
shape variance than small structures. d) The variance of the PWs is the same for all spatial scales. e) Nine configurations showing coordinated
variation. f) Here, nonaffine Boas variance increases steeply with spatial scale; the variance of squares of size 1 (red) is less than one-quarter
of the variance of squares of size two (blue). g) Even nonaffine shape variance increases with spatial scale. h) As a result, the variance of PWs
increases faster than linearly with scale (a slope of 2 in the log-log plot).

nonaffine shape variation in terms of shape features
with different spatial scales (rather than in terms of the
shapes of differently sized substructures). For a self-
similar variance pattern, the variance of PW scores scales
linearly with inverse BE (as a measure of squared scale),
that is, they show a slope of 1 in a log–log plot (Fig. 3d).1

In that case, relative to scale, every PW shows the same
variance.

Figure 4a–d shows another set of 5×5 landmark
grids, but here variation is compensatory, not self-
similar: nonaffine Boas variance increases less than
linearly with spatial scale. Corrected for scale, shape
variance decreases with scale (Bookstein 2015 referred

1Note that the horizontal axis in this and the following two figures
differ from the presentations in Bookstein (2015, 2017, 2018), where
this axis shows log BE, representing inverse scale, not the negative
of that logarithm. An increase along this axis thus corresponds to
an increase (not a decrease) in spatial scale, and the orientation of
the corresponding regression line matches that of the self-similar size
process in Figure 1.

to this as “disintegrated” shape variation). The opposite
scenario is depicted by Figure 4e–h: the landmarks vary
in a coordinated way (see the Supplementary material
available on Dryad for computational details). As a
result, nonaffine Boas variance increases faster than
linearly with squared scale (Fig. 4f,h); corrected for scale,
nonaffine shape variance increases with scale (Fig. 4g).

The linear relationship between nonaffine variance
and squared spatial scale that characterizes self-
similar landmark variation (with �=1) can serve as
reference in empirical morphometric studies. In a
log–log plot of the cross-sectional sample variance
against inverse BE for each PW, a slope >1 indicates
an excess of coordinated variation, whereas a slope
< 1 would result from a dominance of compensatory
variation. Note, however, that the models of self-similar
size and shape variation from which these statistics
derive resemble a homogenous tissue with isotropic
variational properties of all elements (i.e., all the

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa007#supplementary-data
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a) b)

FIGURE 5. a) Midsagittal landmarks digitized on high-resolution CT scans of a geographically diverse sample of 24 adult human crania
(16 females, 8 males). The different bones are shown in separate colors (modified from Gray 1918). A set of 32 3D anatomical landmarks (white
dots) and 55 semilandmarks (black dots) were measured on every CT scan using Avizo (Thermo Fisher Scientific) and then projected onto a
least-squares-fitted plane. The positions of the semilandmarks along their curves were estimated by the sliding landmark algorithm, which
slides the semilandmarks along the curves in order to minimize the total BE, a measure of local shape difference, between each specimen and
the sample average (Bookstein 1997; Gunz and Mitteroecker 2013). b) The cross-sectional areas of the different cranial bones, the nasal cavity,
the braincase, and the entire cranial cross-section were approximated by polygons defined by the measured landmarks, as exemplified here for
nine arbitrary individuals of the sample.

differently sized substructures are composed of different
numbers of elements with homogenous mean and
variance properties). Most real anatomical structures
deviate from this model. Depending on the structural
heterogeneity encountered, only substantial departures
from self-similarity should be interpreted as evidence
for compensating or coordinating processes. Deviations
of single size or shape factors from an otherwise
homogeneous variational pattern may require separate
interpretation (Bookstein 2017).

EXAMPLE: HUMAN CRANIAL FORM

We analyzed size and shape variation within
a sample of 24 adult human crania. Using high-
resolution CT scans, we measured 87 2D landmarks and
semilandmarks (Bookstein 1991; Gunz and Mitteroecker
2013) on each specimen to delineate the midsagittal
outlines of all the cranial bones and cavities (for details
see Fig. 5 and Bartsch 2019). From these landmarks,
we completely partitioned the cranial midsection (the
area within the cranial outline) into the cross-sectional
areas of the cranial bones, the braincase, and the nasal
cavity (Fig. 5b). As the occipital bone is separated in
the midplane by the foramen magnum, we treated
the basilar and posterior parts of the occipital as two
separate structures.

We calculated mean and variance for the area of each
cranial element. The variance of the entire midsection
(2.22×106 mm4) clearly exceeded the sum of the
variances of the cranial parts (1.17×106 mm4), and
the regression slope of log variance on log mean was
1.49 (Fig. 6a), indicating a faster than linear increase of
variance with mean size and a dominance of coordinated
variation. The scale-corrected variances of the cranial

parts differed considerably: larger structures were more
variable relative to their scale than smaller structures
(Fig. 6b).

Figure 7 shows the correlation matrix for the
midsagittal areas of the cranial bones and its first
two principal components (PCs). Indeed, positive
correlations are prevailing, especially among
neurocranial bones and among facial bones. The
basilar part of the occipital stands out as the least
correlated bone. PC 1 loads positively on all variables,
except the basioccipital, and represents a common
size factor that accounts for most of the coordination
(positive correlations) among cranial parts. The second
PC loads positively on the neurocranial bones and
negatively on facial bones, thus accounting for the
weak negative correlations between some of the facial
and neurocranial bones. Hence, despite the overall
dominance of coordinated variation in the size of cranial
bones, facial and neurocranial size also show some
compensatory variation.

We also studied the midsagittal shapes of the cranial
bones and cavities, as captured by the 2D landmarks.
In contrast to area, the cross-sectional shape of larger
structures varied considerably less than the shape of
smaller structures (Fig. 8, left). For a self-similar pattern
of shape variation, nonaffine shape variance would be
the same at every scale, but nonaffine shape variance
of the cranial elements clearly decreased with squared
centroid size (as a measure of squared scale; Fig. 9a).2

2Note that in order to compare shape variation across configurations
with different numbers of landmarks, k, centroid size needs to be
divided through

√
k, and also total variance (summed variances

of all shape coordinates) must be divided through k. Combined,
however, these two corrections cancel and can be omitted (because the
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FIGURE 7. a) Correlation matrix of the cross-sectional areas of the cranial bones. b) The first two principal components (eigenvectors) of this
correlation matrix (with eigenvalues 3.60 and 2.06).

Similarly, the variance of every PW, plotted against
inverse BE on a log–log scale, had a regression slope
of 0.65—well below 1 (Fig. 10). These results indicate a
strong pattern of compensatory shape variation within
the cranium. The small-scale PWs with very low variance
(PW 13, 14, 19) correspond to the relative positions of the
semilandmarks, which were standardized in the course
of the sliding landmark algorithm and hence show little
variance. PW 35, by contrast, shows considerably more

landmark coordinates are divided by their centroid size in the course
of Procrustes registration).

variance than expected for its spatial scale; it corresponds
to the relative size and orientation of the nasal bone
(Fig. 10, left).

In summary, we observed opposite patterns for
variation in cranial size and shape. The cross-
sectional area of cranial elements was characterized by
coordinated variation and largely positive correlations
among the components, whereas cranial shape showed
a pattern of compensatory variation: larger cranial shape
features were much less variable than smaller ones. We
also identified aspects of both size and shape variation
that deviated from these overall variational patterns.
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THE (MIS)MEASURE OF SIZE AND SHAPE

Measurement error can affect the analyses described
here. Independent error in size measurements biases
the results towards self-similarity or nonregulation

(cf. Fig. 1), whereas independent error in landmark
coordinates induces negative correlations between
adjacent interlandmark distances and thus biases the
results towards compensation (Figs. 4a–d and 11).
Furthermore, shape variance does not become zero
if the scale at which it is studied approaches zero:
even very small structures show variation due to
measurement error. This is referred to as “nugget effect”
in geostatistics and raises the intercept of the regression
of log variance on log scale. The cranial landmarks
used here were measured carefully on high-resolution
scans; measurement error was negligible compared to
the differences in shape variance across scales (the
smallest structures varied 6–25 times more than cranial
outline shape). For data more prone to error, estimates
of measurement error may be included in an extended
regression model (Mardia et al. 2006; Bookstein 2015).

Composite measures of overall size, such as centroid
size, usually are less affected by measurement error
because they are computed as a (weighted) sum of many
measurements; independent measurement error thus
tends to average out. But while “scale” is a geometrical
a priori, “size” involves a choice of formulas from a
wide range of possibilities. The difference between the
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two choices exploited here for the cranial data, area
and squared centroid size, can bear implications for the
biological inferences that ensue (Mitteroecker et al. 2013;
Bookstein 2018). For the present data, however, these two
measures led to very similar results.

Our approach does not apply to standardized
size measures, such as measures scaled to the
same sum in each individual. The ensuing relative
dimensions necessarily exhibit negative correlations
and reduced (or zero) variation at large scale, but
this cannot be biologically interpreted. Similarly,
Procrustes superimposition standardizes overall
location, orientation, and scale in a sample of landmark
configurations (Rohlf and Slice 1990). As a result,
the relative size of a contiguous subset of landmarks
is negatively correlated with the relative size of the
remaining landmarks. For example, after Procrustes
superimposition, a small face necessarily coincides with
a large neurocranium. Hence, our approach to study
coordination and compensation of shape is not based on
the comparison of relative sizes but on the comparison
of nonaffine shape variation at different scales.

DISCUSSION

Morphological Integration
Phenotypic correlations among traits are usually

discussed in the context of morphological integration
(e.g., Olson and Miller 1958; Cheverud 1982;
Mitteroecker and Bookstein 2007; Klingenberg
and Marugan-Lobon 2013; Armbruster et al. 2014;
Klingenberg 2014; Billet and Bardin 2019), which has
two historical and conceptual origins. In evolutionary
quantitative genetics, correlations among traits are
estimated for modeling indirect evolutionary responses
to selective pressures, but they are rarely interpreted
in a developmental contexts (Fisher 1930; Lande 1979;
Roff 1997). By contrast, in early factor analysis and
path modeling, as developed by Sewall Wright, Paul
Terentjev, and others (Terentjev 1931; Wright 1932,
1934), the correlation structure of a set of morphometric
variables was explicitly modeled for inferring the
growth factors that shaped the organism. But Wright
and Terentjev were studying mainly size measures
of distinct anatomical elements (e.g., long bones).
With Olson and Miller’s influential 1958 book, these
traditions were fused in an unfortunate manner: raw
correlations were interpreted in both the evolutionary
and developmental context, with a correlation of zero as
benchmark for evolutionary as well as developmental
independence (but see, e.g., Cheverud 1984; Gromko
1995). With the advent of modern measurement and
imaging technologies, the same rationale was applied
to larger collections of linear distances within complex
structures, such as the cranium, and even to the shape
coordinates of landmarks. But for such landmarks or
interlandmark distances, a null model of all correlations
zero is difficult to reify biologically.

Consider, for instance, the self-similar “worms” in
Figure 1, where the lengths of the 20 segments are
all mutually uncorrelated: nonintegrated variation of
segment lengths. But the 21 landmarks separating
these segments, superimposed by mean-centering
the coordinates of every specimen, show a strong
spatial auto-correlation (Fig. 11, upper panels): adjacent
landmarks are positively correlated, even though
the distances between them are not. Only more
distant landmarks are uncorrelated or even negatively
correlated (due to the superimposition). Such a
pattern of spatial autocorrelation is very common for
morphometric data (Mitteroecker and Bookstein 2007;
Gonzalez et al. 2019). Even though consistent with
a model of completely unintegrated development, it
can explain the results in many published studies on
variational modularity (Mitteroecker 2009). In “worms”
with completely uncorrelated landmark positions (i.e.,
uncorrelated segment borders, not segment lengths), the
lengths of adjacent segments are necessarily negatively
correlated (Fig. 11, lower panels). But an interpretation of
these negative correlations among adjacent elements in
terms of compensatory processes would be misleading.

For a biological interpretation of phenotypic
correlations it is thus important to consider the
level at which developmental regulation occurs, at the
landmark locations or in the spaces in-between. Often
it may be the latter or a combination of both. For this
reason, a self-similar landmark distribution can be a
more useful reference distribution than a distribution
of independent and identically distributed variation at
every landmark (Bookstein 2015, 2017).

Developmental Origins and Evolutionary Relevance of
Coordination and Compensation

Positive correlations among the sizes of anatomical
elements—which we found to be prevalent within the
human cranium—have also been reported in many
previous studies. Coordinated growth can result from
shared developmental timing and growth rates, similar
gene expression patterns, and growth factors with
systemic effects (e.g., growth hormones; Hallgrimsson
et al. 2007a,b; Mitteroecker et al. 2012; Hall 2015). Well-
documented genes with coordinated (pleiotropic) effects
on growth at cranial sutures of dermal bones and
synchondroses in the cranial base include HGH and
members of the BMP, TGF-�, and FGF gene families
(Opperman 2000; Hall 2015).

Whereas condensation and early growth rates of
bone and cartilage are mainly controlled independent
of extracellular influences, later cranial growth is
coordinated by multiple stimuli from adjacent tissues
(Moss and Young 1960; Herring 1993; Hallgrimsson et al.
2007a; Lieberman 2011). For instance, brain size largely
coordinates the size of the encapsulating neurocranium,
and the dura mater plays an important signaling role
in keeping the sutures of the overlying flat bones
unfused and patent (Opperman et al. 1996; Moss 1997;
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Mitteroecker and Bookstein 2008; Bastir et al. 2010;
Lieberman 2011). Coordinating effects of brain size on
cranial form are most obvious in cases of hydrocephaly
or microcephaly (Young 1959; Huggare et al. 1989).
Similarly, dental occlusion as well as forces exerted
during mastication and by the tongue are important
factors that coordinate postnatal facial growth (Enlow
and Hans 1996; Moss 1997).

The genetic and developmental origins of
compensatory variation—which we found to dominate
cranial shape—are less well known. Growth factors
with opposite effects on different tissues and cell
apoptosis induced by adjacent cells are documented
for embryonic development, but they are unlikely
to account for the compensatory growth patterns in
fetal and postnatal cranial growth. One mechanism
underlying compensatory variation in the cranium
may be mechanically induced bone growth. Bone
is susceptible to mechanical forces acting on it and
adapts to the stresses it is exposed to. Through
mechanotransduction, local mechanical loading
induces a signaling cascade from mechanosensory cells
(osteocytes) to osteoblasts (bone-synthesizing cells),
initiating the formation of bony matrix until the strain
is normalized. When mechanical loading is reduced,
osteoclasts are signaled to break down bone (“bone
mechanostat”; Huiskes et al. 2000; Frost 2003; Skerry
and Suva 2003; Watson et al. 2018). Bone formation
and remodeling in response to mechanical forces are
also documented for the cranium. For instance, tooth
movement during dental development or orthodontic
treatment occurs through bone resorption at sites of
bone compression and bone formation at sites of tension
(Enlow and Hans 1996; Zhong et al. 2013; Wang et al.
2018). Mechanical forces also influence bone growth
at sutures and synchondroses, even though the actual
mechanisms are complex and differ between static
and cyclical load. However, both animal experiments
and human treatment with orthodontic appliances
suggest that suture growth is promoted by tension and
retarded by compression (Parr et al. 1997; Sun et al. 2004;
Koudstaal et al. 2005; Herring 2008).

We propose that mechanically induced bone
formation and remodeling are the main mechanisms
underlying compensatory bone growth in the
developing cranium: excessive growth of a bone
exerts pressure on adjacent bones, which react by
osteoclast activity and bone resorption. Conversely,
reduced growth of a cranial bone exerts tension and
increases osteoblast activity in the neighboring bones.
As a result, cranial bones grow by compensating
excessive or stunted growth in their environment.
Evidence for such compensatory growth comes from
craniosynostosis, the premature closure of cranial
sutures. Because growth perpendicular to the fused
suture is restricted, compensatory growth occurs
parallel to the fused suture, primarily in the adjacent
bones (Delashaw et al. 1989; Flaherty et al. 2016).

Clearly, these developmental mechanisms cannot be
inferred from morphometric data alone. But the relative
extents of genetically determined versus mechanically
induced compensatory bone growth can be studied
by contrasting compensatory shape variation among
twins and among unrelated individuals, or in lab
species, among isogenic individuals and within natural
populations. Genetically determined compensatory
variation would be greatly reduced among twins and
in isogenic samples, whereas mechanically induced
compensatory variation would be less affected by genetic
heterogeneity. If compensatory growth is indeed largely
mechanically induced, not genetically, then one would
further expect that within a population the heritability
of cranial shape is higher for large scale features
than for small scale features and also higher for
coordinated variation than for compensatory variation.
Compensatory variation between populations, however,
also would have some genetic basis and, because of its
reduced functional importance, is expected to show a
stronger phylogenetic signal than coordinated variation
and large-scale features.

Compensatory growth appears essential for buffering
developmental, environmental, and also genetic
perturbations, thus enabling a stable, canalized
development (Debat and David 2001; Siegal and
Bergman 2002; Zelditch et al. 2006; Mitteroecker et al.
2012). But developmental mechanisms of compensation
and coordination may also be prerequisites of an
integrated evolutionary change of composite structures,
such as the cranium or pelvis, and constitute a
key component of their “evolvability” (Kirschner
and Gerhart 1998; Hendrikse et al. 2007). Such
anatomical structures typically show a complex
genetic architecture, involving numerous genes with
overlapping and partly opposing pleiotropic effects
(Pavlicev and Wagner 2012). Appropriate genetic
response to directional selection therefore necessitates
a joint allelic change at multiple loci, which may be
impeded by recombination, especially when involving
new mutations. Early responses to selection thus require
the “epigenetic,” mechanically induced integration of
anatomical elements in order to preserve spatial and
functional integrity. These epigenetic processes during
development may later be fixed by genetic assimilation
or remain part of the evolved developmental program.
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