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Abstract: Blast-related mild traumatic brain injury (bmTBI) often leads to long-term sequalae, but
diagnostic approaches are lacking due to insufficient knowledge about the predominant pathophys-
iology. This study aimed to build a diagnostic model for future verification by applying machine-
learning based support vector machine (SVM) modeling to diffusion tensor imaging (DTI) datasets
to elucidate white-matter features that distinguish bmTBI from healthy controls (HC). Twenty sub-
acute/chronic bmTBI and 19 HC combat-deployed personnel underwent DTI. Clinically relevant
features for modeling were selected using tract-based analyses that identified group differences
throughout white-matter tracts in five DTI metrics to elucidate the pathogenesis of injury. These fea-
tures were then analyzed using SVM modeling with cross validation. Tract-based analyses revealed
abnormally decreased radial diffusivity (RD), increased fractional anisotropy (FA) and axial/radial
diffusivity ratio (AD/RD) in the bmTBI group, mostly in anterior tracts (29 features). SVM mod-
els showed that FA of the anterior/superior corona radiata and AD/RD of the corpus callosum
and anterior limbs of the internal capsule (5 features) best distinguished bmTBI from HCs with
89% accuracy. This is the first application of SVM to identify prominent features of bmTBI solely
based on DTI metrics in well-defined tracts, which if successfully validated could promote targeted
treatment interventions.

Keywords: diffusion tensor imaging; mild traumatic brain injury; chronic traumatic encephalopathy;
machine learning; support vector machines

1. Introduction

Traumatic brain injury (TBI) can lead to long-term physical, cognitive, and behavioral
dysfunction [1–3]. Improvised explosive devices are a common cause of TBI in military
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personnel [4–6]. Among TBIs in the United States military, 82% are mild TBI (mTBI),
with blast exposure being the leading cause [7]. The pathophysiology of blast-related
mTBI (bmTBI) is not thoroughly understood, and controversy remains over its long-term
consequences [8,9]. Currently, there are no optimal rehabilitation interventions, in part,
because the mechanism (s) of injury are not fully understood [10]. Mild TBIs typically
go undetected by standard diagnostic approaches, even in individuals with persistent
post-concussive symptoms (PCS) [11–14]. This deficiency underscores the need for more
sensitive techniques that characterize the predominant pathophysiology, which is essential
for accurate diagnosis and targeted interventions.

In recent years, diffusion tensor imaging (DTI) has been used to investigate mTBI [15–18],
as the pathophysiology disrupts microstructural white matter connections [19–21], which are
not visible using conventional anatomical MRI (i.e., T1-weighted, T2-weighted, T2*-weighted,
and fluid-attenuated inversion recovery (FLAIR) sequences) [22,23]. DTI measures in vivo
water diffusion in tissues that are more restricted perpendicular as opposed to parallel
to the fiber directions within axon bundles, thus permitting the local microstructural
characteristics of tissue to be inferred [24,25]. Common metrics derived from anisotropic
diffusivity are fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),
and radial diffusivity (RD) [15,26,27]. Although some research reports significant differ-
ences in patterns of diffusion metrics between healthy control (HC) and bmTBI cohorts,
findings across studies have been inconsistent [15,24,28,29], partly owing to differences
in the post-injury timeframe, which have included acute (<1 month post-injury) [30,31],
subacute/chronic (1 month to 1 year) [32,33], and remote (>1 year) injuries [34–36]. Stud-
ies of military bmTBI, also differ in terms of whether control participants are civilians
or military and whether they have a history of blast exposure [37]. Also, many studies
include bmTBI participants with comorbidities that can influence DTI findings, including
depression and post-traumatic stress disorder (PTSD) [34,36–38]. DTI analytic approaches
also differ amongst studies [34,39,40], including the use of metric(s) that can elucidate
the pathogenesis of white-matter injury, which requires analyses that evaluate not only
the degree of anisotropy, but also the components (AD and RD eigenvalues) of FA and
MD [41,42]. Collectively, these factors can influence DTI outcomes.

Despite the ability of DTI to detect white-matter abnormalities in mTBI at the group
level, its low sensitivity (18–41%) limits its use for individual diagnosis. Most studies of
mTBI have employed a single DTI metric (e.g., FA) in specific white-matter regions, which
can be reliable for comparing two groups, but not for diagnostic categorization [15,24,28].
For example, FA sensitivities for identifying individuals with mTBI were 41% for the
anterior corona radiata, 29% for the uncinate fasciculus, 21% for the inferior longitudinal
fasciculus, 18% for the cingulum bundle, and 29% for the genu of corpus callosum [43].
Another study found that only 26% of mTBI patients could be accurately identified based
on FA in the cingulum, uncinate fasciculus, and anterior limb of the internal capsule [44].
The lack of diagnostic sensitivity impels the need for leveraging more powerful approaches.
Specifically, analytic approaches that evaluate multiple DTI metrics from white-matter tracts
throughout the brain are be needed to understand optimal combinations of metrics from
different brain regions that better distinguish mTBI patients from controls [15,45,46]. In this
regard, machine learning (ML) approaches may pave the way for developing personalized
applications of neuroimaging data [25]. One such approach is support vector machines
(SVM), which can handle classification challenges associated with multivariate datasets
where the number of dimensions can exceed the number of cases [47], which is common in
medicine where obtaining large datasets for some clinical populations can be challenging.

The present study leveraged SVM modeling to uncover optimal combinations of
DTI metrics from multiple tracts that best distinguished white-matter abnormalities in
subacute/chronic bmTBI participants from healthy controls (HC). As our study aimed to
build a diagnostic model for future verification, feature selection and model evaluation
were performed using the same sample, as in many studies of mTBI [29,39,48–50]. Although
the use of nonindependent samples can introduce bias into model evaluation, approaches
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to limiting bias included the selection of the best features to guard against overfitting
of the data [51]. Rather than focusing on a single metric, clinically relevant features
for modeling were selected using voxelwise tract-based analyses that identified group
differences throughout white-matter tracts in five DTI metrics, which together elucidate
the pathogenesis of white-matter injuries. Subsequently, SVM models with cross-validation
were applied to the metrics of these thresholded clusters to identify sets of consensus
features that best classified each participant as either bmTBI or HC. We hypothesized
that the SVM method would enhance sensitivity beyond that of any individual metric
from the tract-based analysis, thereby distinguishing prominent features of mild blast-
related injuries that could potentially provide a promising diagnostic model to guide future
validation studies.

2. Methods
2.1. Participants and Assessments

Participants were 19 HC without a history of TBI and 20 bmTBI with persistent post-
concussive symptoms (PCS). All participants were male combat-deployed active-duty
service members or veterans from the Operation Enduring Freedom/Operation Iraqi
Freedom era. The study was approved by institutional review boards of the VA San Diego
Healthcare System, San Diego, CA, USA and Naval Health Research Center, San Diego,
CA, USA. Participants gave written informed consent for all procedures. Characteristics
of the two groups are described in Table 1. The number of days post-injury ranged
between 130 and 758. Fifteen bmTBI participants were tested 4 months to 1-year post-
injury (subacute/early chronic) and 5 participants were tested 1 to 2 years post-injury
(remote) 28. MRI scans were reviewed by a board-certified neuroradiologist (RRL) and
were negative in all bmTBI participants (see Supplementary Figure S1 for examples). Two
bmTBI participants had a PTSD diagnosis. There were no group differences in age or years
of education.

Table 1. Demographic characteristics and neuropsychological test performances in the control and
bmTBI groups.

Control Group bmTBI Group

Mean SD Mean SD p-Value Cohen’s d

Age 28.00 3.500 27.40 6.227 0.6453 0.1234
Years of education 12.58 0.769 13.05 2.059 0.2635 −0.3324
Months post-injury 10.38 6.271

D-KEFS
Number-Letter Sequencing 11.37 1.383 10.55 1.669 0.1049 0.5374

Letter Fluency 10.79 3.326 8.750 3.093 0.0547 ˆ 0.6356
Category Fluency 11.58 3.097 10.40 2.963 0.2321 0.3894

Category Switching (total
correct) 11.79 2.974 9.800 3.002 0.0447 * 0.6660

Category Switching (total
switching accuracy) 12.05 2.368 10.75 2.100 0.0938 0.5819

WAIS-III
Symbol Search 10.79 3.794 10.55 2.417 0.8145 0.0773

Digit Symbol Coding 10.16 2.754 8.800 2.608 0.1222 0.5073
Group differences were tested using independent t-tests. Neuropsychological measures are expressed as scaled
scores. SD = standard deviation; D-KEFS = Delis-Kaplan Executive Function System; WAIS-III = Wechsler Adult
Intelligence Scale Version 3; * p < 0.05; ˆ subthreshold trend for group differences (0.05 ≤ p < 0.1).

The diagnosis of bmTBI was based on standard Veterans Affairs/Department of
Defense diagnostic criteria [52]: (1) loss of consciousness <30 min or transient confusion,
disorientation, or impaired consciousness immediately after the trauma; (2) post-traumatic
amnesia <24 h; and (3) an initial Glasgow Coma Scale [53] between 13–15. Using a modified
Head Injury Symptom Checklist (HISC) [54], ongoing PCS were assessed for 21 categories
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(Table 2). Participants with persistent symptoms in at least three of the categories were
recruited into the study. Exclusion criteria for study participation included: (1) prior
head injury; (2) history of other neurological, developmental or psychiatric disorders (e.g.,
brain tumor, stroke, epilepsy, bipolar disorder, major depressive disorder prior to injury,
or self-reported diagnosis of learning disability); (3) substance or alcohol abuse (DSM-V
criteria) within the six months prior to the study, based on a clinical interview; (4) currently
taking sedative neuroleptics and hypnotic medications; and (5) suicidal thoughts or wishes,
confirmed in follow-up risk assessment.

Table 2. Percentage symptoms endorsed on the HISC ± in the bmTBI and control groups.

Symptoms bmTBI (%) Control (%) Symptoms bmTBI (%) Control (%)

Headaches 90.0 5.26 Lack of spontaneity 0.00 0.00
Dizziness 70.0 5.26 Affective lability 10.0 5.26
Fatigue 50.0 10.5 Depression 20.0 5.26

Memory difficulty 85.0 15.8 Concentration 10.0 10.5
Irritability 60.0 15.8 Bothered by noise 0.00 0.00

Anxiety 55.0 0.00 Bothered by light 0.00 5.26
Sleep problems 60.0 5.26 Coordination/balance 15.0 10.5

Hearing difficulties 60.0 10.5 Motor difficulty 10.0 0.00
Visual difficulties 10.0 0.00 Speech difficulty 0.00 5.26

Personality
changes 25.0 5.26 Numbness/tingling 20.0 0.00

Apathy 5.00 0.00
± HISC = modified Head Injury Symptom Checklist (Alvin Jr et al., 1984).

Subtests from the Delis-Kaplan Executive Function System (D-KEFS) [55] and the
Wechsler Adult Intelligence Scale Version 3 (WAIS-III) [56] respectively assessed executive
function and processing speed (Table 1), two cognitive domains that are vulnerable in
mTBI [57]. The Number-Letter Sequencing and Category Switching subtests test to measure
cognitive flexibility and set shifting. The Letter Fluency and Category Fluency subtests
assess phonemic and semantic retrieval. Processing speed was assessed by the Symbol
Search and Digit Symbol Coding subtests. Tests were performed in a single session, within
one week of the MRI session. All scores were age-corrected scaled scores from normative
data.

2.2. Imaging Protocols

Imaging was conducted at the UCSD Radiology Imaging Laboratory using a Gen-
eral Electric (Chicago, IL, USA) 1.5 T HD Excite Twin Speed MRI system with an eight-
channel head coil. T1-weighted high-resolution anatomic images were collected (Spoiled
Gradient Recalled, TR = 10.6 milliseconds (ms), TE = 43.8 ms, FOV = 24 cm, slice thick-
ness = 1.2 millimeter (mm), NEX = 1, Flip Angle = 10◦). Two-dimension T2-weighted
images were AC/PC aligned and acquired with a fractional fast spin echo sequence (FRFSE-
XL, TR = 6462, TE = 86 ms, number of slices = 33 with no gap, slice thickness = 4 mm,
FOV = 25.6 cm, matrix = 320 × 256). The imaging protocol also included axial T2*-weighted
images (TR = 500 ms, TE = 30 ms, number of slices = 33, slice thickness/space = 4 mm/4.4 mm,
matrix = 320 × 192) and axial FLAIR images (TR = 8800 ms, TI = 2200 ms, TE = 80 ms,
FOV = 25 cm, number of slices = 25 with no gap, slice thickness = 4 mm, matrix = 320 × 224).
DTI images were acquired in the axial plane using a single-shot EPI sequence with diffusion
encoding along 51 directions, b-value = 1000 s/mm2, five non-diffusion weighted image (b0),
56 slices, thickness = 2.5 mm, TR = 15.1 s, TE = 80.4 ms, matrix = 96 × 96 mm (automatically
re-gridded onto a 128 × 128 matrix), FOV = 24 cm, and voxel size 1.875 × 1.875 × 2.5 mm3.
The same number of slices with no gap were used for all participants. Study participants
underwent two DTI acquisitions to increase the signal-to-noise ratio and ensure at least
one artifact-free scan. The acquisition time for each DTI scan was 13 min.
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2.3. DTI Analyses

DTI analyses were conducted using the Functional Magnetic Resonance Imaging of
the Brain Software Library (FSL) version 4.1.5 (http://www.fmrib.ox.ac.uk/fsl, accessed
on 10 February 2019) (Supplementary Materials 1.0 for details). For each participant,
images from each DTI acquisition were concatenated into a single dataset and corrected
for eddy currents and motion by registering all brain volumes to the first non-diffusion
weighted image using a rigid body transformation (no rotation). By avoiding rotations
in our motion correction (i.e., we only considered motion in the X, Y, and Z direction),
issues with changing the encoding direction prior to the analysis were avoided. Each DTI
scan was visually inspected to ensure the absence of susceptibility artifacts and significant
rotation in the brain volume. If significant motion was present, the entire brain volume
was removed from the dataset (Supplementary Materials 2.0 for details). Data were fit
to the diffusion tensor model for each voxel using FMRIB’s Diffusion Toolbox (FDT) [58].
The tensor was then diagonalized to three eigenvalues which are used to calculate FA, RD,
MD, and AD. We also analyzed the AD

RD ratio to evaluate the shape (length over width) of
the fiber [59], since FA alone is insufficient to confirm specific pathologic mechanisms of
mTBI [42] such as inflammation or axonal cytotoxic edema in mTBI [50,60–62].

Voxel-wise statistical analyses were carried out using track-based statistical analyses
(TBSS) [63]. First, a study-specific FA template image was produced by aligning all partici-
pants’ FA data to Montreal Neurological Institute (MNI) 152 standard space by non-linear
registration. From the FA template, a white matter skeleton was created with an FA thresh-
old > 0.20 to represent the core of white-matter tracts common to all participants. Group
differences in FA within the skeleton were tested by applying the FSL general linear model
(GLM) tool. Permutation testing (5000) was then conducted to establish voxel-by-voxel
p-values to quantify group differences in the DTI parameter (FA). In each permutation,
group differences were evaluated by nonparametric two-sample t-tests on MNI152 stan-
dard space. Threshold Free Cluster Enhancement [64] was used to identify clusters of FA
that significantly differed between the two groups (familywise error rate, FWE, corrected
p < 0.05) after permutation statistical testing). Using the same registration matrix for FA
(standard TBSS procedure), AD, RD, MD, and AD/RD were registered to the FA skeleton
in MNI152 standard space and then voxel-wise tests for group differences in these metrics
were conducted.

2.4. SVM Analyses with Cross Validation

DTI features for the SVM analyses were selected using the following procedures
(Supplementary Figures S2 and S3). First, clusters that showed significant group differences
in the most representative DTI metric were identified as voxels located within a white-
matter tract defined by the International Consortium of Brain Mapping (ICBM) DTI-81
atlas [65]. We selected FA as the representative metric since the largest number of voxels
were found for this metric in tests for group differences. Next, we included the remaining
DTI metrics that showed significant group differences. The features for the SVM analyses
for MD, AD, RD, and AD/RD were those lying within the representative FA cluster mask.
The mean DTI metric (i.e., averaged across voxels within the cluster mask) was computed
for each cluster that showed significant group differences, which served as the inputs into
the SVM models.

Stepwise SVM-based models were implemented to distinguish bmTBI from HCs based
on linear combinations of multiple diffusion metrics from clusters in multiple white-matter
regions as identified above (2.4). Supplementary Figures S2 and S3 show a flowchart
and visualization of the procedure to construct the classification model. The complete
procedure includes one algorithm and three routines (see Supplementary Materials 3.0).
The core concept of the procedure is to try all possible combinations of the DTI metric set
and select the optimal combination (s). For each subset of metrics, features for classification
are selected by removing the least relevant feature recursively.

http://www.fmrib.ox.ac.uk/fsl
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Cross-validation was used to evaluate the performance of a built model with a small
dataset [66]. Cross-validation is a robust technique that provides enhanced confidence of
ML classification results through the validation of testing datasets with the model built
on training datasets [49,51]. Thus, combining SVM together with cross-validation can
potentially generate a robust model of features that best separate bmTBI participants
from HC. In this study, we randomly leave five subjects out (k = 5) in each validation
(10,000) because normally, the segmentation of validation data in small datasets is around
10−15% [67]. The process randomly selects five samples out of the combined bmTBI
and HC cohorts and calculates the averaged feature weights, correctness, sensitivity, and
specificity across validations (Supplementary Materials 3.0).

2.5. Correlations between SVM Model Features and Behavioral Variables

The Statistical Package for the Social Sciences (SPSS version 28) was used to perform
Pearson correlations, which tested for relationships between the DTI features in the optimal
SVM model and neuropsychological variables that showed significant group differences
(false discovery rate adjusted). These correlation analyses were conducted for the combined
bmTBI and HC groups. For the bmTBI group only, the same DTI features were also
correlated with total number of PCS and days post-injury.

3. Results
3.1. Neuropsychological Test Performance

Mean neuropsychological test performances fell within the average range for both
groups (Table 1). Scores on Category Switching (total correct responses) were significantly
lower in the bmTBI than the HC group (p < 0.05). A subthreshold trend for group differences
was observed for Letter Fluency (p = 0.055).

3.2. TBSS Results

Among the five metrics, we found significant group differences in FA, RD, and AD/RD
(Table 3), but not MD or AD. FA (Figure 1a) and AD/RD (Figure 1c) were significantly
higher in the bmTBI group than the HC group in the genu and body of the corpus callosum
(gCC/bCC), the anterior corona radiata (ACR), the anterior and posterior limbs of the
internal capsule (ALIC/PLIC), and the superior corona radiata (SCR) (p < 0.05, FWE
corrected). RD was reduced in the bmTBI group in all aforementioned regions except the
left PLIC (Figure 1b).

For all white-matter features listed in Table 3, power analyses were performed us-
ing G*Power [68]. All features showed power > 0.80 at two-tailed α = 0.05 level, with
the exceptions of the left ACR RD feature (power = 0.71) and the left PLIC RD feature
(power = 0.37).

3.3. SVM with Cross-Validation Results

Figure 2 (top) displays the tracts from which aberrant DTI features in bmTBI from
the TBSS analyses (Table 3) were extracted for the SVM analyses. We chose FA as the
representative metric since FA had the largest number of voxels showing significant group
differences in TBBS analyses. We then selected the voxels lying within significantly in-
creased FA and the ICBM-DTI-81 white-matter atlas as the mask for generating FA, RD,
and AD/RD features for stepwise SVM modeling. Altogether, 29 features were selected for
SVM modeling (Table 3).
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Table 3. Group differences in DTI metrics of white-matter features.

Table Group FA p Value RD ± p Value AD/RD p Value Voxels

lACR
HC 0.44 ± 0.024

<0.001
0.54 ± 0.027

0.0098
2.04 ± 0.11

<0.001
bmTBI 0.47 ± 0.018 0.52 ± 0.021 2.15 ± 0.08 675

rACR
HC 0.45 ± 0.029

<0.001
0.56 ± 0.033

<0.001
2.11 ± 0.13

<0.001
bmTBI 0.48 ± 0.024 0.53 ± 0.025 2.24 ± 0.13 1073

lALIC
HC 0.54 ± 0.015

<0.001
0.47 ± 0.018

<0.001
2.63 ± 0.10

<0.001
580

bmTBI 0.56 ± 0.013 0.45 ± 0.014 2.83 ± 0.10

rALIC
HC 0.57 ± 0.020

<0.001
0.45 ± 0.023

0.0026
2.80 ± 0.14

<0.001
364

bmTBI 0.60 ± 0.019 0.43 ± 0.018 3.03 ± 0.16

lPLIC
HC 0.62 ± 0.017

<0.001
0.41 ± 0.016

0.0608
3.18 ± 0.14

<0.001
bmTBI 0.64 ± 0.019 0.40 ± 0.021 3.40 ± 0.23 1107

rPLIC
HC 0.63 ± 0.017

0.0015
0.40 ± 0.017

0.0056
3.29 ± 0.17

<0.001
bmTBI 0.65 ± 0.020 0.38 ± 0.020 3.54 ± 0.26 1472

lSCR
HC 0.45 ± 0.027

<0.001
0.53 ± 0.023

0.0058
2.10 ± 0.13

0.0088
bmTBI 0.48 ± 0.027 0.50 ± 0.022 2.23 ± 0.15 260

rSCR
HC 0.45 ± 0.022

0.0026
0.53 ± 0.022

0.0215
2.15 ± 0.10

0.0067
bmTBI 0.48 ± 0.026 0.51 ± 0.026 2.27 ± 0.14 247

gCC
HC 0.64 ± 0.032

0.0014
0.46 ± 0.043

0.001
3.45 ± 0.32

<0.001
bmTBI 0.68 ± 0.024 0.42 ± 0.029 3.94 ± 0.35 222

bCC
HC 0.66 ± 0.028

<0.001
0.43 ± 0.042

<0.001
4.08 ± 0.39

0.0031
bmTBI 0.69 ± 0.020 0.39 ± 0.028 4.41 ± 0.32 170

Group differences in diffusion metrics were tested using independent t-tests. l = left; r = right; ACR = anterior
corona radiata; ALIC = anterior limb of internal capsule; bCC = body of corpus callosum; gCC = genu of corpus
callosum; PLIC = poster limb of internal capsule; SCR = superior corona radiata; ± RD is expressed in the unit of
mm2/s. FA and AD/RD are unitless.

Figure 2 (bottom) illustrates how SVM separates the two groups using the two
dominant DTI features (i.e., largest weightings) to draw the separation. Supplementary
Figure S1b demonstrates the averaged error in each step after recursively removing the least
contributing feature. Experiments to build the SVM model were conducted with both the
inclusion and exclusion of the AD/RD metric. Without AD/RD, in which the four standard
DTI metrics were considered, the FA-only model was the best SVM model, showing 75%
accuracy, 82% sensitivity, and 79% specificity. Despite group differences in RD, the RD-only
model achieved 72% accuracy, 77% sensitivity, and 64% specificity. Furthermore, when
both FA and RD were input features in an SVM model, the FA-only model was output by
the SVM algorithm. With both FA and AD/RD as input features, performance of the SVM
model was boosted, showing 89% accuracy, 90% sensitivity, and 88% specificity.

Table 4 lists the five DTI features and associated weightings that were selected by
our best stepwise SVM model. The top three features based on their weightings were
dominated by AD/RD for left ALIC, gCC, and right ALIC. The fourth and the fifth features
were FA of the right ACR and the left SCR. In the SVM model, AD/RD for the left ALIC
took on the heaviest weighting.
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Figure 1. Significant group differences in FA, RD, and AD/RD in white-matter fiber tracts. In all 
figures, green skeletons show the averaged skeletonized FA of the HC and bmTBI participants on 
both sagittal (top) and axial (bottom) views. Red regions and arrows/tract labels designate the loca-
tions of the voxels that showed statistically significant group differences in a diffusion metric (FEW 
corrected p value < 0.05). (A) Tracts showing significantly higher FA in the bmTBI group than the 

Figure 1. Significant group differences in FA, RD, and AD/RD in white-matter fiber tracts. In all
figures, green skeletons show the averaged skeletonized FA of the HC and bmTBI participants on
both sagittal (top) and axial (bottom) views. Red regions and arrows/tract labels designate the
locations of the voxels that showed statistically significant group differences in a diffusion metric
(FEW corrected p value < 0.05). (A) Tracts showing significantly higher FA in the bmTBI group than
the healthy control group. (B) Tracts showing significantly decreased RD in the bmTBI group in
comparison to the HC group. (C) Tracts showing significantly higher AD/RD in the bmTBI group
than in the HC group. ACR = anterior corona radiata; bCC = body of corpus callosum; gCC = genu
of corpus callosum; LIC = anterior limb of internal capsule; SCR = superior corona radiata.
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Figure 2. DTI features and inputs into the supervised vector machine (SVM) model. The top figure
displays the locations of candidate features that were used to build the stepwise SVM model. Green
skeletons are the averaged skeletonized FA of the control and bmTBI groups. Red regions show
the mapping of tract locations for the features. The leftmost column (sagittal views) shows the two
features generated from the corpus callosum, namely the bCC (top) and gCC (bottom). The remaining
columns (axial views) display the anatomical locations of the ACR, ALIC, PLIC, and SCR features
for the right (top row) and left (bottom row) hemispheres. The graph below visualizes how a plane
separates controls and bmTBI participants in SVM with the x-axis being normalized AD/RD of
left ALIC and the y-axis being normalized AD/RD of gCC. ACR = anterior corona radiata; ALIC =
anterior limb of internal capsule; bCC = body of corpus callosum; gCC = genu of corpus callosum;
PLIC = posterior limb of internal capsule; SCR = superior corona radiata.
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Table 4. Features and performances of the best SVM model.

Model Accuracy Sensitivity Specificity Kernel Features: Weightings
(Mean ± Standard Deviation)

FA and
AD/RD 89% 90% 88% Linear

Normalized
AD/RD lALIC: (1.43 ± 0.16)
AD/RD gCC: (0.84 ± 0.14)

AD/RD rALIC: (0.77 ± 0.14)
FA rACR: (−1.08 ± 0.15)

FA lSCR: (0.69 ± 0.12)
l = left hemisphere; r = right hemisphere; ACR = anterior corona radiata; ALIC = anterior limb of internal capsule;
gCC = genu of corpus callosum; SCR = superior corona radiata.

3.4. Correlations between the SVM Features and Behavioral Variables

In the entire sample, weighted combinations of DTI features from the best SVM model
did not significantly correlate with neuropsychological test scores, nor did individual
features from this model. SVM features were also not correlated with total number of PCS
and days post-injury in the bmTBI group.

4. Discussion

We identified an optimal linear combination of DTI features that distinguished bmTBI
patients from HC with 89% overall accuracy, 90% sensitivity, and 88% specificity in cross-
validation tests. The most discerning DTI features of bmTBI consisted of abnormally
increased FA in right ACR and left SCR together with elevated AD/RD in the gCC and
ALIC bilaterally. Despite high classification accuracy, SVM features failed to correlate
with neuropsychological test scores or clinical variables, possibly due to relatively intact
executive functioning of the bmTBI group on most tests [69], although statistical tests may
also have been underpowered given the relatively small sample sizes.

To our knowledge, this is the first study to use ML to distinguish bmTBI and HC solely
based on DTI features. Importantly, feature selection was constrained by outcomes from
tests of group differences in five DTI metrics to select features that were clinically relevant
for diagnostic modeling and to avoid overfitting of the data [51]. Vergara’s group also used
an SVM approach to characterize white-matter features in noncombat mTBI patients [48].
Both FA and resting-state functional network connectivity (rsFNC) served as features in
their models. They reported that functional connectivity within the default mode network
provided the best classification accuracy (84%) followed by FA (75.5%) as indexed by a Z
score that represented FA abnormalities throughout spatially heterogeneous white-matter
relative to the control group. Their findings are similar to ours in terms of both increased FA
in mTBI and our 75% correct classification for FA alone, despite measuring FA from clusters
within skeleton tracts. Yet modeling of both rsFNC and FA failed to boost classification
accuracy (74.5%) in their study, whereas our classification accuracy (89%) was improved
by combining the AD/RD ratio and FA features. The performance of our SVM model
indicates that multivariate combinations of different diffusion metrics in well-defined tracts
are potentially potent markers of bmTBI. Our model also identified the most discerning
abnormal anatomical tracts that together generated the best SVM model, which was not
investigated by Vergara’s group.

4.1. Abnormal Diffusivity in bmTBI

Increased FA coupled with decreased RD are probably due to the deformation of
the microstructural white-matter regions caused by blast, which can stretch and twist the
axons [70,71]. This distortion is likely to tighten white-matter fiber bundles and disrupt
neurofilaments and microtubules that elongate down the axons. Secondary to the com-
pacted tightened axons and disrupted neuronal substances, the axons swell and reduce
extracellular space [72], thereby restricting water diffusion perpendicular to axons [72].
Such restriction limits the movement of water molecules, leading to abnormally decreased
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RD, increased AD/RD, and by inference, increased FA [50]. Our results align with studies
of acute mTBI in adolescents [73,74], acute/subacute mTBI [50] and bmTBI with comorbid
PTSD [30], and acute/chronic sports-related concussions [75]. Rats and swine with blast-
induced TBI also show increased FA [70,76]. Moreover, rats with concussive injury show
increased FA and decreased RD, but normal AD relative to rats with sham injury [42].

The post-injury timeframe in our bmTBI cohort was somewhat constrained (four
months to two years) to reduce heterogeneity on a variable that influences neuroimaging
outcomes. For example, abnormally increased and decreased FA have been found in
bmTBI during acute post-injury periods of less than four months [28,30,31] and after one
to 12 months post injury [30,33]. Yet for people with remote post-injury times longer than
two years, FA is typically decreased in bmTBI [34,36,40,77–79]. Collectively, FA appears
to decrease for post-injury periods longer than two years, whereas for shorter post-injury
durations, discrepant findings could be explained by different fiber recovery stages in
subacute injuries [71] and the long term misalignments of fibers and axonal degeneration
in early-chronic mTBI [80]. Future research is needed to systematically track longitudinal
changes in white-matter diffusivity including DTI components (AD, RD, AD/RD) that can
elucidate the recovery from pathological mechanisms of blast injuries.

4.2. Optimal Features of bmTBI

Of the 29 DTI features selected for SVM modeling, five features in tracts that best
distinguish bmTBI from HCs involved the ALIC, ACR, SCR, and gCC, which aligns with the
preponderance of abnormal diffusivity in anterior regions of in TBI [81–84]. Indeed, frontal
areas are the most vulnerable to blast exposures owing to the design of military helmets [81,83].
Corpus callosum injury is also common because non-impact rotational acceleration from the
lateral direction can produce uniform traumatic callosal injury [85–87]. The damage seen in
corona radiata is also consistent with a rotational shearing mechanism [43].

Unlike many studies, we included AD/RD as a scalar metric, as recommended by
others [59] who found that AD/RD in more cylinder-like tracts best differentiated older
and younger adults. The addition of AD/RD to the SVM model boosted classification
accuracy of bmTBI from 75% to almost 90%. As water diffusivity in corpus callosum
and corticospinal tracts are better approximated as cylindrical diffusion, AD/RD is an
important metric that should be used in DTI research.

Our DTI feature selection method is biologically reasonable and computationally
efficient. The choice of features was based on well-accepted anatomical templates, and our
SVM approach focused on regional group differences in white-matter tracts, rather than
whole-brain white matter, because injuries in bmTBI are typically focal [88]. By using the
average metric of voxels within a tract as a feature to reduce the dimensionality of the data
and minimize overfitting of the SVM model [89], this also reduced computational costs,
which otherwise become large and difficult to handle [90].

4.3. Limitations

Limitations include the small bmTBI and control cohorts, which could bias the selection
of abnormal clusters for the SVM analyses. Specifically, we applied feature selection to the
whole dataset in a supervised mode, which can bias the SVM approach. Ideally, feature
selection is applied using the SVM training dataset, and then SVM performance is evaluated
using the testing dataset. The consistency of the extracted DTI features across the cross-
validation folds can then be evaluated. This approach was not used in the present study
owing to our small sample size, for which instability of the selected features may exist
if not using the whole data set. An alternative approach is to test the robustness of the
selected features using new samples, which is what we recommend for future studies. In
this regard, larger samples may uncover regions of interest not identified in our study. At
the same time, our results may be more specific to mild blast injuries owing to a more
homogeneous bmTBI cohort than past studies, with only two patients having PTSD and
none with depression or other psychiatric conditions. Likewise, age and years education
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did not differ between our bmTBI and controls, who were also Veterans/military personnel
with a history of blast exposure, which adjusts for potential effects of occupational exposure
to catastrophic experiences on neurotrauma. Second, owing the high comorbidity of PTSD
in veterans with blast injuries, two participants with comorbid bmTBI-PTSD were included
in our study, as considerable overlap would be expected in the white-matter tracts that
are affected by a blast force, regardless of PTSD. Indeed, a bmTBI study of people with
and without comorbid PTSD reported distributed white-matter pathology in tracts that
overlapped with our study, yet pathology was not related to a diagnosis of PTSD or
depressive symptoms [77]. Moreover, in univariate tract-based analyses we failed to find
group differences in FA of the cingulum, which is common in PTSD [34,91–93]. Altogether,
it is unlikely that our results are confounded by the inclusion of two comorbid participants.
Still, relationships between bmTBI and PTSD are not well understood [94], and future
studies are needed that compare bmTBI, PTSD, and comorbid cohorts to fully understand
similarities and differences in the pathogenesis of white-matter disturbances amongst these
conditions. Third, similar to many studies of mTBI or bmTBI [29,39,48,49] nonindependent
samples were used to define DTI abnormalities and estimate classification accuracy, which
can overestimate diagnostic utility. Our focus on selecting clinically relevant features for
modeling may have minimized this problem, together with cross-validation of SVM models
wherein consensus features defined diagnostic accuracy [49,51]. Nonetheless, this is the
first application of SVM using DTI metrics, thus replication cohorts will be needed to
validate the sensitivity and specificity of the optimal SVM model generated in our study.
More generally, replication is always important as bmTBI cohorts often differ in the extent
to which they present with comorbidities (e.g., PTSD, depression) or other features (e.g.,
prior head injury, positive MRI) that can affect DTI results.

Heterogeneous injuries across individuals from diverse mechanical forces may also play
a role in discrepant findings. For this reason, some studies employ techniques that quantify
normal and abnormal FA throughout spatially heterogeneous white matter [48]. In contrast to
our approach, however, classification accuracy is modest (≈75%) possibly due to using FA
as the sole metric and/or absence of information about the spatial location of injuries. Our
results indicated that the combination of multiple DTI metrics in well-defined tracts is essential
for improving diagnostic accuracy. Moreover, the ROIs uncovered in our study rested in
frontal tracks, which are the most vulnerable to blast exposures [81,83,85–87], and therefore
may be the most potent markers of bmTBI, irrespective of abnormalities in other white-
matter tract injuries. Future studies comparing tract-based and spatially heterogeneous
approaches, which employ multiple DTI metrics, would elucidate the relative value of
these approaches in handling diagnostic challenges associated with heterogeneous injuries
across individuals.

5. Conclusions

DTI biomarkers derived from modeling in the present study SVM differentiated bmTBI
and HCs with high sensitivity and specificity. These preliminary findings indicate that
the most potent discriminating features rested in anterior tracks for which AD/RD and
FA were abnormally increased. The high classification accuracy of these features points to
their potential for diagnosis, which we plan to validate in larger, independent cohorts. If
our findings are successfully validated, this knowledge could promote treatment interven-
tions such as transcranial magnetic or electrical stimulation. For example, we found that
transcranial electrical stimulation treatments in people with chronic mTBI from blast and
non-blast injuries markedly reduced or eliminated persistent post concussive symptoms
and reduced abnormal slow-waves in approximately the same brain areas that showed
abnormal slow-wave generation prior to treatment [95]. Transcranial magnetic stimulation
also reduces post-concussive depression, headaches, and may improve cognition [96–99].
Both stimulation approaches, however, are not typically guided by knowledge about spe-
cific regions of brain damage. Rather, stimulation is usually administered at the same
anatomical site in all participants, which may limit treatment effectiveness for some pa-
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tients. Knowledge about the most prominent loci of abnormal white matter disturbances
may therefore guide the development of stimulation targets that are optimal for individual
patients. Lastly, longitudinal changes in regional diffusion metrics should also be tracked
to elucidate mechanisms of recovery, which could also have important implications for
clinical interventions.
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