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Over the past years, invisibility cloaks have been extensively discussed since transformation optics emerges.
Generally, the electromagnetic parameters of invisibility cloaks are complicated tensors, yet difficult to
realize. As a special method of transformation optics, conformal mapping helps us design invisibility cloak
with isotropic materials of a refractive index distribution. However, for all proposed isotropic cloaks, the
refractive index range is at such a breadth that challenges current experimental fabrication. In this work, we
propose two new kinds of logarithm conformal mappings for invisible device designs. For one of the
mappings, the refractive index distribution of conformal cloak varies from 0 to 9.839, which is more feasible
for future implementation. Numerical simulations by using finite element method are performed to
confirm the theoretical analysis.

ransformation optics (TO) has been a powerful tool to design versatile devices to manipulate the electro-

magnetic field, started from two pieces of work on invisibility cloak"?. TO’s fundamentality is that there is a

form invariance under coordinate transformations in Maxwell’s equations. As a special method of TO,
conformal mapping' gives us a simpler way to control light rays/waves in two dimensions by using isotropic
materials. Meanwhile, quasi-conformal mappings, another numerical method has also been applied to design
isotropic devices such as carpet cloaks®'>. Numerous designs have been proposed based on different kinds of
conformal mappings, such as invisibility cloak based on Zhukowski conformal mapping"'*'*, conformal lenses
based on power conformal mapping'®, wave bend device based on logarithm conformal mapping'®, directional
emitter based on Mobius conformal mapping'’, and unidirectional radiation devices based on logarithm con-
formal mapping with a linear term'®. As far as we know, only two of these devices have been implemented'**’ to
date. What renders experimental fabrication challenging? Among a clutch of hindrances, it is the board range of
the refractive index distribution. For example, in the cloaking design, refractive index in the first conformal cloak'
ranges from 0 to 36. Recently, the maximum value has been dramatically reduced to 13 by Wu et al'*. However, it
is still difficult to realize in practice. Given that, it is critical to further reduce the maximum value.

In this paper, we propose two new kinds of logarithm conformal mappings for cloaking design, inspired by the
mapping used in Ref. 18. We find several interesting properties in the logarithm conformal mappings after
introducing two dual logarithm terms with one linear term. We plot virtual space and physical space of both
mappings to present their geometry. With two kissing mirrored Maxwell’s fish-eye lenses applied in the second
Riemann sheet of the virtual space, we can design a conformal cloak with a refractive index profile ranging from 0
to 9.839, which eases experimental implementation. All the numerical simulation results are obtained by the
commercial FEM software COMSOL.

Results

To begin with, let’s briefly review TO by using conformal mapping""?, which relates to complex analytic functions
widely employed in two dimensional problems. It maps virtual space to physical space, and vice versa. Here we
regard w complex plane (w = u + vi) as virtual space and z complex plane (z = x + yi) as physical space. We
assume virtual space with a refractive index distribution #’(4,v) and physical space with a refractive index
distribution n(x,y). The governing equation of amplitudes i of the two polarizations of light in physical space
is Helmholtz equation’,

1,13

@2+ 6; +n(x,y) kW = (40,05 + n(x,y)* k)W =0. (1)

where  denotes the electric-field component, and k is wave vector. Under a conformal mapping w = w(z),
Helmholtz equation in virtual space changes into,
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(0% + 0%+ ' (w,v) KW = (40,05, + ' (uv)’ K =0.  (2)

The relationship of refractive index distribution in virtual space and
that in physical space is written as,

n(xy)=n'(uv)

ZLZ”’. 3)

As Helmbholtz equation can be derived from Maxwell’s equations, the
physics law of Helmholtz equation is invariant in virtual space and
physical space under conformal mapping®'. In this paper, we only
consider transverse electric (TE) polarized wave for simplicity and
assume that the permeability is 1.

Now, we introduce two new kinds of logarithm conformal map-
pings. The first is,

w(z) =z+4Log[z— 1] —4Log[z+1], (4)
while the second is,
w(z) =z+4Log[z+ 1] —4Log[z—1]. (5)

In the above two mappings, dual logarithm terms (Log[z + 1] and
Log[z — 1]) and one linear term (z) are included. The coefficients of
dual logarithm terms are both 4. The positions of the singularities
((1+0*i) and (-1+0%*i)) are symmetric to the origin point. The rela-
tionship between virtual space and physical space of the two new
logarithm conformal mappings is shown as follows.

In the first mapping written as Eq. (4), the contours of real part and
imaginary part on z plane are shown in Fig. 1(a) (physical space),
while the contours of u and v on w plane are plotted in Fig. 1(b)
(virtual space). Virtual space (Fig. 1(b)) consists of two Riemann
sheets, with the upper sheet an infinite complex plane (meshed with
black lines) and the lower sheet a finite complex plane (meshed with
red lines). The width of the lower sheet in v direction is 87 in Fig. 1(b).
These two sheets are connected with a branch cut (the yellow line)
along v direction. In Fig. 1(b), the length of the yellow line branch cut
is I} = 11.07394. No boundary line is drawn in the upper sheet to
represent its infinity both in u and v direction, while two green

boundary lines are sketched in the lower sheet to denote its finitude
in v direction but infinity in u direction. Because of this conformal
mapping, one point at the yellow line branch cut in virtual space is
mapped to two points at a yellow circle-like closed curve in physical
space (see in Fig. 1(a)). Therefore, the yellow line branch cut blows up
in u direction to become the closed curve. The upper Riemann sheet
in virtual space is mapped to the region outside the closed curve in
physical space, while the lower one in virtual space is mapped to the
region inside the closed curve in physical space. After understanding
the relationship between virtual space and physical space of the first
conformal mapping, let us see how light rays travel in both spaces.
One light ray (blue line with arrows) in Fig. 1(b) will enter the
lower sheet to the infinity if it impinges the branch cut.
Corresponding to physical space in Fig. 1(a), the light ray (blue
curve with arrows) will enter one of the singularities once it
impinges the closed curve. As for another light ray (purple line
with arrows) in Fig. 1(b), it will go ahead without touching the
branch cut. Corresponding to physical space in Fig. 1(a), the light
ray (purple curve with arrows) continues its way outside the closed
curve. It is noted that if light ray enters the lower sheet obliquely
(i.e., not parallel to the green boundaries), it will impinge the
boundaries. Due to the logarithm mapping, the finite space in
the lower sheet is a periodical function in v direction. Therefore,
after impinging one of the boundaries, the ray will appear from
another boundary without changing its propagation direction, see
Fig. S1 (b) in the Supplementary Information. We can actually re-
plot the virtual space of Fig. 1(b) with an equivalent diagram in
Fig. 1(c). The cylindrical surface represents the lower sheet. The
perimeter of the cylindrical surface equals to the width of the lower
sheet in v direction. The two green boundary lines in Fig. 1(b) are
now corresponding to the green generatrix in Fig. 1(c). If light ray
enters the lower sheet parallel to the green generatrix, it will continue
to propagate in a straight line at the cylindrical surface, as shown by
the blue line with an arrow in Fig. 1(c). However, if light ray enters
the lower sheet obliquely, it will propagate in a helix curve at the
cylindrical surface, as shown in Fig. S1(c). In physical space, it will
enter one of the singularities in a spiral curve, see in Fig. S1(a).

Figure 1 | Virtual space and physical space for two new kinds of logarithm conformal mappings. (a) Physical space of the first mapping. (b) Virtual
space of the first mapping. (c) The equivalent diagram of virtual space of the first mapping. (d) Physical space of the second mapping. (e) Virtual space of
the second mapping. (f) The equivalent diagram of virtual space of the second mapping.
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In the second mapping as Eq. (5), similar to the first one, the
contours of real part and imaginary part on z plane are shown in
Fig. 1(d) (physical space), while the contours of u and v on w
plane are plotted in Fig. 1(e) (virtual space). Virtual space
(Fig. 1(e)) consists of two Riemann sheets, with the upper one
also an infinite complex plane (meshed with black lines) and the
lower sheet a finite complex plane (meshed with red lines). The
width of v direction is 8n in Fig. 1(e). The two sheets are con-
nected with a branch cut (a yellow line) along u direction, differ-
ent from that in the first case. In Fig. 1(e), the length of the yellow
line branch cut in virtual space is [, = 11.54518. Because of this
conformal mapping, one point at the yellow line branch cut in
virtual space is mapped to two points at the yellow circle-like
closed curve in physical space. Again, the yellow line branch cut
blows up in v direction to become a closed curve. The upper
Riemann sheet in virtual space is mapped to the region outside
the closed curve in physical space, while the lower one in virtual
space is mapped to the region inside the closed curve in physical
space. Similar to the first mapping, we can also re-plot the virtual
space of Fig. 1(e) with an equivalent diagram in Fig. 1(f). After
understanding virtual space and physical space of the second con-
formal mapping, we can derive the trajectory of light rays in both
spaces. If a light ray (blue line with arrows) normally enters the
lower sheet through the branch cut, it will impinge one of the
boundary of the lower sheet and appear at another boundary, as
shown in Fig. 1(e). After that it will impinge the branch cut again
at the same point and come back to the upper sheet. If we describe
this propagation in the equivalent diagram, the light ray will
become a circle at the cylindrical surface, as shown in Fig. 1(f).
Corresponding to Fig. 1(d) in physical space, it (blue curve with
arrows) will pass through the closed curve twice. As for another
light ray (purple line with arrows) in Fig. 1(d), it will go ahead
without touching the branch cut. Corresponding to Fig. 1(f) in
physical space, it (purple curve with arrows) continues its way
outside the closed curve. If light ray enters the lower sheet obli-
quely, similar to the first mapping, it will impinge one of the
boundaries of the lower sheet, and appear at another boundary,
as shown in Fig. S1(e). Sometimes, it will come back to the branch
cut at a different point and enter the upper sheet again. Or, it will
not come back but continue to propagate in the lower sheet. In the
equivalent diagram, the propagation is in helix curves, as shown in
Fig. S1(f). In physical space, sometimes the light will impinge the
closed curve twice and continue to propagate. Or, it will enter one
of the singularities in a spiral curve, see in Fig. S1(d).

In these two conformal mappings, the second sheet is finite in one
direction because of the periodical property of the logarithm terms,
which is quite different from the Zhukowski conformal mapping
mostly used for cloaking design"'*'*. We notice that both mappings
allow us to put two kissing mirrored Maxwell’s fish-eye lenses (pro-
posed by Wu et al*) in the second sheet, leading light rays to return to
the upper sheet with their positions and directions conserved. The
refractive index profile of a mirrored Maxwell’s fish-eye lens with a
radius ry is written as,

2
2’

1+ —
+r02

n= r<ty , (6)

which helps us make a perfect imaging*. The refractive index of a
mirrored Maxwell’s fish-eye lens ranges from 1 at the outer bound-
ary to 2 at the center. It is worth mentioning that many kinds of
refractive index profile™'** could be used in the second sheet for
designing invisibility cloaks. The reason why we choose two kissing
mirrored Maxwell’s fish-eye lenses mentioned in Ref. 14, 24 is that,
(1) the cloaked region is bounded with a perfect electric conductor
(PEC), no matter what in the cloaked region will not affect the
cloaking functionality; (2) the whole device is of a mirror symmetric

property; (3) it has more of a refractive index range feasible for
implementation. The maximum value of the refractive index profile
for conformal cloaks could be further reduced as shown in the
following.

Let us now look at the first conformal mapping. The width of
the second Riemann sheet is 87, slightly bigger than twice of the
length of the branch cut in virtual space. Therefore the radii of the
mirrored Maxwell’s fish-eye lenses are set as r; = [;/2 = 5.53697.
As shown in Fig. 2(a), if we put two kissing lenses mentioned
above in the lower Riemann sheet in virtual space, all rays impin-
ging the branch cut will enter the lower sheet, propagate in closed
circular arc trajectories and return to the upper sheet after reflect-
ing twice at the PEC boundaries of Maxwell’s fish-eye lenses. In
physical space, all rays will propagate around the PEC boundary
(the boundary of the white region in Fig. 2(b)) and leave the
device as if nothing is there. According to Egs. (3), (4) and (6),
the refractive index distribution from the first conformal mapping
is,

2 1+ 4 4 o , .
>< - —_
1y o=inf? o1 zyi| woinl <nt y>0.
r12
2 4 o
" lw+ir|* ' z—1 z+1| lw-ir|* <n? y<0,(7)
14
rlz
4
‘H' — — ——| , others
z—1

The detailed calculation can be found in Ref. 1, 14, 15. Before we
move on, let us examine schematically why we use two fish-eye
lenses instead of one. In Fig. 3(a), the ribbon pattern is the lower
sheet in virtual space of the first conformal mapping in Fig. 2(a).
The yellow line with two endpoints (O; and O,) is the branch cut.
Two green lines are the boundaries of the lower sheet, which could
be glued together if we roll up the sheet into a cylindrical surface.
We plot the contour of |dw/dz| in the lower sheet, which is
small near the branch cut, and gradually grow into infinity away
from the branch cut. We use uniform red color to represent large
|dw/dz| in regions far from the branch cut. By applying two kis-
sing mirrored Maxwell’s fish-eye lenses (two black circles), whose
centers are the endpoints of the branch cut (radii of each lens is
half length of the branch cut), as the refractive index of the lenses
ranges from 1 to 2, the maximum value of the refractive index of
the whole cloaking device shows up around points of A;, A, A;
and A4, which are near the contour line of 9. These points are
symmetric to the branch cut. The reason why we set the radii of
the lenses half length of the branch cut is that it constrains the
region of two lenses to have a lower upper bound of refractive
index. However, if we put one Maxwell’s fish-eye lens (shown in
blue curves) whose center is O;, the maximum value shows up
around points of B; and B,, which are near the contour line of 40.
In this case, the radius of the lens is the length of the branch cut.
The blue dashed arc outside the sheet should be mapped to the
blue solid arc to form a whole Maxwell’s fish-eye lens. Therefore,
it is obvious that two fish-eye lenses are better than one in cloak-
ing designs.

As it is known, conformal cloaks can not only work in geometry
optics', but also in wave realm when the frequency satisfies the

condition!>42425
f=2nric/\/I(1+1), (8)

where [is an integer and c is the speed of light in vacuum. In Fig. 2(b),
we plot the electric field pattern of the cloak for a TE polarized
cylindrical wave coming from a point source placed at the position
of (-10,0). Good cloaking effect is observed in wave optics at one of
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Figure 2 | The geometrical light rays in virtual space and the wave cloaking effect in physical space. (a) The light rays in virtual space of the first
conformal mapping, the two kissing black circles are PEC boundaries of two kissing mirrored Maxwell’s fish-eye lenses. (b) The electric field pattern for
the conformal cloak of the first mapping. In the numerical simulation, the point source is placed at the coordinate (-10,0) and its frequency is
f=2mric/\/I(I+1) with I = 16. (c) The light rays in virtual space of the second conformal mapping, the two kissing black circles are PEC boundaries of
two kissing mirrored Maxwell’s fish-eye lenses. (d) The electric field pattern for the conformal cloak of the second mapping. In the numerical simulation,
the point source is placed at the coordinate (-10,0) and its frequency is f =2nryc/+/I(I+ 1) with [ = 16.

the eigen-frequencies (here I = 16). The invisibility effect at discrete
frequencies is not theoretically rigorous but an approximate express-
ion from numerical simulations and some heuristic analysis from
cavity optics'***. If the frequency of the incident wave satisfies Eq. (8)
in virtual space, eigen-modes of the two kissing mirrored Maxwell’s
fish-eye lenses in the lower sheet could be excited. There will be a
phase delay of an integer time of 27 for the incident wave after it
leaves the branch cut, leading to the invisibility effect for wave. To
visualize the cloaking effect, we plot the electric field patterns of both
conformal cloak and a PEC structure for comparison in Fig. S2 in
Supplementary Information. We also zoom in the field pattern near
the cloaking region to show the details in Fig. S2(b). Without the
conformal cloak, the inner PEC region will cause obvious scattering,
as in Fig. S2(c).

For the second conformal mapping, the radii of mirrored
Maxwell’s fish-eye lenses are set as r, = [,/2 = 5.77259. As shown
in Fig. 2(c), if we still put two kissing mirrored Maxwell’s fish-eye
lenses on the second sheet in virtual space, similar to the first case,
all rays entering the lower sheet will return to the upper sheet
after closed circular arc orbits with reflection for twice at the
PEC boundaries. From Egs. (3), (5) and (6), the refractive index

distribution for the second conformal mapping can be written as
follows,

2 A o
x [1— werP<rt x>0,
1_‘_|W—72|2 z—1 z+1 [w—r|"<n® x
S
2 4
" |w—|—r|2>< _Z—1+z+1 s wtn <n?, x<0,(9)
2
1
e
4 4
1- +——| , others.
z—1  z+1

Similar to the first conformal mapping, we also plot the contour of
|dw/dz| in the lower sheet in Fig. 3(b) to illustrate the property of
refractive index distribution. If two kissing mirrored Maxwell’s
fish-eye lenses are applied in the lower sheet with their centers
at O; and O, (two black circles), the maximum value of refractive
index shows up near the points of A; and A,. If only one lens is
applied with its center O, (the blue circle), the maximum value
shows up near the point of B, which is very large. Therefore from
Fig. 3, it is clear that two kissing mirrored Maxwell’s fish-eye
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Figure 3 | The contour plot of | dw/dz| in the lower sheet of virtual space. (a) The contour plot of |dw/dz! for the first conformal mapping. (b) The

contour plot of |dw/dzl| for the second conformal mapping.

lenses is better than one lens in achieving a lower refractive index
upper bound.

At one of the eigen-frequencies of kissing mirrored Maxwell’s fish-
eye lenses, good cloaking effect can also be observed, as shown in
Fig. 2(d). The point source is placed at the position of (-10, 0) and its
frequency is f =2nr,c/+/I(I+1) with [ = 16. The field pattern near
the cloaking region is zoomed in Fig. S2(e). Likewise, without the
conformal cloak, the PEC region will cause scattering, as shown in
Fig. S2(f).

So far, we have shown that two kinds of logarithm conformal
mappings could be utilized for cloaking design, though there is a little
scattering due to the impedance mismatching at the branch cut. Now
we plot the whole refractive index distribution in both cases based on
Eq. (7) and Eq. (9). The refractive index distribution from the first
mapping is shown in Fig. 4(a), varying from 0 to 9.839, while the
range of refractive index from the second conformal mapping (shown

(a)s

% 9
3 8
2 17
1 16
0 15
1 14
2 P
-3 2
4 1
5 0
5 4 3 2 -1 0 1 2 3 4 5 Min:0

Max: 9.839 (b) 5

in Fig. 4(b)) goes from 0 to 22.043. It is clear that the range from the
first mapping is closer to future experiments.

Finally, such devices can also be employed for imaging illusion.
For example, with them two point sources in phase will appear as one
with stronger intensity, or two point sources with anti-phase will be
invisible, see in Fig. S3 in the Supplementary Information.

Discussion

In conclusion, we have proposed two kinds of logarithm conformal
mappings for cloaking designs. By applying two kissing mirrored
Maxwell’s fish-eye lenses on the lower sheet in one of the conformal
mappings, the range of refractive index goes from 0 to 9.839, which is
more feasible for implementation when compared to the previous
work"'. In our designs, the symmetric properties of the discussed
conformal mappings and those of two kissing mirrored Maxwell’s
fish-eye lenses lower the refractive index distribution. We can tune

Max: 22.043
4
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Figure 4 | The refractive index distributions of the two designs. (a) The refractive index distribution of Fig. 2 (b). (b) The refractive index distribution of

Fig. 2 (d).
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the coefficients of duel logarithm terms and the positions of singular-
ities to optimize the refractive index distribution of invisibility cloaks.
We believe that the maximum value of refractive index for conformal
cloaks could be further reduced if new conformal mappings are
proposed to construct virtual space and physical space. Hopefully a
real conformal cloaking device could be brought about. In addition,
these two conformal mappings can also be good for other designs,
perhaps an artificial electromagnetic wormhole®.
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