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Review Article

IntRoductIon

Sepsis is a major threat to human health. One of the 
main clinical characteristics of sepsis is a decreased 
ability to eradicate primary pathogens and an increased 
risk of secondary nosocomial infection.[1] However, the 
development of secondary infection is usually mediated 
by weakly virulent, and even opportunistic organisms, 
such as Stenotrophomonas, Acinetobacter, Enterococcus, 
Pseudomonas, and Candida, indicating a common state 
of immunosuppression in patients with sepsis.[1,2] Despite 
considerable progress in the development of antibiotics 
and recovery strategies,[3,4] an effective treatment for sepsis 
is still lacking.

Negative costimulatory molecules, including programmed 
cell death‑1 (PD‑1), cytotoxic T lymphocyte antigen‑4 
(CTLA‑4), and B and T lymphocyte attenuator, constitute 
a complicated immune regulatory system, negatively 

regulating the activity of immune cells. Studies have shown 
that negative costimulatory molecules are involved in the 
occurrence and development of the immunosuppression of 
sepsis.[5] PD‑1, as a negative costimulatory molecule, binds 
to its ligand programmed death‑ligand 1 (PD‑L1) to deliver 
an inhibitory signal that restrains the activation, proliferation, 
and effector functions of immune cells.[6,7] Excessive PD‑1 
expression and exhausted T‑cells have been observed 
in patients with sepsis,[8,9] and blockade of PD‑1 or its 
ligand (PD‑L1) can reverse T‑cell dysfunction and enhance 
pathogen clearance.[10] Thus, we expect that the PD‑1/PD‑L1 
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pathway may become a new target for the treatment 
of sepsis. This review highlights this potential clinical 
breakthrough based on research focusing on the following 
aspects: immunosuppression in sepsis, PD‑1/PD‑L1 pathway 
properties suggesting its role in immunomodulation in 
sepsis, PD‑1/PD‑L1 expression changes during sepsis, the 
application of anti‑PD‑1/PD‑L1 treatment, and limitations 
of anti‑PD‑1/PD‑L1 treatment in sepsis.

IMMunosuPPRessIon In sePsIs

Despite considerable efforts to promote the early identification 
and treatment of sepsis, the occurrence of sepsis‑induced 
multiple organ failure, prolonged Intensive Care Unit stays, 
frequent progression to death, and incomplete recovery are 
still major issues, emphasizing the need for new research 
directions to determine the proximal mechanisms underlying 
sepsis.[11] High spiking fevers, tachycardia, shock, and 
dyspnea are characteristics of sepsis. Owing to this striking 
presentation, the prevailing theory for many years was that 
sepsis represents an uncontrolled inflammatory response.[12] 
Numerous anticytokine and anti‑inflammatory agents have 
failed to show benefits or, in some cases, reduced survival 
rates.[13,14] The failures of these immunomodulatory agents, 
such as anti‑endotoxin (lipopolysaccharide), anti‑tumor 
necrosis factor (TNF)‑α, interleukin (IL)‑1β, and toll‑like 
receptor‑4 inhibitors,[15‑17] imply that the pathophysiological 
process of sepsis is not only the sequelae of an uncontrolled 
proinflammatory response to infectious challenge, but also 
a more complex condition in which multiple mediators are 
released, inducing a highly multifaceted immunological and 
host tissue response.

Further, contrary to previous contentions, recent data 
provide evidence that both proinflammatory and 
anti‑inflammatory stages of the host immune response to 
injury and/or sepsis occur concomitantly.[18] In general, 
an initial hyperinflammatory phase predominates after 
sepsis initiation. However, in fact, more than 70% of the 
sepsis‑related deaths occur after the first 3 days, many 
of which occur weeks after sepsis onset.[1] Although 
patients may die in either the hyperinflammatory or the 
hypoinflammatory phase of sepsis, new therapies and 
treatment protocols have resulted in prolonged disease with 
a shift toward the immunosuppressive phase.[11] In addition, 
sepsis is increasingly a disease of elder people whose 
immune systems are often impaired.[19] Thus, sepsis‑induced 
immunosuppression has been recognized as the major course 
leading to high mortality in patients with sepsis. Adequate 
evidence supports a central role for immunosuppression in 
sepsis. Meakins et al.[20] first noted that patients who had 
a delayed‑type hypersensitivity response had an increased 
risk for sepsis and sepsis‑related mortality, indicating 
that patients with sepsis had a hyposensitivity to antigen 
stimulation. Lymphopenia, a potential factor involved in 
the severe immunosuppression of sepsis, occurs rapidly and 
early during sepsis.[21] A reduction in lymphocytes decreases 
the number of immune cells available to combat infection. In 

addition, in both animal models and human patient samples, 
there is a significant loss of dendritic cells and epithelial 
cells and deactivation of monocytes during sepsis.[22‑24] Even 
after complete recovery, many patients who recover from 
sepsis still have long‑lasting impairment of the immune 
system and increased mortality.[25] Therefore, targeting 
immunosuppression provides a logical approach to treat 
protracted sepsis; administering specific immunomodulatory 
agents holds significant potential for sepsis therapy in the 
future.[26] The majority of immune cell loss and dysfunction 
has also been associated with the phenotypic change 
characterized by decreased human leukocyte antigen‑DR 
expression and increased inhibitor‑receptor expression.[27,28] 
Thus, changes in these immunophenotypic markers may 
be useful for the identification of patients with sepsis who 
have impaired immunity and are candidates for trials of 
immunoadjuvant therapies.[29,30]

PRogRAMMed cell deAth‑1/PRogRAMMed 
deAth‑lIgAnd 1 PAthwAy PRoPeRtIes suggestIng 
Its Role In IMMunoModulAtIon In sePsIs

A recently recognized mechanism of immunosuppression 
in sepsis is T‑cell exhaustion.[29] T‑cell exhaustion was first 
described in mice suffering from chronic viral infections[31] 
and was subsequently shown to occur in other mouse 
models of infection as well as in humans afflicted with HIV, 
hepatitis C virus, hepatitis B virus, and cancer.[32‑35] T‑cell 
exhaustion is a state of T‑cell dysfunction occurring during 
chronic infections and cancer.[36] These exhausted T‑cells are 
commonly defined by a progressive loss of T‑cell effector 
function, an alert transcriptional state distinct from that of 
functional effector or memory T‑cells.[36] Another cardinal 
feature of T‑cell exhaustion is the overexpression of multiple 
inhibitory receptors, such as PD‑1, CTLA‑4, lymphocyte 
activation gen‑3, T‑cell immunoglobulin mucin‑3, and 
CD160.[36,37] Exhaustion of T‑cells prevents optimal control 
of invasive antigens and tumors. Of note, exhausted T‑cells 
are not inert. These exhausted cells remain suboptimal 
functions that limit ongoing pathogen replication and tumor 
progression. Furthermore, revitalization of exhausted T‑cells 
can reinvigorate immunity with enhanced ability to eliminate 
invading pathogen and control progressing tumor cells.[38‑41]

Although many of these mechanisms contribute to T‑cell 
exhaustion, PD‑1 and its two ligands (PD‑L1/PD‑L2) are 
thought to play key roles.[42] PD‑1 was first identified as 
an apoptosis‑associated molecule in 1992.[43] However, 
subsequent experiments did not confirm the direct 
involvement of PD‑1 in programmed cell death.[44] Thus 
far, it has been accepted that PD‑1 receptors, inducible 
coinhibitory cell‑surface proteins expressed on T‑ and 
B‑cells, constitute a complex system of negative regulators 
involved in controlling T‑cell responses.[45] PD‑1 engagement 
with its ligands plays an important role in maintaining 
autoimmune tolerance and preventing the occurrence of 
autoimmune diseases under physiological conditions.[46] 



Chinese Medical Journal ¦ April 20, 2017 ¦ Volume 130 ¦ Issue 8988

However, PD‑1 and its ligands are usually upregulated 
on the surface of antigen‑specific T‑cells exposed to the 
chronicity of cancer and persistent infections, leading to 
cellular exhaustion and abrogation of effector functions.[47] 
Indeed, blocking of PD‑1 pathway has resulted in successful 
enhancement of T‑cell immunity against viral pathogens and 
tumors.[48] A better understanding of PD‑1‑related molecule 
expression may provide further insight into sepsis‑induced 
immunosuppression, especially “T‑cell exhaustion”.

PD‑1 and its two ligands, PD‑L1 and PD‑L2, belong to 
the B7:CD28 family.[49] PD‑L2 expression is limited to 
relatively few cells and tissues.[50] In contrast, PD‑L1 is 
broadly expressed on B‑cells, dendritic cells, macrophages, 
culture bone marrow‑derived mast cells, and T‑cells.[50] 
Furthermore, PD‑L1 is further upregulated in response to 
their activation. It is highly likely that the much more diverse 
expression of PD‑L1 than PD‑L2 is important with respect 
to their applications as therapeutic target. Thus, PD‑1/PD‑L1 
pathway as the potential target for immunotherapy has been 
more investigated. Although T‑cell exhaustion can partially 
explain the high morbidity and mortality in sepsis, reversal of 
exhausted T‑cells by the blocking PD‑1/PD‑L1 pathway can 
lead to pathogen clearance and improve survival in clinically 
relevant models of sepsis.[51,52] Since PD‑1 was first described 
in a PD‑1 knockout mouse model, which developed a 
spontaneous lupus‑like autoimmune disease, interest in 
the locus has increased.[53] Subsequently, numerous studies 
have demonstrated that this “checkpoint blockade” of the 
PD‑1/PD‑L1 pathway is important for T‑cell regulation in 
a variety of infectious, autoimmune, and cancer models in 
mice.[46] Thus, the PD‑1/PD‑L1 pathway has an important 
role in regulating T‑cell responses, and this provides a basis 
for the development of a new generation of targeted therapies 
against PD‑1 and PD‑L1. Although the most encouraging 
observations have been obtained in the context of viral 
infection and cancer, there is a significant relationship 
between the PD‑1/PD‑L1 pathway and immunosuppression 
in sepsis.

The PD‑1/PD‑L1 pathway acts on intermediate molecules 
in the T‑cell receptor (TCR) signaling pathway, such as 
PI3K, Akt, ZAK‑70, and PKC‑θ, thereby interrupting 
the transduction of TCR signals to ultimately inhibit 
the activation and proliferation of T lymphocytes.[54] 
Furthermore, the PD‑1/PD‑L1 pathway can indirectly 
inhibit the activation and proliferation of T‑cells by reducing 
the synthesis of IL‑2 and the anti‑apoptotic factor B‑cell 
lymphoma‑extra large, contributing to the apoptosis of 
T‑cells.[46] The deactivation of immune cells, a signature 
of immunosuppression, is characterized by the weakened 
reactivity or even nonresponse to antigenic stimulation, 
and decreased ability and effector function for cytokine 
secretion.[27] The overexpression of PD‑1 and PD‑L1 on 
immune cells results in the deactivation of these cells, 
accelerates the process of apoptosis, and thus participates 
in the occurrence and development of immunosuppression 
in sepsis. Guignant et al.[55] found that the proliferation 

of lymphocytes is decreased in the peripheral blood of 
patients with septic shock, in a manner that is correlated 
with the overexpression of PD‑1 or PD‑L1 in lymphocytes. 
Furthermore, the overexpression of PD‑1 and PD‑L1 is 
associated with the occurrence of nosocomial infection. 
This indicates that PD‑1 and PD‑L1 overexpression 
induced by sepsis triggers a decrease in the proliferation of 
T‑cells, leading to the incompetence of T‑cells. Condotta 
et al.[56] showed that the increased expression of negative 
costimulatory molecules, including PD‑1, on CD8+ T‑cells 
accelerated the exhaustion of CD8+ T‑cells and depressed 
the secretion of effector molecules (interferon‑gamma and 
TNF‑α).

Moreover, the autopsy reports of patients with sepsis have 
confirmed that negative costimulatory molecules, such as 
PD‑1, play important roles in immunosuppression. First, 
uncontrolled infection was observed in the autopsy tissues of 
patients. Although patients with sepsis were typically treated 
with broad‑spectrum antibiotics and other methods to control 
infection, their ability to eradicate primary pathogens remains 
low, and the risk of hospital‑acquired secondary infections 
is high. This tendency alone clearly demonstrates that the 
immune function of patients with sepsis is substantially 
reduced. Second, the secretion of splenocytes in patients 
who die from sepsis is significantly decreased, with a 10% 
reduction compared to secretion in a control group; however, 
the expression of negative costimulatory molecules, such as 
PD‑1, on CD4+ T lymphocytes is significantly increased.[29] 
This implies that PD‑1 participates in the deactivation of 
immune cells, which is likely a major contributor to the 
low immunological function in patients with sepsis. Since 
there is abundant evidence for the important role of the 
PD‑1/PD‑L1 pathway in the initiation and promotion of 
immunosuppression, the blockade of the PD‑1/PD‑L1 
pathway is promising as a new therapeutic target for sepsis 
immunotherapy.

chAnges In PRogRAMMed cell deAth‑1/
PRogRAMMed deAth‑lIgAnd 1 exPRessIon In 
sePsIs

While the PD‑1/PD‑L1 pathway plays an important role 
in maintaining autoimmune tolerance and preventing the 
occurrence of autoimmune diseases under physiological 
conditions,[46] it is best understood in the context of its role 
in viral infections and cancer.[57,58] Sepsis and cancer share 
many immunology defects, and therefore, investigations of 
the immune system in cancer may facilitate the development 
of immunotherapy strategies for sepsis. In the early stage of 
sepsis, PD‑1 expression tends to increase, suggesting that 
it has favorable effects by avoiding excessive inflammation 
and reducing organ damage induced by sepsis. However, 
the overexpression of PD‑1 can inhibit host immunity, 
leading to the occurrence of immunosuppression.[11] In a 
mouse model of cecal ligation and puncture, the expression 
levels of PD‑1 and PD‑L1 were significantly increased in T 
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and B lymphocytes, monocytes, and dendritic cells.[51,52] In 
addition, another study showed that while PD‑1 expression 
on CD4+ and CD8+ T lymphocytes continuously increased 
with the progression of sepsis, the numbers of CD4+ and 
CD8+ T‑cells substantially decreased.[51] Furthermore, 
studies have shown that the expression levels of PD‑1 and 
PD‑L1 on CD4+ and CD8+ T‑cells and monocytes also 
increased in the peripheral blood of patients with septic 
shock.[8,55] Moreover, increased PD‑1 and PD‑L1 expression 
levels have also been observed in injured organs induced 
by sepsis.[59‑61] These observations clearly demonstrate that 
PD‑1 and PD‑L1 expression levels are significantly increased 
in sepsis. Furthermore, a recent study from our group 
demonstrated a significant correlation between the increased 
expression of PD‑1/PD‑L1 and immunosuppression in 
sepsis, and monocyte PD‑L1 expression served as an 
independent predictor of 28‑day mortality in septic shock 
patients.[62] Therefore, monitoring changes in PD‑1 and 
PD‑L1 expression in sepsis might have important clinical 
significance for prognostic prediction.[62‑64]

ReseARch on the BlockAde of the PRogRAMMed 
cell deAth‑1/PRogRAMMed deAth‑lIgAnd 1 
PAthwAy

Viral and tumor cells take advantage of the PD‑1/PD‑L1 
pathway to escape host immune defenses.[65‑67] These 
findings built a solid foundation for the development of 
anti‑PD‑1 pathway as immunotherapeutic approaches. 
The clinical application of anti‑PD‑1 and/or PD‑L1 
antibodies in patients with cancer has demonstrated 
significant effects,[68,69] and FDA has recently approved 
two PD‑1 monoclonal antibodies to treat human cancers, 
one from Bristol‑Myers Squibb (Opdivo or nivolumab) 
and another from Merck (Keytruda or pembrolizumab).[70] 
Sepsis and tumors share similar mechanisms with respect 
to immunosuppression, prompting researchers to evaluate 
the effect of the blockade of the PD‑1/PD‑L1 pathway on 
sepsis.[11] Brahmamdam et al.[51] reported that an anti‑PD‑1 
antibody could prevent the reduction of lymphocytes and 
dendritic cells in a mouse model of sepsis, and improved 
the survival rate of the mice. Furthermore, Zhang 
et al.[52] showed that injecting anti‑PD‑L1 antibodies to 
mice suffering from sepsis could reduce the apoptosis of 
lymphocytes and increase TNF‑α and IL‑6 secretion, while 
reducing IL‑10 secretion; moreover, the survival rate of 
the mice was significantly increased. Zhang et al.[8] further 
demonstrated that an anti‑PD‑L1 antibody could reduce 
the apoptosis of T lymphocytes in the peripheral blood of 
patients with sepsis, and improved the ability of monocytes 
to secrete TNF‑α and IL‑6, while reducing IL‑10 production. 
A recent study showed that a novel short‑acting anti‑PD‑L1 
peptide (compound 8) significantly improved survival in a 
clinically relevant immunosuppressive model of sepsis.[71] 
Anti‑PD‑1 and anti‑PD‑L1 antibodies are different from each 
other with respect to their mechanisms of action. However, 
studies have shown that blocking different coinhibitory 

molecules might exert a synergistic effect on immunotherapy 
for sepsis.[56,72,73] With respect to the appropriate timing for 
anti‑PD‑1/PD‑L1 antibody administration, Brahmamdam 
et al.[51] showed that when the anti‑PD‑1 antibody was given 
to mice 24 h after the induction of sepsis, the survival rate 
increased. These findings are promising for the clinical use 
of anti‑PD‑1 antibodies in sepsis treatment. Most patients 
with sepsis cannot be diagnosed in a timely manner for 
various reasons; therefore, this delayed drug administration 
can significantly increase the probability that patients with 
sepsis can be successfully treated and cured.

Before anti‑PD‑1/PD‑L1 antibodies are used in clinical 
settings, it is worth considering whether they are suitable 
for all patients with sepsis. According to a recent 
study, an anti‑PD‑L1 antibody restores the functions of 
cytomegalovirus‑specific T lymphocytes in patients with 
kidney transplantation showing high expression of PD‑1 but 
does not have a restorative effect in patients with low PD‑1 
expression or in a control group.[73] Our group showed that 
the PD‑L1 expression in monocytes was an independent 
predictive factor of the 28‑day mortality risk of sepsis, and 
the combination of the SOFA and SAPS II scores could 
improve the predictive ability of PD‑L1 as a marker of the 
28‑day mortality.[62] Therefore, patients with high PD‑L1 
expression in monocytes should be considered to be in a state 
of immunosuppression, and treatment with anti‑PD‑1/PD‑L1 
antibodies was expected to be effective in such cases.[74] 
Thus, indictors of the effectiveness of anti‑PD‑1/PD‑L1 
antibody treatment should include increased expression of 
PD‑1 on T lymphocytes and elevated expression of PD‑L1 
on monocytes. In addition, rare in vivo experiments have 
examined the use of anti‑PD‑1/PD‑L1 antibodies in patients 
with sepsis to date. Accordingly, despite their potential, 
further studies are necessary to determine the mechanism 
of action and safety of anti‑PD‑1/PD‑L1 antibodies before 
they can be applied in clinical settings.

lIMItAtIons of AntI‑PRogRAMMed cell deAth‑1/
PRogRAMMed deAth‑lIgAnd 1 tReAtMent In 
sePsIs

Although encouraging results of anti‑PD‑1/PD‑L1 therapy 
have been gained from preclinical studies in sepsis, there 
is still no any direct clinical study confirm the efficacy on 
septic patients up to now. Thus, limitations of antibody 
therapies aimed at blocking PD‑1/PD‑L1 pathway, especially 
considerations in safety, should be taken into account before 
their applications clinically. First, the biggest fear is the 
development of an exaggerated inflammatory response 
which can lead to a fatal destruction for patients with sepsis, 
because both PD‑1 and PD‑L1 KO mice are autoimmune 
prone when they are challenged with autoantigens.[75] 
Antibody therapy‑associated adverse events, such as 
diarrhea, pneumonitis, type 1 diabetes, and others, have 
been reported in clinical trials in cancer.[47] However, these 
clinical observations of anti‑PD‑1/PD‑L1 therapy have 
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proven that efficacy of such immune agents against tumors 
compensated for acceptable and manageable side effects 
observed in a small fraction of patients.[47] Furthermore, 
patients with sepsis typically may not require as prolonged 
therapies with anti‑PD‑1/PD‑L1 treatment as patients with 
cancer. Therefore, severe autoimmune reactions will likely 
be less of a problem in patients with sepsis. Second, it is 
essential to stratify patients based on their immune status 
and administer personalized immunotherapy for individual 
patients. In addition to anti‑PD‑1/PD‑L1 antibodies, other 
immunomodulatory agents targeted at boosting immune 
responses have shown potential effects in treatment of sepsis, 
such as recombinant human IL‑7, IL‑15, interferon gamma, 
and anti‑CTLA antibody.[26] These suggest that blockade 
of PD‑1/PD‑L1 pathway is not the all but only a part 
which can restore the immunity of patients with sepsis. As 
mentioned above, lack of PD‑1 and/or PD‑L1 upregulation 
in tumor‑infiltrating immune cells or tumor cells in 
patients showed a poor clinical response to PD‑1/PD‑L1 
checkpoint blockade therapy.[76,77] As a consequence, one 
important issue if we are to give anti‑PD‑1/PD‑L1 therapy 
to septic patients is to identify the right patient that could 
benefit from such therapy because it is unlikely, due to 
well‑established heterogeneity of septic patients, that 
blocking a given immune checkpoint will be a magic bullet 
for all.[74] Therefore, immunotherapy targeted at blockade of 
PD‑1/PD‑L1 pathway needs to be directed toward patients 
who are actually immunosuppressed and have high levels of 
PD‑1 and/or PD‑L1 expression on immune cells.[78] Specific 
patient populations may be identified with the help of specific 
biomarkers. Thus, robust standardized tools for patients’ 
stratification are highly desirable. Finally, circles when 
would be the appropriate time to administer such therapy 
in septic patients remain a question. According evidence is 
scarce to date. Further investigation should be administered 
to resolve this issue.

conclusIons

The PD‑1/PD‑L1 pathway plays key roles in triggering 
the immunosuppression of sepsis. The overexpression of 
PD‑1/PD‑L1 induced by sepsis causes the deactivation of 
immune cells, leading to immunosuppression. Although the 
immune state of patients with sepsis is complex and variable, 
high PD‑1/PD‑L1 expression on the surfaces of a variety 
of immune cells is a common clinical finding. Therefore, 
inhibiting the PD‑1/PD‑L1 pathway might promote the 
recovery of immune cell functions and ultimately improve 
the survival rate of patients with sepsis. Of course, extensive 
clinical trials are needed to confirm this hypothesis. However, 
the PD‑1/PD‑L1 pathway certainly has great potential as a 
new target for the treatment of sepsis.
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