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Immunoglobulins have a pivotal role in disease regulation. Therefore, it is vital to accurately
identify immunoglobulins to develop new drugs and research related diseases. Compared
with utilizing high-dimension features to identify immunoglobulins, this research aimed to
examine a method to classify immunoglobulins and non-immunoglobulins using two
features, FC* and GC*. Classification of 228 samples (109 immunoglobulin samples
and 119 non-immunoglobulin samples) revealed that the overall accuracy was 80.7%
in 10-fold cross-validation using the J48 classifier implemented in Weka software. The FC*
feature identified in this study was found in the immunoglobulin subtype domain, which
demonstrated that this extracted feature could represent functional and structural
properties of immunoglobulins for forecasting.
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1 INTRODUCTION

Immunoglobulins, or antibodies, are a group of proteins secreted by B lymphocytes that recognize
invading antigens and bind to antigens with high affinity and specificity to neutralize toxic
substances. In general, antibodies are composed of two identical polypeptide chains, each with a
light chain and a heavy chain (Narciso et al., 2011). They can be divided functionally into variable (V)
domains, which bind to antigens, and constant (C) domains, which activate, complement, or bind to
Fc receptors (Schroeder and Cavacini, 2010). To predict the structure of immunoglobulins, (Lepore
et al., 2017) developed the PIGSPro Server, an updated version of the popular PIGS Server.

Immunoglobulins have a pivotal role in disease regulation. Therefore, human and nonhuman
polyclonal immunoglobulins have been used in therapeutics for many years. Five monoclonal
immunoglobulins ranked in the top 10 blockbuster biotherapeutics drugs (Norman et al., 2020).
Patients with primary immune deficiencies greatly benefit from the intravenous or subcutaneous
administration of human immunoglobulin preparations (Perez et al., 2017). The advanced
development of medicine is urged by its finite supply, which requires more identification of
valuable therapeutic immunoglobulins. However, biochemical experiments are time-consuming
with enzymes to fragment immunoglobulin molecules (Schroeder and Cavacini, 2010) or X-ray
crystallography to obtain accurate structures (Narciso et al., 2011).

Machine learning can identify desired proteins from a large number of sequences within a short
time to guide the experimental discovery process (Guo et al., 2020; Liu et al., 2020; Song G. et al.,
2021; Cheng et al., 2021; Deng et al., 2021; Dong et al., 2021; Guo et al., 2021; Tang et al., 2021; Yu
et al., 2021; Zhao et al., 2021). Over the past decades, researchers have developed many machine
learning–based techniques for protein sequence analysis (Zhai et al., 2020; Zeng et al., 2020; Chen
et al., 2021; Li et al., 2021). The bioinformatics approach of identifying immunoglobulins is to
convert protein sequences into numerical vectors to reveal the internal structures of proteins. The
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FIGURE 1 | Flowchart of identifying immunoglobulins.
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critical aspects of protein identification can be listed as follows:
feature extraction, feature selection, and machine learning.
Feature extraction methods include n-gram feature type:
amino acid composition (AAC), Dipeptides (Dip), Tripeptides,
where frequencies of n-length peptides are used as feature vectors
(Ding et al., 2011; Gautam et al., 2013; Diener et al., 2016;
Rahman et al., 2018; Liu et al., 2019; Lv et al., 2019; Fu et al.,
2020; Wang H. et al., 2021; Wang J. et al., 2021; Zhai et al., 2020;
Shao and Liu, 2021; Yang et al., 2021; Zhang et al., 2021). In
addition, pseudo–amino acid composition (PseAAC) is also a
widely adopted feature extraction method, including
physicochemical properties between residues (Hansen et al.,
2008; Sanders et al., 2011; Gautam et al., 2013; Chen et al.,
2016; Diener et al., 2016; Khan et al., 2020; Awais et al., 2021;
Naseer et al., 2021).

Many feature types and complex classification methods may
generate redundant information (Song B. et al., 2021). Therefore,
some studies began to eliminate redundant parts to improve the
predictive performance of classification models. This process is
also called feature selection. MRMD (Zou et al., 2016; Ao et al.,
2020; Li et al., 2020a; Li et al., 2020b; Meng et al., 2020) and
ANOVA (Anderson, 2001; Lv et al., 2019) are standard feature
selection methods. For optimal feature identification, (Feng et al.,
2021) uses the PCA and MCE methods to make the features
orthogonal and obtain the core feature set with the minimum 10-
dimensional attributes for PPR gene identification and realized
97.9% accuracy. (Li et al., 2020b) used a 19-dimensional feature
model to classify anticancer peptide sequences. (Ao et al., 2020)
used a 10-dimensional feature model to classify antioxidant
proteins and realized 90.44% accuracy. (Meng et al., 2020)
used a 6-dimensional feature model to classify cell wall lytic
enzymes.

However, very few tools have been developed for
immunoglobulin identification. (Tang et al., 2016) used the
pseudo amino acid composition (PseAAC) feature extraction
approach to realize over 96% prediction accuracy in their
pioneering work on immunoglobulin identification. (Gong
et al., 2021) used the CC–PSSM and monoTriKGap feature
extraction, MRMD feature selection, and single dimension
reduction methods to realize 92.1% immunoglobulin
identification accuracy by two-dimensional features. However,
the link between optimal features and functional structures of
immunoglobulins remains to be investigated.

To obtain a diverse feature set, this study integrated 188-D
physicochemical properties, auto-cross covariance (ACC)
information, and dipeptide compositions of reduced amino
acids. Dimensions were reduced using the max-relevance-
max-distance (MRMD) method and the single dimension
reduction method. The RF and J48 classifiers implemented in
Weka software were used to identify immunoglobulins. Finally,
two features can correctly predict immunoglobulins, FC* and
GC*. The entire modeling process is illustrated in Figure 1. The
FC* feature identified in this study was found in
immunoglobulin subtype domain IPR003599, which
demonstrated that this extracted feature could represent
functional and structural properties of immunoglobulins for
forecasting.

2 MATERIALS AND METHODS

2.1 Datasets
Data for this study were collected by (Tang et al., 2016), which
contain 228 samples (109 immunoglobulin samples and 119 non-
immunoglobulin samples) extracted from the Universal Protein
Resource (UniProt).

2.2 RAAC
Polypeptide chains fold to tertiary structures based on the
physicochemical properties of residues (Tang et al., 2016).
Analyzing the occurrence frequency of residue compositions
cannot visualize three-dimensional protein structures. The
reduced amino acid cluster (RAAC) method, replacing
protein sequences with less than 20 amino acid alphabets
based on a specific reducing scheme, can reduce sequence
complexity. With removing non-essential information,
functionally conserved regions will be displayed more
clearly. Recent work presented 3D protein structures of
ectonucleotide pyrophosphatase with a 1D view using the
RAAC method (Solis, 2015; Zheng et al., 2019).

There are many choices of reduced schemes, and different
decisions could produce distinctive protein classification results.
For example, the RAACBook web server provided 74 types of
reduced amino acid alphabets derived from over 1,000 published
articles in PubMed (Zheng et al., 2019). Bins within the scheme
are related to the chemical properties of amino acids. Dayhoff
classes (AGPST, DENQ, HKR, ILMV, FWY, and C) are most
used. Also, S and T are frequently together, and so are K and R, D,
and E (Susko and Roger, 2007).

We used the AutoProp (Feng et al., 2020) to screen out the
optimal reduced scheme of the immunoglobulin and non-
immunoglobulin sequences. GPHNDERQKAST, FY, VMIL, C,
and W (Figure 1 Step 1) were used. Under this reduced scheme,
the 20 amino acid alphabets were represented by five alphabets:
G, F, V, C, and W. For instance, any amino acid that is a G, P, H,
N, D, E, R, Q, K, A, S, or T is then treated as character G. For any
amino acid F and Y, it is then treated as character F, and so forth.

FIGURE 2 | Classification accuracy comparison between models with
different feature selection methods.
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2.3 Feature Extraction
A sequence can be represented by sequential form and discrete
form. Homolog sequences can be compared with the BLAST or
FASTA program benchmark datasets for traditional sequence
comparison methods. However, the similarity-based way is
unsuitable for distantly related sequences (Wei et al., 2014;
Chen et al., 2016; Jin et al., 2019; Manavalan et al., 2019;
Hong et al., 2020; Tang et al., 2020; Wang et al., 2020; Ding
et al., 2021a; Ding et al., 2021b; Huang et al., 2021; Shao et al.,
2021). By converting amino acid codes to a series of discrete
numerical vectors, the discrete form can overcome this drawback
and be used by machine learning for protein classification.
Sometimes, proteins can be classified according to fewer
features, while BLAST cannot.

Different numerical values of protein codes mean different
feature descriptors. Feature descriptors provided by AutoProp
include 188D, ACC, PseAAC, and another nine methods
(Figure 1 Step 1). Also, AutoProp provides combined features
between those methods. The built-in classifiers will then calculate
the accuracy percentage of each feature and decide the optimal
feature.

For our data, the optimal feature is the combined features of
RAAC and ACC. RAAC features also represent dipeptides of

reduced amino acid, like CV, C*V (λ-gap � 1), and C**V (λ-gap �
2). The following formula was used to calculate the values of those
features:

fu � nλu
∑nλu

,

where λ � 0,1,2, and nλu denotes the number of λ-gap dipeptides of
type u in a protein sequence.

ACC means the autocross covariance (ACC) transformation
and contains auto covariance (AC) and cross-covariance (CC)
and is introduced to transform protein sequences into fixed-
length vectors (Feng et al., 2020). With its ability to identify
sequence homologies, ACC has been successfully used for protein
family classification and protein interaction prediction (Dong
et al., 2009).

2.4 MRMD
The main disadvantage of the sequence word frequency
vector is that they are usually huge. Therefore, dimension
reduction, also called feature selection, is chosen for protein
classification. The MRMD method, which is the max-
relevance-max-distance–based dimensionality reduction
method, is more considered for relationships among
features and stability of feature selection. Cross-validation
and the ROC curve are usually used to evaluate classification
accuracy. The MRMDmethod can reduce feature dimensions
with few accuracy drops (Zou et al., 2016; He et al., 2020; Tao
et al., 2020).

2.5 Performance Measurement
We used three metrics to evaluate model performance. Indicators
include sensitivity (SE), specificity (SP), and Accuracy (Jiang
et al., 2013; Wang X. et al., 2021). Calculation methods are
described as follows:

SE � TP

TP + FN
,

FIGURE 3 | Scatter plot of GC* and FC* features.

FIGURE 4 | Motif discovered among immunoglobulin sequences using
the MEME tool; the height of the letter indicates its relative frequency at the
given position within the motif.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8271614

Wan et al. Immunoglobulin Classification

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


SP � TN

TN + FP
,

Accuracy � TP + TN

TP + FN + TN +NP
,

where TN, TP, FN, and FP refer to the numbers of correctly
predicted non-immunoglobulin proteins, correctly predicted
immunoglobulin proteins, incorrectly predicted non-
immunoglobulin proteins, and incorrectly predicted
immunoglobulin proteins, respectively. Sensitivity (SE) is also
known as recall, and it measures the percentage that positive
samples can be expected correctly over all the samples. SP
indicators measure the probability of negative samples
classified as non-immunoglobulins, and Accuracy is used to
evaluate the overall performance of a prediction model.

3 RESULTS AND DISCUSSION

3.1 Classification Results Under Different
Features
Props returned 93D best features, and the frequency of dipeptides
(λ-gap � 0, 1, 2) is saved in features 1–75, followed by 18 ACC
features. The classification accuracy was 92.1% in the RF classifier
and 10-fold cross-validation using Weka software. The MRMD
method further reduced the dimension to 49D, and accuracy was
91.7% using the same classifier. It can be seen that MRMD

reduces nearly half of the feature dimension, but the accuracy
is only dropped by 0.4% (Figure 2). After continuous attempts to
reduce features, the optimal two features (GC* and FC*) are
finally obtained; the classification accuracy was 80.3% using the
J48 classifier in Weka.

3.2 2D Features Scatter Distribution
Figure 3 shows the scatter plot of GC* and FC* features. What
stands out in Figure 3 is that immunoglobulin and non-
immunoglobulin samples can be distinguished.
Immunoglobulins are scattered on the upper left with higher
FC* values, and non-immunoglobulins are found in the lower
right with higher GC* values. For 118 out of 119 non-
immunoglobulin samples, the FC* value is equal to or less
than 5. Among these, the FC* value of 49 samples is zero. The
GC* value for immunoglobulin samples is less than or equal to 12.

3.3 Interpretation of Feature FC*
We noticed 49 out of 119 non-immunoglobulin samples had an
FC* value of zero, whereas only four immunoglobulin samples
had an FC* value of zero. Usingmotif search website MEME Suite
5.4.1 (Bailey and Elkan, 1994; Bailey et al., 2009) and running 109
immunoglobulin sequences, results showed that 107 out of 109
immunoglobulin samples had a motif, “ISNVTREDAGTYTC”
(Figure 4). Based on the reduced scheme, Y was treated as F.

Immunoglobulin sequences were subjected to InterProScan
(Zdobnov and Apweiler 2001) to understand the motif structure

FIGURE 5 | Shared motif and its secondary structure (from PDB entry 3wyr) using InterproScan.
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better to map protein domains. Results showed that the finding
motif belonged to immunoglobulin subtype domain IPR003599.

Also, secondary structure predictions of the motif using JPred
(Drozdetskiy et al., 2015) predict that the shared motif comprises
alpha helices and beta sheets separated by disordered regions
(Figure 5).

4 CONCLUSION

The present research aimed to examine a method to classify
immunoglobulins and non-immunoglobulins using two features,
GC* and FC*. Classification of 228 samples (109 immunoglobulin
samples and 119 non-immunoglobulin samples) revealed that the
overall accuracy was 80.7% in the J48 classifier and 10-fold cross-
validationusingWeka software. The FC* feature identified in this study
was found in immunoglobulin subtype domain IPR003599, which
demonstrated that this extracted feature could represent functional and
structural properties of immunoglobulins for forecasting.
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