TR Alpha 2 Exerts Dominant Negative Effects on Hypothalamic *Trh* Transcription *In Vivo*

Hajer Guissouma^{1,2}, Rym Ghaddab-Zroud², Isabelle Seugnet², Stéphanie Decherf², Barbara Demeneix^{2®}, Marie-Stéphanie Clerget-Froidevaux²*[®]

1 Laboratoire de Génétique, Immunologie et Pathologies Humaines, Département de Biologie, Faculté des Sciences de Tunis, CAMPUS, Université Tunis El Manar, Tunis, Tunisie, 2 UMR CNRS 7221, Evolution des Régulations Endocriniennes, Department Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France

Abstract

Mammalian thyroid hormone receptors (TRs) have multiple isoforms, including the *bona fide* receptors that bind T₃ (TRα1, TRβ1 and TRβ2) and a non-hormone-binding variant, TRα2. Intriguingly, TRα2 is strongly expressed in the brain, where its mRNA levels exceed those of functional TRs. Ablation of TRα2 in mice results in over-expression of TRα1, and a complex phenotype with low levels of free T₃ and T₄, without elevated TSH levels, suggesting an alteration in the negative feedback at the hypothalamic-pituitary level. As the hypothesis of a potential TRH response defect has never been tested, we explored the functional role of TRα2 in negative feedback on transcription of hypothalamic thyrotropin, *Trh*. The *in vivo* transcriptional effects of TRα2 on hypothalamic *Trh* were analysed using an *in vivo* reporter gene approach. Effects on *Trh-luc* expression were examined to that of two, T₃ positively regulated genes used as controls. Applying *in vivo* gene transfer showed that TRα2 cover-expression in the mouse hypothalamus abrogates T₃-dependent repression of *Trh* and T₃ activation of positively regulated promoters, blocking their physiological regulation. Surprisingly, loss of function studies carried out by introducing a shTRα2 construct in the hypothalamus also blocked physiological T₃ dependent regulation of *Trh* transcription, producing constant transcriptional levels insensitive to feedback. This loss of physiological regulation was reflected at the level of the endogenous *Trh* gene, were gain or loss of function held mRNA levels constant. These results reveal the as yet undescribed dominant negative role of TRα2 over TRα1 effect on hypothalamic *Trh* transcription.

Citation: Guissouma H, Ghaddab-Zroud R, Seugnet I, Decherf S, Demeneix B, et al. (2014) TR Alpha 2 Exerts Dominant Negative Effects on Hypothalamic Trh Transcription In Vivo. PLoS ONE 9(4): e95064. doi:10.1371/journal.pone.0095064

Editor: Michelina Plateroti, University Claude Bernard Lyon 1, France

Received July 18, 2013; Accepted March 23, 2014; Published April 18, 2014

Copyright: © 2014 Guissouma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by European Union CRESCENDO contract (LSHM-CT-2005-018652). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: clerget@mnhn.fr

• These authors contributed equally to this work.

Introduction

Thyroid hormone (TH) production is controlled by the hypothalamic peptide Thyrotropin Releasing Hormone (TRH). T_3 exerts negative feedback on *Trh* transcription mainly through the beta forms of the thyroid receptors (TR β 1 and TR β 2) [1,2]. TRs are ligand-dependent transcription factors [3], produced from two genes: NR1A1 and NR1A2 [4,5]. Each gene gives rise to two major isoforms, respectively TR α 1 and α 2, and TR β 1 and β 2, by alternative splicing. Both RNA [6,7] and protein [8,9] for each isoform are found in the hypothalamic paraventricular nucleus (PVN), site of *TRH* regulation.

In mammals, TR α 2 is identical to TR α 1 in its N-terminus, but the C-terminus is entirely different rendering TR α 2 unable to bind T₃ [10,11] and altering the ability of TR α 2 to interact with coactivators and co-repressors [12,13]. As TR α 2 can bind DNA, but not activate transcription, it has been suggested that TR α 2 may act as a dominant-negative receptor. *In vitro*, TR α 2 blocks the activity of other TRs by competing for TR binding to thyroid hormone response elements (TREs) on DNA [14–16] or *via* mechanisms that do not require TRE binding [17]. TR α 2 is widely expressed and in brain, its RNA levels greatly exceed those of the functional TRs, especially in perinatal period [18]. Moreover, TR α 2 is highly conserved in human, rat and mouse, but is absent in non mammalian vertebrates [19], suggesting an important function for this protein in mammals.

Generation of mutant mice lacking TRa2 has contributed to understand the roles of TR α 2 on T₃-dependent regulation of target genes in the brain [20]. In these $TR\alpha 2^{-\prime}$ -mice, $TR\alpha 2$ ablation results in $TR\alpha 1$ over-expression in brain tissue, and lower levels of free T₃ and T₄ but normal levels of TSH. This failure of TSH to adjust to the lower circulating T3 and T4 levels can be accounted for either by an effect at the level of the thyroid gland reducing hormone production, and/or an alteration in the negative feedback at the hypothalamic-pituitary level, which may also include a defect in TRH response. However, this latter hypothesis has never been tested. Previous studies on TRa2 function in brain have attributed a general dominant negative effect of TR α 2 but never addressed its transcriptional effects on target genes in vivo, because of the technical challenge it represents. Thus we employed a synthetic gene transfer method in which our laboratory has a great expertise to follow the effects of $TR\alpha 2$ gain

or loss of function on Trh gene transcription using positively regulated T₃ genes (Malic and Tyrosine hydroxylase Enzymes; respectively, *ME* and *TyrH*) as controls. This *in vivo* transfection assay provides for tissue specific physiological regulation of transcription in integrated contexts [1,2]. We used the newborn mouse brain as a model system as it was successfully used to analyse the molecular basis of thyroid hormone dependent effects of *Trh* transcription *in vivo* [1,2,21] and mainly because that every transcriptional regulation we have identified by this method has later been ratified by experiments in adult transgenic mice.

In vivo over-expression experiments show that in the hypothalamus, TR α 2 acts as a dominant-negative receptor, blocking transcription of both positively and negatively T₃ regulated target genes. Moreover, transient TR α 2 knockdown seems to reveal TR α 1 effect on *Trh* promoter, the regulation of which being equivalent to the one observed when TR α 1 is over-expressed. This hypothesis was emphasised by a decrease in circulating T₄ following TR α 1 gain of function. Interestingly, both gain or loss of TR α 2 function seems to block *Trh* transcription at an intermediate level between activated and repressed control levels. Indeed, an average TRH activity remains, whereas fine physiological T₃ regulation is lost. Taken together, these results reveal the physiological importance of TR α 2, naturally acting as dominantnegative receptor on hypothalamic *Trh* transcription *in vivo*.

Materials and Methods

Ethics Statement

All aspects of animal care and experimentation were in accordance with the National institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of the Animal Protection and Health, Veterinary Services Direction, Paris, France.

Animals

Swiss wild-type mice were purchased from Janvier (Le Genest St. Isle, France). To induce foetal and neonatal hypothyroidism, dams were given iodine-deficient food containing 0.15% 6-npropyl-2-thiouracil (PTU) (Harlan) and drinking water with 0.5 g/ l PTU (Sigma-Aldrich) from day 14 of gestation through lactation.

Plasmids

Trh-luciferase (Trh-luc) and rat (r) pSG5-TR α 1 constructs have been described previously [21]. Tyrosine hydroxylase-luciferase reporter plasmid (TyrH-luc), containing 800 pb of the rat Tyrosine hydroxylase gene promoter [22] cloned upstream the firefly luciferase coding sequence in the pGL2 backbone, was a gift from Dr J Mallet (UMR 7091, Hôpital de la Pitié-Salpêtrière, Paris, France). Human (h) TR α 2 in pSG5 was kindly provided by Dr. Chassande and Dr Samarut (ENS de Lyon, France). TR α 2 is highly conserved in man, rat and mouse.

To knockdown endogenous TR α 2, shRNA-coding plasmids were designed against TR α 2 (CMV H1- shTR α 2), providing two shRNA sets (sh1TR α 2 and sh2TR α 2) as described in Decherf et al. ([23], Supporting Information). Each shRNA-coding sequence was purchased from Eurogentec. The control plasmid used was CMV-H1 ([23], SI). The shTR α 2 contains sense and antisense siRNA sequences, as following:

For sh1TR α 2, siRNA sequences are: sense (5'- AAGGACAG-CAGCTTCTCGGATT-3') and antisense (5'- AATCCGA-GAAGCTGCTGTCCTT-3')

For sh2TR α 2, siRNA sequences are: sense (5'- TGCA-GAGTTCGATTCTGTACTT-3') and antisense (5'- AAGTA-CAGAATCGAACTCTGCA-3').

In Vivo Gene Transfer (iGT) and Luciferase Assays

DNA/PEI (polyethylenimine) complexes, iGT and luciferase assays were carried out as described previously [1]. Given the highly tissue-specific nature of Trh transcription, one of the most important steps in ensuring reproducibility is careful and consistent injection, followed by precise dissection of the hypothalamic areas transfected [1]. Briefly, pups were anesthetized by hypothermia on ice and transfected on post-natal day 2. A glass micropipette was lowered 2 mm through the skull, 0.5 mm posterior to bregma on the sagittal suture, into the hypothalamic area. Two-day-old hypothyroid newborn mice were transfected in the hypothalamic region of the brain with $2 \times 2 \mu L$ of *Trh-luc*, or ME-tk-luc or TyrH-luc (1 µg/pup) complexed with PEI. To assess the effect of TR overexpression, in addition of the reporter genes, we added pSG5-TRa1, pSG5-TRa2, or empty pSG5 expression vector in the complexes at 100 ng/pup. Luciferase activity was assayed 18 h after transfection. In shRNA experiments, we added small hairpin expression vector (see section plasmids) at a 100 ng/ µL concentration (400 ng/pup). After 48 h, pups were decapitated, and hypothalami were dissected out for luciferase assays following the manufacturer's protocol (Promega). Luciferase activity was measured 48 h later to allow for shRNA expression.

For qPCR analysis, pups were only transfected with either the overexpression vectors or small-hairpin RNA vectors. Transfections were performed in 2 days old pups and the hypothalami were dissected at 1, 3 and 5 days post-transfection for overexpression experiments, and at 36 h post transfection (3.5 days) for sh experiments.

Animal treatments

To assess T_3 effects on reporter gene expression, pups were injected subcutaneously, with 2.5 µg/g of body weight (bw) of T_3 (Sigma-Aldrich, St Quentin Fallavier, France) in 0.9% saline, immediately after transfection. This quite high dose of T_3 is necessary to observe *Trh* gene regulation in the hypothalamus of newborn mice, because global metabolic rate is high at this developmental stage and the brain is a resistant organ to excess of TH levels [7,24]. Controls received the same volume of 0.9% saline. In the shRNA experiments, this procedure was repeated 24 h after transfection.

Measurement of total plasma T₄

Frozen plasma was thawed and processed according to the supplier's instructions, using the AMERLEX-M T_4 RIA Kit (Trinity Biotech, Wicklow, Ireland). Results are expressed as means \pm SEM.

Immunoblot analysis

Western blot analysis was made on hypothalamus protein extract from brains transfected with CMV H1-shTR α 2. Briefly, the hypothalami of two distinct mice were collected for each group under a stereo-microscope. The whole experiment was repeated twice. Tissues were lysed mechanically and proteins were extracted in RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% Sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8) according to the manufacturer's instructions. Protein content was determined by Qbit assays (Invitrogen). Total cell lysates (30 µg) were fractionated by SDS-PAGE 4–20% (Pierce) and transferred to nitrocellulose membranes (Biorad). Membranes were blocked with 5% non fat milk in Tris-buffer saline (TBS; 10 mM Tris-HCl, pH 7.5, 150 mM NaCl), followed by overnight incubation at 4° C with the indicated antibody diluted in TBS with 0.05% Tween-20 (TBS-T). After three washes with TBS-T, membranes were incubated with the appropriate secondary antibody coupled to peroxidase, and immunocomplexes visualized by enhanced chemiluminescence (ECL plus from GE Healthcare Amersham) according to manufacturer's instructions. Primary antibodies for Western-blotting, included rabbit polyclonal anti-TR α 2 (1:100; Millipore), rabbit polyclonal anti- β ACTIN (1:3000; Sigma). Secondary antibody was anti-rabbit IgG Peroxidase Conjugate from Sigma. Chemiluminescence was revealed by film exposure.

RNA extraction and cDNA synthesis

Hypothalami were dissected from individual newborn mice (transfected either by overexpression vector or small-hairpin RNA vector (see section *in vivo* gene transfer) under stereo-microscope (limits for hypothalamic dissection: posterior to the optic chiasma, anterior to the mammillary bodies, along both lateral sulcus and 1 mm in depth) and kept in "RNAlater" (Ambion Inc, Austin, TX, USA) until extraction. RNA extraction was performed using RNAble reagent following manufacturer's protocol (Eurobio, Les Ulis, France). Concentration (A260) of the total RNA was determined and RNA was stored in Tris 10 mM/EDTA 0.1 mM (PH 7.4) at -80° C.

Prior to qPCR, 2 μ g of total RNA were reverse-transcribed using Superscript II Rnase H-reverse transcriptase (Invitrogen, Carlsbad, CA, USA) according to manufacturer's protocol. Control reactions without reverse-transcriptase were done in parallel.

Primers

18S primers and TaqMan probe were provided in the kit Eukaryotic 18S rRNA Endogenous Control (VIC/MGB Probe, Primer Limited) from Applied Biosystems, Warrington, UK. *Trh* primers were described in [7].

Quantitative polymerase chain reaction (QPCR)

Direct detection of the PCR product was monitored by measuring the increase in fluorescence generated by the TagMan probe (18S) or by the binding of SYBR Green to dsDNA (Trh). For Trh, 2 μ l of cDNA were added to a mix containing Trh primers (300 nM), and 2x SYBR Green Master Mix (Applied Biosystems) to a final reactional volume of 20 µl. For 18S RNA (endogenous control), samples containing 2 µl of cDNA, 1 µl of 18S probe and 10 µl of 2x TaqMan^R universal PCR Master Mix (Applied Biosystems) were prepared in a final volume of 20 µl. The genespecific PCR products were measured continuously by means of ABI PRISM 7300 Sequence Detection System (Applied Biosystems) during 40 cycles. All experiments were run in duplicate, and the same thermal cycling parameters were used (95°C for 10 min (1 cycle), 95°C for 15 sec and 60°C for 1 min (40 cycles)). Nontemplate controls and dissociation curves were used to detect primer-dimer conformation and non-specific amplification. According to the widely accepted MiQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments, [25]) guidelines, we verified the efficiency of the PCR for trh set of primers by using a serial 10 times dilution of the template. The dynamic range covered four orders of magnitude. We determined amplification efficiency from the slope of the log-linear portion of the calibration curve. The resulting efficiency was close to 100% (97%). Given this efficiency, which is required to be able to use the ddCT relative quantification method, we can deduce that we can use these primers for standard quality qPCR studies. The threshold cycle (CT) of each target product was determined and Δ CT between target and endogenous control was calculated. The CT is the number of PCR cycles required for the fluorescence signal to exceed the detection threshold value. The detection threshold was set to the log linear range of the amplification curve and kept constant for all data analysis. The difference in Δ CT values of two genes (Δ \DeltaCT) was used to calculate the fold difference (F = 2^{- Δ ACT}). The relative quantitative results were used to determine changes in *Trh* gene expression in groups where TR α 1 or TR α 2 was overexpressed as compared to control samples (empty pSG5 vector) at the ages shown. In the shRNA experiments, the *Gapdh* [23] was used as an endogenous control gene for normalisation.

Statistical analysis of the results

For *in vivo* gene transfer, results were expressed as the mean \pm SEM from an appropriate number of experiments as indicated in the figure legends. Nonparametric test with permutations (StatXact Cytel Studio software, Cambridge, MA) was used to assess for statistical differences. For post-test comparisons, we took into account the multiple testing factor, using a non parametric solution. p<0.05 was considered significant (*, p<0.05; **, p<0.01; ***, p<0.001). Each experiment was carried out with n \geq 10, repeated at least two times providing the same results. For qPCR experiments, data were plotted as traditional Tukey whiskers (represent 1.5 times the interquartile distance or to the highest or lowest point, whichever is shorter). Statistical analysis compared the median of ΔCT values using nonparametric ANOVA, followed by a permutation test (StatXact Cytel Studio software, Cambridge, MA) to compare the control and treated groups.

Results

TR α 2 exerts dominant negative activity on positively and negatively regulated T₃ target genes in the mouse hypothalamus *in vivo*

To test whether TR $\alpha 2$ acts as a dominant-negative receptor on hypothalamic gene transcription *in vivo*, two reporter gene assays were carried out, using a positively T₃ regulated promoter (*ME-tk-luc*) and a negatively regulated one (*Trh-luc*). In both cases we compared the effects of TR $\alpha 2$ over-expression to those of TR $\alpha 1$ overexpression, the action of which being already well characterised on both promoters *in vivo*.

When using the *ME-tk-luc* construct in the *in vivo* transfection paradigm, we found that in controls (figure 1A, left columns), T_3 significantly increased *ME-tk-luc* transcription by two fold (p<0.001). When TR α 2 was co-transfected with *ME-tk-luc*, transcription was blocked at the basal level seen in controls in the presence of T_3 (figure 1A, far right columns). Thus, TR α 2 over-expression blocks the stimulatory effect of endogenous receptors on *ME-tk-luc* transcription. In contrast, co-transfection of TR α 1 activated *ME-tk-luc* transcription about five fold in the presence of T_3 (figure 1A, middle pair of columns, p<0.001), but did not modify transcription levels in absence of T_3 (p = 0.054). Thus, TR α 2 does act as a dominant-negative receptor *in vivo*, blocking the regulation of transcription from a positively regulated TRE.

We next examined the effects of TR $\alpha 2$ on the negatively regulated *Trh* gene, using the same *in vivo* gene transfer paradigm. In control mice, expression from the *Trh-luc* construct (cotransfected with an empty expression vector) was reduced by 37% in animals injected with T₃ as compared with animals receiving saline (first pair of columns in figure 1B). This repression

R

A Effect of TR α 1 or TR α 2 isoform overexpression on *ME-tk* promoter activity

Effect of TR α 1 or TR α 2 isoform overexpression on *Trh* promoter activity

Figure 1. TR α 2 shows dominant negative activity on positively and negatively regulated T₃ target genes *in vivo*. A: TR α 2 exerts dominant negative activity on positively *ME-tk-luc* transcription. *ME-tk-luc* transcription was measured in hypothyroid (PTU) 2 days old mice treated with T₃ (2.5 µg/g b.w.) (PTU+T3) or saline (PTU), 18 h after hypothalamic injection of 1 µg reporter construct and 100 ng expression vector (empty pSG5 (Ct) or pSG5-TR α 1 (TR α 1) or pSG5-TR α 2 (TR α 2)). Transcription from *ME-tk-luc* is significantly increased in the presence of T₃ when TR α 1 is overexpressed (as compared to Ct) (p<0.001). In contrast TR α 2 overexpression significantly increases basal, T₃-independent *ME* transcription as compared to Ct and TR α 1 (p<0.001), but addition of T₃ does not modify transcription further. **B: TR\alpha2 exerts dominant negative activity on negatively** *Trh-luc* transcription. *Trh-luc* transcription was measured in hypothyroid (PTU) 2 days old mice as described above (100 ng expression vector and 1 µg reporter gene, *Trh-luc* prepup). Transcription from a *Trh-luc* construct is significantly decreased both in absence (PTU) and presence of T₃ (PTU+T3) when TR α 1 is overexpression. SEMs are given, n≥10 per point. In each case, the whole experiment was repeated twice giving similar results. *, p<0.05; **, p<0.01; ***, p<0.001. doi:10.1371/journal.pone.0095064.q001

was significant with a p value <0.001. When the TR α 2 isoform was over-expressed, it abolished physiological regulation of *Trh*. As expected, given that TR α 2 cannot bind ligand, T₃ had no effect on transcription levels induced by TR α 2. However, in both cases (TR α 2 with or without T₃ (figure 1B, far right columns) *Trh-luc* levels were raised to the maximum levels seen in controls (i.e. in activated, saline injected hypothyroid animals, figure 1B, left columns). Thus, here again TR α 2 was acting as a dominantnegative receptor, blocking the effects of the functional endogenous TRs. As an internal control, we used TR α 1 which is known to inhibit both T₃-dependent and T₃-independent regulation of *Trh* [21]. As expected, TR α 1 blocked *Trh* transcription at low levels, at 55% of the T₃-independent control level whether or not T₃ was present.

Transient TR α 2 knockdown has no transcriptional effect on positively and negatively regulated T₃ target genes *in vivo*

To examine TR α 2 transcriptional effects on T₃ target genes further, transient knockdown of TR α 2 was applied. First, in order to determine if the knockdown in TR α 2 expression could trigger a detectable decrease in TR α 2 protein level, the TR α 2 content of the transfected hypothalami was analysed by Western blotting (Figure 2A). To ensure that equivalent amounts of proteins were blotted in each lane, β -actin levels were determined. We find that the amount of TR α 2 protein detected in hypothalami 48 h after shTR α 2 injection (mix of two sets of shTR α 2, sh1TR α 2 and sh2TR α 2) was strongly decreased compared to TR α 2 levels detected in control group (transfected with shCt). This decrease in TR α 2 level demonstrates that the knockdown was efficient 48 h after shRNA injection.

We next investigated the effects of transient TR α 2 knockdown on a positively regulated T₃ target gene, Tyrosine hydroxylase enzyme (TyrH) using iGT as described above. We found that in controls transfected with shCt (figure 2B left columns), T₃ significantly increased *TyrH-luc* transcription (p < 0.01). The same transcriptional profile is obtained when $shTR\alpha 2$ is co-transfected, with T_3 significantly increasing *TyrH-luc* transcription (p<0.01) (figure 2B, right columns). Thus, no effect was seen on T_3 independent and dependent TyrH-luc transcriptional levels when shTRa2 is co-transfected as compared to controls (Figure 2B). Only a significant increased effect on T₃-independent TyrH-luc transcription was obtained (p<0.001) when TR α 2 was overexpressed as compared to Ct (Figure 2C). We conclude that $TR\alpha 2$ overexpression abrogates T3-dependent transcription on both positively regulated T₃ target genes tested, ME as previously mentioned (Figure 1A) and TyrH (Figure 2C), whereas TR α 2 transient knockdown maintains T₃-dependent TyrH-luc transcription (Figure 2B, far right histograms).

The effects of TR α 2 knockdown on the negatively regulated *Trh* gene were examined, using the same *i*GT paradigm with the mix of shTR α 2 constructs. In control mice, expression from the *Trh-luc* construct (co-transfected with shCt) was repressed significantly by 60.5% (p<0.001) in animals injected with T₃ as compared with animals receiving saline (left columns in figure 2D). When the shTR α 2 was co-transfected, it abolished the physiological T₃ regulation of *Trh* (right columns in figure 2D). Transcriptional activity was equivalent as in the group injected with shCt in absence of T₃, and was unchanged whereas T₃ was present or not. Thus, loss of TR α 2 function seems to allow TR α 1 effect on *Trh* promoter being unmasked, resulting in about the same *Trh* promoter activity than when TR α 1 is over-expressed. We conclude that, both gain or loss of TR α 2 function seems to block

Figure 2. Transcriptional effect of TRa2 knockdown on positively and negatively regulated T₃ target genes in vivo. A: Knockdown of TRa2. TRa2 expression levels were analyzed on hypothalami (48 h after transfection) of hypothyroid 2-day old mice by western-blot using anti-TRa2 antibody. A decrease in TRa2 protein expression level is observed with shTRa2 compared to control (shCt). Pups were transfected in the hypothalami with 400 ng/pup of shCt (empty pCMV-H1 vector (shCt)) or shTRa2 (mixture of 200 ng pCMV-H1-sh1TRa2 and 200 ng pCMV H1-sh2TRa2 vectors (shTR α 2). A and B are samples from different animals. β actin was used as a loading control. B: TR α 2 transient knockdown maintains T₃dependent activation of the positively regulated TyrH promoter. ShTRa2 has no effect on TyrH-luc transcriptional activity either in absence or presence of T₃. shCt or shTR₂2 (400 ng as above) were co-transfected with 1 µg of TyrH-luc construct/hypothalamus of hypothyroid 2-day old mice treated (PTU+T3) or not (PTU) by T_3 (2.5 μ g/g b.w.). C: TRa2 overexpression abrogates T_3 -independent repression of the positively regulated TyrH promoter. TR α 2 overexpression significantly increases T₃-independent TyrH-luc transcription as compared to Ct (p<0.001), but addition of T₃ does not increase transcription further. Empty pSG5 vector (Ct) or pSG5-TRa2 (TRa2) was used at 100 ng and co-transfected with 1 µg of TyrH-luc construct/hypothalamus of hypothyroid 2-day old mice. D: TRa2 transient knockdown abolishes T₃-dependent repression of the negatively regulated Trh promoter. ShTR α 2 has no effect on T₃-independent Trh promoter activity (p=0.07) and when T₃ is added, Trh-luc transcription is not repressed anymore (p<0.05) as compared to shCT. The same experimental conditions as in B were used (400 ng expression vector and 1 μ g reporter gene, Trh-luc per pup). SEMs are given, n \geq 10 per point. In each case, the whole experiment was repeated twice giving similar results. *, p<0.05; **, p<0.01; ***, p<0.001. doi:10.1371/journal.pone.0095064.g002

Trh transcription at an intermediate level between activated and repressed control levels. Indeed, an average TRH activity remains, whereas fine physiological T₃ regulation is lost.

To test this hypothesis, we next investigated the consequences of gain or loss of $TR\alpha 2$ or $TR\alpha 1$ function on endogenous TRH production.

Effects of TR α 2 or TR α 1 gain or loss of function on endogenous TRH production in euthyroid mice

First, TR α 1 or TR α 2 or a control vector were transfected into the hypothalamus of newborn euthyroid mice. mRNA were extracted and endogenous *Trh* levels were followed by qPCR. As seen in figure 3A, the results show that mRNA *Trh* levels were not significantly modified in either 3 or 5-days old mice when TR α 2 or TR α 1 was overexpressed, as compared to controls (taken at the same ages). Similarly, no significant effects were seen on endogenous *Trh* levels when shTR α 2 or shTR α 1 was transfected as compared to controls (Figure 3B). Thus, these results arise the question of determining if at later time points (as compared to shorter times; 1day post transfection corresponding to 3 days old mice), we could see a differential effect of TR α 2 or TR α 1 on thyroid hormone circulating levels.

Figure 3. TRa2 or TRa1 gain or loss of function held endogenous *Trh* levels constant. A: TRa2 or TRa1 overexpression does not interfere with endogenous *Trh* mRNA levels. Euthyroid 2-days old mice were transfected with 100 ng of empty pSG5 (ct), pSG5-TRa1 (TRa1) or pSG5-TRa2 (TRa2). Hypothalami were dissected at either 3 (3 days old) or 5 (5 days old) days of age (corresponding to 1 day and 3 days post transfection, respectively). Two µg of totRNA were reverse-transcribed and qPCR were performed. Endogenous *Trh* mRNA levels are not significantly modified by TRa2 or TRa1 overexpression in either 3 or 5-day old mice as compared to controls (Ct) *185* mRNA were used as endogenous control. The whole experiment was repeated twice. B: TRa2 or TRa1 nockdown does not interfere with endogenous *Trh* mRNA levels. Euthyroid 2-days old mice were transfected with 400 ng of empty pCMV-H1 (Ct), pCMV-H1-TRa1 (shTRa1) or a mixture of 200 ng sh1TRa2 and 200 ng sh2TRa2 vectors (shTRa2). Hypothalami were dissected 1.5 days post transfection (3.5 days old mice). Endogenous *Trh* mRNA levels are not significantly modified by TRa2 or TRa1 knockdown as compared to control. Gapdh mRNA was used as an endogenous control. The whole experiment was repeated twice. doi:10.1371/journal.pone.0095064.g003

The effects of TR α 2 or TR α 1 overexpression on *Trh-luc* transcription are correlated with modifications of thyroidal status

Given the differential effects of TR α 2 versus TR α 1 on the *Trh* promoter activity obtained by iGT, we next examined the effects of their overexpression on circulating T₄ levels. As seen in figure 4, TR α 1 overexpression resulted in a significantly decreased circulating T₄ level at P7 as compared to controls (p<0.01) (Figure 4, far right columns). However no effect in circulating T₄ was observed at the same age when TR α 2 was overexpressed. The results of TR α 2 or TR α 1 overexpression on *Trh-luc* transcription are correlated with modifications of thyroidal status.

Discussion

It is intriguing to note that of all the four main products (TR α 1, TR $\alpha 2$, TR $\beta 1$ and TR $\beta 2$) of the two TR genes (NR1A1 and NR1A2), the mRNA of the non-hormone-binding variant TR α 2 is by far the most highly expressed in the brain [6,26]. Indeed in the rat brain, temporal expression of TRa2 mRNA follows the same spatial pattern of expression of $TR\alpha 1$, but its levels are markedly higher [26], suggesting that TR α 2 might be a critical non T₃ dependent regulator of thyroid hormone action by modulating T₃binding TR effects on the expression of brain-specific genes [7]. One line of investigation to address the role of $TR\alpha 2$ in general thyroid hormone dependent signalling has been to generate mice lacking TR α 2. These mice show an overexpression of TR α 1 in all tissues examined, including brain. The mice have significantly lower circulating free T_3 and free T_4 and their thyroid glands show features of dysfunction, suggesting decreased activity of the Hypothalamic Pituitary Thyroid axis (H-P-T) [20]. This phenotype (insufficient stimulation of the thyroid and of the production of TH) raises the question of the physiological function of TR $\alpha 2$ in brain and notably in the hypothalamus at the level of Trh transcription.

We chose to examine the effects of TR α 2 on *Trh* transcription using an *in vivo* reporter gene approach. Three reasons, besides the

Effect of hypothalamic TR α 1 or TR α 2 gain of function on circulating Total T4 levels

Figure 4. Overexpression of TRa1, but not TRa2, in the hypothalamus modulates circulating T₄ levels. pSG5-TRa1 (TRa1) or pSG5-TRa2 (TRa2) were transfected (100 ng/pup) into the hypothalamus of hypothyroid 2-day old mice. Serum was collected at the ages shown (3, 5 or 7 days old) and pooled (four individual samples per pool). At 5 days post-transfection (7 days old mice), T₄ circulating levels are significantly decreased when TRa1 is overexpressed and not modified by TRa2 overexpression. Means \pm SEM of pooled samples are given, n≥4 for each point. **, p<0.01.

phenotype of the $TR\alpha 2^{-\prime-}$ mouse, made *Trh* promoter of a particular interest in terms of function of this enigmatic $TR\alpha 2$ isoform. First, Trh gene regulation allows one to investigate TR isoforms specificity as TR β and TR α have distinct roles in the negative transcriptional regulation by T_3 [1,27]. Second, *Trh* is a critical component of the H-P-T axis and is thus a critical regulatory gene. Third, Trh is a T_3 negatively regulated target gene and is of particular mechanistic interest from the transcriptional point of view. It is important to discuss here the fact that it is often considered that the HPT axis is immature in the postnatal mouse. This concept is largely based on the observations of the low levels of circulating T₃ and T₄ levels that increase steadily during the first two weeks of postnatal life peaking at p15 and then declining slightly to reach adult levels [28]. However, the feedback system is active as decreasing T₃ and T₄ levels by administrating PTU increase Trh expression. Thus even if the axis is not fully mature, the components of negative feedback are present (TRs, NCoR, SMRT, etc...[29]). In fact, just because circulating levels of T₃ and T₄ climb during this post-natal phase does not actually imply that the axis is not functional until adult levels are attained. First, the low levels of circulating hormone indicate more that is could be due to low feed forward drive at any of the levels, TRH, TSH or even T_3/T_4 production. Second, these low levels do not rule out the possibility that the feedback system can respond to high levels of T_3 . Thus more knowledge is required on the manner at which hypothalamic setpoints are established, and modulated, during this critical post-natal period.

We started our study by iGT experiments conducted on hypothyroid newborn mice, to reduce high variability in endogenous thyroid hormone levels, which could compromise transcriptional regulation study. The results on *Trh* transcription were compared to those obtained on *Malic Enzyme (ME)*. In both cases we compared the effects of TR α 2 to those obtained with TR α 1, because TR α 1 action on both genes of interest has already been well characterised *in vivo*. We observed that in absence of T₃, TR α 1 fails to repress *ME* expression, suggesting that level of endogenous TR α 1 was already sufficient to repress basal *ME* transcription, suggesting that when TR α 2 is overexpressed it acts as a dominant-negative receptor, competing with endogenous TR α 1 as to lead to an increase in *ME* transcription.

Regarding the negatively T_3 -regulated *Trh* gene, TRa1 prevents the T_3 -indepedent *Trh* activation, and increases the T_3 -dependent repression observed in the control group. Thus, $TR\alpha 2$ acts as a dominant-negative receptor on both positively and negatively regulated T₃ target genes. Our in vivo result on ME-tk-luc transcription was in accordance with data conducted on transfected cells where TR α 2 exerted a negative effect on T₃-positive response element-mediated transcription [30]. The molecular mechanisms underlying the dominant negative activity of $TR\alpha 2$ are not yet completely elucidated, even in vitro. Two different mechanisms have been proposed: the first, described by Katz et al. [15] involves a passive repression, in which $TR\alpha 2$ blocks TRs action by competing for binding to TREs; the second mechanism has been proposed by Liu et al. [17], who demonstrated that $TR\alpha 2$ inhibitory effect does not require binding to TRE and suggested that interactions with components of the general transcription machinery might instead play a crucial role.

For the T_3 negatively regulated gene *Trh*, the gain of function of TR α 2, when compared to the gain of function of TR α 1, results in strong activation of transcription that is unmodified by presence or absence of T_3 . In contrast, TR α 1 overexpression down-regulates *Trh* transcription and this regulation is equally T_3 insensitive. Each of these regulations, contrast with the physiological T_3 -dependent

repression of *Trh* in the presence of TR β isoforms [2,21]. This T₃independent activation of *Trh* transcription by TR α 2 suggests a possible role of TR α 2 *in vivo*, acting as a dominant-negative receptor on negative T₃-regulated genes. *In vitro* experiments have not been able to reveal such a role. When transfected into JEG-3 cells, TR α 2 isoform was inactive on positively and negatively regulated T₃ response genes whereas TR α 1 and TR β stimulated transcription from *TRE-tk-CAT* (pTRE), and repressed *TSH\alpha-CAT* (nTRE) reporter genes in T₃-dependent manners. When coexpressed with TR α 1 or TR β at relatively high doses, TR α 2 inhibited regulation of positive TREs but did not affect negative regulation [14]. The difference between these findings and our data are probably due to different cellular contexts and different target genes studied.

To explore further the function of TR $\alpha 2$ in *Trh* regulation, we used transient knockdown of TRa2 using an shRNA approach. Effects were also followed on positively T₃-regulated target genes (Tyrosine hydroxylase (TyrH) and ME enzymes). TRa2 overexpression abrogated T3-dependent transcription on both of these positively T_3 regulated target genes, whereas TR $\alpha 2$ transient knockdown maintains T₃-dependent TyrH-luc transcription. This result confirms the dominant negative action of TR $\alpha 2$ on positively regulated T₃ target genes since its knockdown unmasks functional TRs transcriptional effects. Intriguingly, transient knockdown of TR α 2 has the same effect as its overexpression on Trh gene transcription (Trh-luc transcriptional levels are similar to those obtained in controls in absence or presence of T_3). Indeed, when TR α 2 is overexpressed it leads to an imbalance in the transcriptional machinery, thus impairing the well-defined effect of TR β on T₃-dependent *Trh* transcriptional repression [23,31]. Conversely, when $shTR\alpha 2$ is transfected, a shift in the balance of the transcriptional machinery towards TRal results in equivalent Trh-luc transcriptional levels as when $TR\alpha 1$ is overexpressed.

In order to study the effects of TR α 1 and TR α 2 on endogenous *Trh mRNA* levels, qPCR analyses were conducted on euthyroid mice so as to examine the dynamics of feedback in physiologically normal animals. We obtained no differential effects of the two overexpressed isoforms in the shorter frame at one day post-transfection (3 days old mice) nor at three days post-transfection. Similarly, no detectable effect was seen on endogenous *Trh* mRNA levels in the shorter frame (at 36 h post-transfection) when shTR α 2 or shTR α 1 was transfected. These data showing no detectable variations in *Trh* mRNA levels in the shorter term fit with those published by a number of authors [32,33] who showed *Trh* mRNA varied within longer time frames.

To propose a model of TR α 1 and TR α 2 interaction, it is easiest to start from the TR α 2 loss of function studies. The mutant mice show loss of TR α 2 to increase TR α 1 expression. In effect, we observe that hypothalamic TR α 2 loss of function has the same effect on *Trh-luc* transcriptional activity as TR α 1 overexpression. We therefore suggest that in physiological conditions there is a balance between the effects of TR α 2 and TR α 1 allowing the overriding effects of the TR β isoforms that provide physiological T₃-dependent *Trh* regulation.

Indeed, the results from the mutant mice studies [20] suggest that the loss of TR α 2 or the changed balance of TR α 2/TR α 1 perturbs a range of functions (metabolism and growth) notably at the central level, suggesting a role for TR α 2 in regulating central T₃-dependent transcription genes. Similarly, a changed balance of TR α 2/TR α 1 in a context where TR α 2 is overexpressed would have consequent transcriptional effects on brain gene expression. A biological activity that can be attributed to TR α 2 would be an adjustment of the T₃ binding TR α 1 protein activity to physiologically appropriate levels, implying thus an important, widespread

regulatory role in mammalian physiology of the ratio of TRa1/ TR α 2 expression. Our data showing that TR α 2 does indeed act as a dominant-negative receptor on both negatively and positively T₃ regulated target genes in the brain strongly bolster this hypothesis.

In this report we define an *in vivo* function for the nonbinding TR α 2 isoform in regulating brain genes, supported by findings on athyroid Pax8^{-/-} TR α 1^{-/-} mice who die around weaning unless they are substituted with thyroid hormones due to the negative effects of the TR α 1 appreceptor, but, rather, including a more complex mechanism involving $TR\alpha 2$ and unliganded TR isoform TR $\Delta \alpha 2$ [34].

Taken together, our results emphasize the as yet neglected physiological importance of TRa2, naturally acting as dominant-

References

- 1. Guissouma H, Ghorbel TM, Seugnet I, Ouatas T, Demeneix AB (1998) Physiological regulation of hypothalamic TRH transcription in vivo is T3 receptor isoform-specific. FASEB J 12: 1755-1764.
- 2. Dupre SM, Guissouma H, Flamant F, Seugnet I, Scanlan TS, et al. (2004) Both thyroid hormone receptor (TR)beta 1 and TR beta 2 isoforms contribute to the regulation of hypothalamic thyrotropin-releasing hormone. Endocrinology 145: 2337 - 2345
- 3. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83: 835–839.
 4. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, et al. (1986) The c-erb-A
- protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, et al. (1986) The c-
- 5 erb-A gene encodes a thyroid hormone receptor. Nature 324: 641-646.
- 6. Bradley DJ, Towle HC, Young WS, 3rd (1992) Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2subtype, in the developing mammalian nervous system. J Neurosci 12: 2288-2302
- 7. Clerget-Froidevaux MS, Seugnet I, Demeneix BA (2004) Thyroid status coregulates thyroid hormone receptor and co-modulator genes specifically in the hypothalamus. FEBS Lett 569: 341-345
- Lechan RM, Qi Y, Jackson IM, Mahdavi V (1994) Identification of thyroid 8. hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 135: 92-100.
- Alkemade A, Vuijst CL, Unmehopa UA, Bakker O, Vennstrom B, et al. (2005) Thyroid hormone receptor expression in the human hypothalamus and anterior pituitary. J Clin Endocrinol Metab 90: 904-912.
- 10. Lazar MA, Hodin RA, Darling DS, Chin WW (1988) Identification of a rat cerbA alpha-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol Endocrinol 2: 893-901.
- 11. Mitsuhashi T, Tennyson GE, Nikodem VM (1988) Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A 85: 5804–5808.
- 12. Yang YZ, Burgos-Trinidad M, Wu Y, Koenig RJ (1996) Thyroid hormone receptor variant alpha2. Role of the ninth heptad in dna binding, heterodimerization with retinoid X receptors, and dominant negative activity. I Biol Chem 271: 28235-28242.
- 13. Tagami T, Kopp P, Johnson W, Arseven OK, Jameson JL (1998) The thyroid hormone receptor variant alpha2 is a weak antagonist because it is deficient in interactions with nuclear receptor corepressors. Endocrinology 139: 2535-2544.
- 14. Rentoumis A, Chatterjee VK, Madison LD, Datta S, Gallagher GD, et al. (1990) Negative and positive transcriptional regulation by thyroid hormone receptor isoforms. Mol Endocrinol 4: 1522-1531
- 15. Katz D, Lazar MA (1993) Dominant negative activity of an endogenous thyroid hormone receptor variant (alpha 2) is due to competition for binding sites on target genes. J Biol Chem 268: 20904-20910.
- 16. Burgos-Trinidad M, Koenig RJ (1999) Dominant negative activity of thyroid hormone receptor variant alpha2 and interaction with nuclear corepressors. Mol Cell Endocrinol 149: 107-114.
- 17. Liu RT, Suzuki S, Miyamoto T, Takeda T, Ozata M, et al. (1995) The dominant negative effect of thyroid hormone receptor splicing variant alpha 2 does not require binding to a thyroid response element. Mol Endocrinol 9: 86-95
- 18. Strait KA, Schwartz HL, Perez-Castillo A, Oppenheimer JH (1990) Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding

negative receptor on hypothalamic Trh transcription, and consequently, on the regulation of HPT axis.

Acknowledgments

The technical assistance of the personnel of the animal care facilities is gratefully acknowledged.

Author Contributions

Conceived and designed the experiments: HG BD MSCF. Performed the experiments: HG RGZ IS SD. Analyzed the data: HG MSCF. Contributed reagents/materials/analysis tools: HG IS RGZ SD MSCF. Wrote the paper: HG BD MSCF.

capacity and function in developing and adult rats. J Biol Chem 265: 10514-10521.

- 19. Forrest D, Sjoberg M, Vennstrom B (1990) Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J 9: 1519-1528.
- 20. Salto C, Kindblom JM, Johansson C, Wang Z, Gullberg H, et al. (2001) Ablation of TRalpha2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol 15: 2115-2128
- 21. Guissouma H, Dupre SM, Becker N, Jeannin E, Seugnet I, et al. (2002) Feedback on hypothalamic TRH transcription is dependent on thyroid hormone receptor N terminus. Mol Endocrinol 16: 1652-1666.
- Robert JJ, Geoffroy MC, Finiels F, Mallet J (1997) An adenoviral vector-based 22 system to study neuronal gene expression: analysis of the rat tyrosine hydroxylase promoter in cultured neurons. J Neurochem 68: 2152-2160
- 23. Decherf S, Seugnet I, Kouidhi S, Lopez-Juarez A, Clerget-Froidevaux MS, et al. (2010) Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression. Proc Natl Acad Sci U S A 107: 4471-4476.
- 24. Dratman MB, Crutchfield FL, Futaesaku Y, Goldberger ME, Murray M (1987) [125]] triiodothyronine in the rat brain: evidence for neural localization and axonal transport derived from thaw-mount film autoradiography. J Comp Neurol 260: 392-408.
- 25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611-622.
- Lebel JM. Dussault JH (1994) The thyroid and brain development. Cu Opin 26. Endocrinol Diabetes 1: 167-174.
- 27. Lezoualc'h F, Hassan AH, Giraud P, Loeffler JP, Lee SL, et al. (1992) Assignment of the beta-thyroid hormone receptor to 3,5,3'-triiodothyroninedependent inhibition of transcription from the thyrotropin-releasing hormone promoter in chick hypothalamic neurons. Mol Endocrinol 6: 1797-1804
- 28. Hadj-Sahraoui N, Seugnet I, Ghorbel MT, Demeneix B (2000) Hypothyroidism prolongs mitotic activity in the post-natal mouse brain. Neurosci Lett 280: 79-82.
- 29. Becker N, Seugnet I, Guissouma H, Dupre SM, Demeneix BA (2001) Nuclear corepressor and silencing mediator of retinoic and thyroid hormone receptors corepressor expression is incompatible with T(3)-dependent TRH regulation. Endocrinology 142: 5321-5331.
- 30. Lazar AL (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocrine Rev 14: 184-193.
- 31. Zhang J, Zamir I, Lazar MA (1997) Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol Cell Biol 17: 6887-6897.
- 32. Koller KJ, Wolff RS, Warden MK, Zoeller RT (1987) Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci U S A 84: 7329-7333.
- Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, et al. (1987) Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238: 78-80.
- 34. Mittag J, Friedrichsen S, Heuer H, Polsfuss S, Visser TJ, et al. (2005) Athyroid Pax8-/- mice cannot be rescued by the inactivation of thyroid hormone receptor alpha1. Endocrinology 146: 3179-3184.