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Based on video recordings of the movement of the patients with epilepsy, this paper proposed a human action recognition scheme
to detect distinct motion patterns and to distinguish the normal status from the abnormal status of epileptic patients. The scheme
first extracts local features and holistic features, which are complementary to each other. Afterwards, a support vector machine is
applied to classification. Based on the experimental results, this scheme obtains a satisfactory classification result and provides a
fundamental analysis towards the human-robot interaction with socially assistive robots in caring the patients with epilepsy (or
other patients with brain disorders) in order to protect them from injury.

1. Introduction

Epilepsy, one of the most common neurologic disorders, is
a chronic disease of brain sudden paradoxical discharge of
cortical neurons. It is characterized by the spontaneous and
unforeseeable occurrence of seizures [1] with transient signs
and/or symptoms due to abnormal, excessive, or synchronous
neuronal activity in the brain [2]. It is often accompaniedwith
disturbances in behaviour, short-term brain dysfunction, and
cognitive impairment. According to the World Health Orga-
nization, the incidence of epilepsy has affected more than 50
million individuals worldwide—about 0.6–1% of the world’s
population. Because patients with epilepsy have poor ability
of independent living, they have lower rates of employment
and marriage than others. This not only affects the patients
themselves, but also causes fear and inconvenience to their
family.

Since the first robot was created in the 1960s, robots have
been increasingly used in industrial and entertainment, and
more recently the research on socially assistive robots (SARs)
for domestic use has received much attention. A socially
assistive robot is an intelligent system that is capable of
providing assistance for healthy adults or enhancing existing
care for persons with cognitive disabilities/impairment, for
example, stroke, Alzheimer, and autism spectrum disorder.
The question then arises: can socially assistive robots replace
nurses or patients’ familymembers formonitoring and caring
the epilepsy patients, that is, sounding the alarm, or taking
some effective actions to alleviate seizure symptoms?

To address this, human-robot interaction (HRI) [3, 4] is
an important issue. Based on the information collected from
multiple sensors, HRI works toward smooth interactions
between a human user and a socially assistive robot via
the use of speech, vision, haptic control, and so forth, for
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implementing a task. It is a broad area, including a wide
variety of research topics, that is, robotics, computer vision,
human-computer interaction, modern artificial intelligent,
natural language processing, and cognitive science. In the
viewpoint of computer vision, the aimofHRI is to understand
the patients’ behaviors. The first thing is that the robot
needs to analyze their motions through action recognition
to determine whether the patients are at the seizure status.
Otherwise, it may generate unnecessary interaction between
the robots and the patients with epilepsy.

According to the International League Against Epilepsy
(ILAE), seizure types are organized according to whether the
source of the seizure within the brain is localized (partial
or focal onset seizures) or distributed (generalized seizures)
[5]. Partial seizures, having a focal origin, are further divided
based on the extent to which consciousness is affected
(simple partial seizures and complex partial seizures) [6].
Generalized seizures affect both cerebral hemispheres (sides
of the brain) from the beginning of seizures, such as absence
seizures [7] which are short in duration (typically lasting
from a few seconds up to around a minute) and may recur
over 100 times a day [8]. The seizures may bring the patients
with sudden accidents and injuries. Moreover, the sudden
and abrupt seizures can appear at any age and may cause
serious problems to the patients’ body, mind, and intelligence
with long-term repeated seizure onset. This supports the
importance of detecting seizures as early as possible such that
clinicians can prescribe necessary medication for the patients
to stop the progression of the chronic disease.

Initially, epilepsy is diagnosed by experienced experts via
observing patients’ actions, behavioral changes, and mental
health history in the family. However, it is not practical in
clinical use due to high cost of the manpower and financial
resources. During the past few decades, it was confirmed that
electroencephalogram (EEG) signals, recording the sponta-
neous brain electrical activity by means of electrodes located
on the scalp, can provide evidence for the existence of a
preseizure phase in partial epilepsy [9, 10]. In this paper, we
focus on the research of epilepsy and investigate whether
the detection/classification of seizure status of patients with
epilepsy can be explored by analyzing the movement of
epileptics at the video level through human action recogni-
tion. As the absence or anomalies of such movement is a
highly predictive indicator for epilepsy, accurate classification
about the patients’ status through video recordings is a
fundamental step in detecting different seizure status in the
epilepsy. Here, we use computer vision-based techniques to
extract the information of movement from video recordings
of patients.

Human action recognition [11, 12] is one of themost active
topics in computer vision and has been widely applied in
video surveillance, video annotation, and retrieval. Current
action recognition systems are mainly based on local and
holistic representations. Local representations [12] sparsely
detect spatiotemporal interest points (STIPs) and have dom-
inated in human action recognition due to their attractive
advantages, such as being less sensitive to partial occlusions
and clutter and requiring no background subtraction or
target tracking as in holistic representations. Nevertheless,

local methods suffer from some limitations, one of which
is the inability to capture adequate spatial and temporal
structure information of actions. On the other hand, holistic
representations [13] directly extract spatiotemporal features
from raw video sequences and are able to provide entire
spatial and temporal structural information of human actions
in a sequence. However, they are highly sensitive to partial
occlusions and background variations and often require
computationally expensive preprocessing steps such as back-
ground subtraction, segmentation, and tracking.

To this end, in the task of recognizing normal and abnor-
mal status of epileptics, we propose a simple classification
scheme on video recordings by combining local representa-
tion with holistic representation, which is able to deal with
their shortcomings while integrating their merits. For local
representation, we use 3D Gabor filters [14, 15] as they are
biologically relevant to human image understanding and
recognition. Afterwards, holistic representation is obtained
by applying gist features [16] over each filtered volume.
Finally, the classification is implemented by a support vector
machine (SVM) [17, 18].

To determine whether an epileptic is at the seizure
status, the scheme is implemented on the video recordings
of epileptic patients at different ages. The movement of
affected patients is characterized by more abrupt motion
direction changes with periods of no movement. Moreover,
the classification task entails lots of challenges: (1) different
types of actions: epilepsy appears in different actions, for
example, abruptly falling down and continuously vibrating;
(2) multiple persons: some video recordings not only con-
tain the patient himself/herself, but also contain the family
members or nurses; (3) turning on and turning off the
lights in the ward lead to different lighting conditions; and
(4) the persons in the videos sometimes wear different-
color clothes. Due to the above-mentioned difficulties, the
literature that addresses the epilepsy area using video data
is limited. Although we only obtain primary results, it is the
first time that only video recordings are analyzed for the
classification problem in epilepsy, aiming at shedding the
light for future research on the prediction of seizure onset.
The rest of the paper is organized as follows. In Section 2,
we present the newly proposed scheme in detail, including
feature extraction based on 3D Gabor features and gist
features. In Section 3, we describe the video dataset applied
in evaluating the performance of the scheme and report
the experimental results. Section 4 concludes the paper and
points out some future works.

2. Methods

The proposed scheme (as shown in Figure 1) consists of the
following two main steps: (i) feature extraction by 3D Gabor
features and gist features and (ii) classification by SVM. Each
step will be described in detail in the next subsections.

2.1. 3D Gabor Filters. Research findings from cognitive psy-
chology and psychophysics suggest that Gabor filters [14, 15]
based on image decomposition are biologically relevant to
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Figure 1: The proposed scheme.
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Figure 2: 3D Gabor filters on intensity volume.

human image understanding and recognition. Consequently,
Gabor filters are appropriate for orientation information
extraction within a purely computer vision context.

Here, we apply a bank of 3D Gabor filters with one
scale and four orientations to localizing salient features in
spatiotemporal dimensions, making a total of four Gabor
functions. In a 3D space, Gabor filters are defined as
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where 𝜃 and 𝜔 are the spatial and temporal orientations.
Figure 2 shows the 3D Gabor filters on intensity volume in

horizontal direction. Since Gabor filters are differential algo-
rithms, the extracted visual features are robust to illumination
changes.

2.2. Spatiotemporal Gist Feature Extraction. To make com-
pact representation and achieve invariance to small shifts
in position and changes in lighting conditions, we use
average pooling [19, 20] over the filtered volumes to extract
gist features. Similar to the gist feature extraction in scene
recognition [16], a gist feature is generated from each filter
volume by dividing the volume into a 4 × 4 × 4 grid and then
averaging the responses of pixels within each spatiotemporal
subregion, resulting in a 256-dimensional feature vector. In
this way, the extracted gist features can preserve discrimi-
native information and are tolerant to spatial and temporal
shifts and insensitive to noise.

2.3. Classification. A support vector machine (SVM) [17, 18]
is a binary classifier, which maximizes the margin between
positive examples and negative examples, as shown in Fig-
ure 3. Because of its good generalization ability and no
requirement for prior knowledge about the data, it has been
universally utilized as one of the most popular classifiers in
various research areas, for example, face recognition, texture
classification, content-based image retrieval (CBIR), and so
forth.

Hard-margin SVM and soft-margin SVM are two dif-
ferent forms of an SVM. On one hand, hard-margin SVM
solves a quadratic programming problem to deal with linearly
separable data. It is effective and requires no parameters.
However, it cannot deal with linearly nonseparable examples.
On the other hand, soft-margin SVM, the standard solution
of a SVM, allows somemisclassifications or outliers by adding
a regularization term to handle linearly nonseparable data.
Themethodology of soft-margin SVM is reviewed as follows.

Consider a problem of classifying a set of linearly sepa-
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where 𝐶 is a constant determined by cross-validation and
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is the vector of all slack variables
to deal with the linearly nonseparable problem by giving
eachmisclassified example an individual penalty. For linearly
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Figure 3: An SVMmaximizes the margin between positive examples and negative examples.

separable training examples, we can set ⃗𝜉 = 0. By introducing
a Lagrange multiplier 𝛼
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, the Lagrangian is
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and the solution is determined by
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which can be achieved by the Karush-Kuhn-Tucker (KKT)
conditions
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Therefore, the parameters �⃗� and 𝑏 can be obtained using
the Wolfe dual problem
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Most of 𝛼
𝑖
are zeros, and �⃗�

𝑖
corresponding to 𝛼

𝑖
> 0 are

referred to the support vectors. In Figure 3, they are expressed
as the examples close to the decision boundary or at the
wrong side of the margin.

In the dual format, data points only appear in the inner
product. To solve the nonlinearly separable problem, the data
points from the low-dimensional input space 𝐿 are mapped
onto a higher dimensional feature space𝐻 (the Hilbert inner
product space) by the replacement
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Finally, for a given kernel function, the SVM classifier is
given as

𝐹 (�⃗�) = sgn (𝑓 (�⃗�)) , (11)
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decision function of SVM.
In traditional SVM-based RF algorithms, 𝑓(�⃗�) is used for

measuring the dissimilarity between the query image and an
example image in the database. For a given example, a high
𝑓(�⃗�) indicates that it is far away from the decision boundary
and thus has high prediction confidence while a low 𝑓(�⃗�)

shows that it is close to the boundary and its corresponding
prediction confidence is low.

3. Results and Discussion

In this section, we describe the process of video data acqui-
sition and experimental setup. Afterwards, the experimental
results that evaluate the effectiveness of our proposed scheme
are reported.
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Figure 4: Sample video frames from Patient 2, Patient 4, Patient 5, and Patient 8, respectively.

3.1. Video Data Acquisition and Experimental Setup. We col-
lected 41 video recordings of 9 epilepsy patients at a resolution
of 640 × 480. The videos were recorded with a frame rate
of 25 frames/s in the AVI video format. Each patient was
lying on a standard hospital bed, and a stationary digital
video camera was placed at a distance above the patients
to record the movements. This resulted in an experimental
setup where a similar camera position was assured for all
recordings. Please note that not every video clip recorded the
seizure status; that is, some videos were selected to ensure an
awake and comfortable state.The original 41 video recordings
are of different length, ranging from less than one minute
to nearly ten minutes. Considering this, we segment each
video into several ones that are no longer than one minute.
Afterwards, each of them is converted into the AVI video
format at a resolution of 160 × 128. The study protocol had
previously been approved by the ethics committee of Peking
University People’s Hospital and the patients had signed
informed consent that their clinical data might be used and
published for research purposes.

Figure 4 shows sample video frames from Patient 2,
Patient 4, Patient 5, and Patient 8, respectively, where frames
in a column belong to the same patient. As we can see, with
this dataset, the classification task entails lots of challenges:
(1) different types of actions: epilepsy appears in different
actions, for example, abruptly falling down, continuously
shaking, and so forth; (2) multiple persons: some video
recordings not only contain the patient himself/herself, but
also contain the family members or nurses; (3) the patients
are usually in different lighting conditions; and (4) the
persons in the videos sometimes wear different-color clothes.
All of the four points mentioned above bring about some

difficulty in distinguishing normal status from abnormal
status.

To evaluate the classification performance, we manually
annotated each video recordingwith a bounding box to locate
the epilepsy child. Moreover, a label, that is, “normal” or
“abnormal,” is assigned to each video.

For classification, we make use of an SVM classifier with
a linear kernel due to its good generalization ability and
efficiency. Classification consists of the training phase and the
testing phase. We randomly select half of the video clips for
each patient for training and use the rest for testing.This step
is conducted for 5 times and the average accuracy is 65.22%.
After training the classifier based on the extracted features of
the training set, the classifier is trained and able for classifying
the examples in the testing set. We define two categories
labeled as “normal” and as “abnormal,” which denote different
states of the tested epileptics.

Although the accuracy is not very high, but with such a
complex video dataset, the classification performance is sat-
isfactory and can serve as a tool for automatically predicting
the seizure status of the epilepsy patients. The current video
data include epilepsy patients of different ages. An interesting
question is how themovement changeswith an increasing age
of the patients andwhether this can be used as a feature value.

4. Conclusions

This paper explores whether the normal status and the abnor-
mal status of epileptic patients can be distinguished based
on video recordings rather than traditional EEG recordings.
Combining local representation and holistic representation,
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the extracted features are effective for the subsequent clas-
sification by an SVM. Our future goal is to capture the
characteristic abrupt movements of epileptics by developing
new features that are effective in detecting abnormal actions
of the epileptic patients.

As pointed in [21], higher frame rates of video record-
ings could increase the accuracy of the motion estimation
and result in a high quality of motion tracking. Another
promising option that can be explored in the future would
be to collect Kinect videos using RGB-D camera. In this way,
depth information of 3D points can be included for motion
tracking.What ismore, wewould collectmore video data and
classify the actions into different types in our future work.
Last, we intend to extend this work into the research of other
medical areas, such as autism and Alzheimer.
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