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Bifurcation and pattern symmetry 
Selection in Reaction-Diffusion 
Systems with Kinetic Anisotropy
Yipeng Gao, Yongfeng Zhang, Daniel Schwen, Chao Jiang & Jian Gan

Ordering and self-organization are critical in determining the dynamics of reaction-diffusion systems. 
Here we show a unique pattern formation mechanism, dictated by the coupling of thermodynamic 
instability and kinetic anisotropy. Intrinsically different from the physical origin of Turing instability 
and patterning, the ordered patterns we obtained are caused by the interplay of the instability from 
uphill diffusion, the symmetry breaking from anisotropic diffusion, and the reactions. To understand 
the formation of the void/gas bubble superlattices in crystals under irradiation, we establish a general 
theoretical framework to predict the symmetry selection of superlattice structures associated 
with anisotropic diffusion. Through analytical study and phase field simulations, we found that the 
symmetry of a superlattice is determined by the coupling of diffusion anisotropy and the reaction rate, 
which indicates a new type of bifurcation phenomenon. Our discovery suggests a means for designing 
target experiments to tailor different microstructural patterns.

Ordering and self-organization in reaction-diffusion systems are of great significance in determining the ordered 
patterns in chemistry, physics and biology1–7. Pioneered by Alan Turing, the mathematical description of 
reaction-diffusion systems are well established, and it has been recognized that the Turing instability originates 
from the reaction kinetics and the ordering is dictated by the breaking of continuous translational symmetry (i.e., 
the loss of homogeneity)8,9. However, the studies on another type of patterning mechanism in reaction-diffusion 
systems are limited, which originates from thermodynamic instability10,11 and the breaking of point symmetry 
(e.g., rotational or mirror symmetry)12. In physics, the self-organizations induced by thermodynamic instability 
and the breaking of point symmetry are widely observed in systems without reactions, e.g., multi-domain pat-
terning in second-order ferroelectric and ferromagnetic phase transitions, which is dominated by long-range 
electric/magnetic interactions13–16. In those cases, long-range interactions play a critical role in pattern forma-
tion. In parallel, if local reactions are considered instead of non-local interactions, one should expect a new type 
of patterning mechanism in reaction-diffusion systems. Here we report a unique self-organization mechanism 
to understand the formation of void/gas bubble superlattices in crystals, which originates from the interplay of 
thermodynamic instability, diffusion anisotropy and reaction kinetics.

Literally, the dynamics of reaction-diffusion systems is dictated by the coupling of reaction and diffusion. Most 
of the previous studies focus on different kinds of reactions, while diffusivities are usually taken as positive (i.e., 
down-hill diffusion) and isotropic for simplicity17,18. In such cases, local reactions dominate the instability and the 
breaking of translational symmetry, while diffusion plays a secondary role on the ordering process. However, we 
cannot ignore another possibility that diffusion plays a dominate role over local reactions, when the diffusion flux 
is against concentration gradient (i.e., up-hill diffusion) and/or the diffusivity is anisotropic. In physics, up-hill 
diffusion could arise from thermodynamic instability19,20, while anisotropy suggests the breaking of point symme-
try21. Given the above two fundamental pieces, instability and ordering could be realized even with a very simple 
reaction. Note that the reaction term in this case should not follow the constraint in Turing instability18, since it 
does not directly contribute to the instability and ordering. However, additional phenomena associated with local 
reactions could occur, e.g., bifurcation17,22, which might affect the symmetry selection of ordered patterns. In 
general, the bifurcation associated symmetry breaking could lead to diversified types of self-organized patterns. 
In real material systems, reaction-diffusion with the coupling of thermodynamic instability and breaking of point 
of symmetry can be found in crystals under irradiation. In particular, self-organized void/gas bubble superlattices 
have been widely observed in a large number of metals and alloys under irradiation23–27. In those systems, the 
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reaction and diffusion of point defects are coupled with void formation and 1-dimensional interstitial diffusion, 
which result in diversified types of void/gas bubble superlattices as reported in the literature28–30.

In this paper, we investigate the ordering and self-organization in a reaction-diffusion system with thermody-
namic instability and kinetic anisotropy, through a combination of analytical study and phase field simulations. 
We establish a general theoretical framework to predict the symmetry of superlattices associated with anisotropic 
diffusion. In particular, we demonstrate a unique formation mechanism of superlattice structures dictated by the 
interplay of diffusion anisotropy and local reactions. For a fixed type of anisotropic diffusivity, reaction rate works 
as a bifurcation parameter that could lead to different superlattice symmetries. Our discovery suggests a new way 
to design and control the symmetry of void/gas bubble superlattices in solid crystals under irradiation.

Analytic Study of Reaction-Diffusion Systems with Kinetic Anisotropy
Without the loss of generality, our analytical study starts with a generic description of reaction-diffusion sys-
tems, followed by specific anisotropies incorporated into phase field modeling and simulations. Mathematically, 
the dynamics of reaction-diffusion systems is described by partial differential equations including two kinds of 
terms, i.e., diffusion terms and reaction terms. In this study, we focus on the instability and ordering caused by 
different diffusion terms. Here we consider two ways to modify the diffusion terms, by adopting Cahn-Hilliard 
type diffusion31 and anisotropic diffusion. The former could introduce thermodynamic instability and up-hill 
diffusion, while the latter suggests a breaking of point symmetry. In a reaction-diffusion system, we consider two 
components, the diffusion kinetics of which are dominated by Cahn-Hilliard equation and anisotropic diffusion, 
respectively. A simple reaction term, i.e., annihilation, is considered to couple the evolutions of the two compo-
nents. Source terms are also considered to balance the annihilation. The following equations are employed,
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X and Yi are the concentrations of the two components. The diffusion of X is Cahn-Hilliard type, with a mobil-
ity of M. The diffusion of Yi is anisotropy, and there could be n-th types of Yi with different diffusivity Di. PX and 
Pi are the source terms for X and Yi, respectively. F is the total free energy of the system. K is the reaction rate for 
the annihilation between X and Y.

F is the total free energy of a non-uniform system, which can be described as below, with the gradient term 
incorporated.

∫ κ= + ∇F f X X d r[ ( ) 1
2

( ) ] (3)
2 3

f is the bulk free energy density, and κ is the coefficient of gradient energy, which captures the energetic penalty 
of inhomogeneity.

Here we consider an anisotropic diffusivity along a 1-dimensional (1D) direction, which can be represented 
in a tensor form.

= ⋅ ⊗DD m m (4)i
i i
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where mi is a unit vector describing the direction of the 1D diffusion for Yi, and D0 is the 1D diffusivity along mi 
direction. ⊗ is the diadic product operator.

For an analytic study, we consider a linear approximation of the reaction term.
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X  and Yi are the averaged values of X and Yi, respectively, which are spatially-independent. As a result, we can 
express δ= +X X X  and Y Y Yi i iδ= + , where δX and δYi are perturbations. The above approximation is valid 
when the pertubations are relatively small (comparing with the averaged values), which corresponds to the initial 
stage of modulation. As a result, Eqs 1 and 2 can be represented in Fourier space.
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X∼ and Yi are the Fourier transforms of X and Yi, respectively. Excluding k = 0, ∼X  and Yi
 are also the Fourier 

transforms of δX and δYi. G is the coefficient matrix (a square matrix of n + 1 order) of the above partial differen-
tial equations. In the index of G, subscript 1 indicates X, and n2 ( 1)+~  indicate n types of Yi. G is a function of 
the wave vector k, as well as all the above thermodynamic and kinetic parameters (i.e., F, X , Yi, M, D, K).

Assuming the first developed wave is kc. The critical conditions in determining kc should include the following 
two equations,
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Note that k is a wave vector having both magnitude k and direction = | |k k k/ˆ , which determine the character-
istic wavelength and symmetry of a superlattice, respectively. In order to simplify the above equation, we consider 
n equivalent types of Yi (in terms of their diffusion anisotropy), with =Y Yi . As a result, we can separate the 
length and direction of k in det[G(k)].
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a1, a2 and a3 are parameters depending on the magnitude of  k only, while other part of Eq. 10 depends on the 
direction k̂ only. The solution of kc corresponds to a minimum of det(G) if n is odd, while it corresponds to a 
maximum if n is even. In the following discussion, we take an example of the 1D diffusion along equivalent 
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− , with n = 4. For any given values of a1, a2 and a3, we can determine the critical 

k̂c direction that maximizes det[G(k)]. In the above equation, a1 and a2 are parameters being coupled with such a 
maximization process, while a3 is decoupled. As a result, a numerical calculation to maximize det(G) (with 
respect to k̂) can be performed for a given set of a1 and a2.

For 1D diffusion of Yi along equivalent ( )(3)
3

(3)
3

(3)
3

 directions, since a1 is negative near the critical point, 

we use −a1 in our following discussions for convenience. The symmetry selection of superlattice associated with 

( )(3)
3

(3)
3

(3)
3

 type 1D diffusion is shown in Fig. 1. The horizontal axis is −a1 with logarithmic scale, while the 

vertical axis is a2. Depending on the choice of −a1 and a2, there are four distinctive regions, in which different k 

Figure 1. Symmetry selection of superlattices associated with ( )(3)
3

(3)
3

(3)
3

 type 1D diffusion. The dominant 

concentration waves in different colored regions are distinctive. The critical condition for the development of a 
concentration wave is described by solid lines (different types of wave are suggested by different colors). The 
interplay of the two conditions implies the formation of the superlattices, i.e., the blue line in the blue region 
suggests BCC superlattice formation, and the yellow line in the yellow region suggests FCC superlattice 
formation. Numerical simulations are performed at the star points.
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directions are dominant. When both −a1 and a2 are large, ( )(3)
3

(3)
3

(3)
3

 is the preferred k direction (yellow 

region). When both −a1 and a2 are small, (100) is the preferred k direction (green region). Between the yellow 
and green regions, there is a region preferring the ( )0(2)

2
(2)
2

 direction (blue region). There is also a slim tran-

sition region (red region noted by T) between the blue and green regions, with the preferred k direction changing 
gradually from ( )0(2)

2
(2)
2

 to (100). Note that the four regions in Fig. 1 only illustrate the effects of a1 and a2 on 

the symmetry selection based on Eq. 9. The critical condition described by Eq. 8 should also be taken into 
account, which leads to another relation between a1 and a2.
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Here a1 is a function of a2 for a given direction of k, which suggests a curve including all critical points. In 
Fig. 1, we plot three solid lines for k̂c along ( )(3)

3
(3)
3

(3)
3

 (yellow curve), ( )0(2)
2

(2)
2

 (blue curve) and (100) 

(green curve), respectively. As a result, when a curve is located in a region with the same color, it suggests the 
formation of superlattice. In Fig. 1, there are two possible regions of superlattice formation. In the region circled 
by magenta dashed lines, the preferred k direction is ( )0(2)

2
(2)
2

, which results in a face-centered cubic (FCC) 

reciprocal lattice and a body-centered cubic (BCC) real superlattice. In the region circled by brown dashed lines, 
the preferred k direction is ( )(3)

3
(3)
3

(3)
3

, which results in a BCC reciprocal lattice and an FCC real superlat-

tice. Note that superlattice could form when a1 is slightly larger than its critical value described by Eq. 14, which 
suggests that superlattice formation region should attach to the left of the critical curve.

Similar analysis can be applied to the systems with 1D diffusion along ( )0(2)
2
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− , with n = 6. The preferred 

k direction is always ( )(3)
3

(3)
3
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3

 type (for any given a1 and a2 constrained by Eq. 14). As a result, the kc vec-

tors suggest a BCC reciprocal lattice and an FCC real superlattice. The mathematical expressions of G as well as 
detailed predictions of characteristic length and symmetry of superlattices are presented in Supporting 
Information, which are consistent with previous theoretical studies32,33.

Phase Field Modeling and Simulations of the Formation of Self-Organized 
Superlattices in Crystals
We perform phase field modeling and simulations (in a 100 × 100 × 100 simulation cell)34–36 to validate our ana-
lytical predictions. Modeling details are presented in Supporting Information. By choosing different sets of a1 and 
a2, we obtain an FCC superlattice associated with ( )0(2)

2
(2)
2

 type 1D diffusion (Fig. 2(a)), BCC and FCC super-

lattices associated with ( )(3)
3

(3)
3

(3)
3

 type 1D diffusion (Fig. 2(b,c), corresponding to the magenta and brown 

stars in Fig. 1, respectively). The related parameters are listed in Table 1. As expected, the simulation results per-
fectly agree with our analytical predictions shown in Fig. 1.

To further understand the coupling between different components, we plot the concentrations of X in Fig. 3, 
for ( )0(2)

2
(2)
2

 type of 1D diffusion. At the initial stage, a chessboard-like modulation of X is developed 

Figure 2. Phase field simulation results of superlattices in reaction-diffusion systems with kinetic anisotropy 
(white: X-rich, black: X-lean). (a) an FCC superlattice associated with ( )0(2)

2
(2)
2

 type 1D diffusion; (b) a BCC 

superlattice associated with ( )(3)
3

(3)
3

(3)
3

 type 1D diffusion; (c) an FCC superlattice associated with 

( )(3)
3

(3)
3

(3)
3

 type 1D diffusion.
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(Fig. 3(a)), which finally evolves to an FCC superlattice (Fig. 3(b)). When the superlattice forms, the concentra-
tions of six types of Yi are plotted in Fig. 4, which correspond to the six equivalent directions of ( )0(2)

2
(2)
2

 type. 

It can be found that a 1D diffusion along [110] weakens the modulation along this [110]. The interplay of six types 
of Yi modulations are coupled with concentration wave of X, which finally results in an FCC superlattice.

Similarly, the concentration modulations of four different types of Yi are shown in Figs 5 and 6, for 

( )(3)
3

(3)
3

(3)
3

 type of 1D diffusion. According to our previous calculations, either BCC or FCC superlattice can 

form. The concentration modulations of Y Y1 4~  associated with a BCC superlattice is shown in Fig. 5, while those 
associated with an FCC superlattice is shown in Fig. 6. Comparing the figures in Fig. 5, we can clearly identify the 

Example a1 a2 1D diffusion Superlattice Lattice constant

Figs 2(a), 3 and 4 −157.3 0.0101 〈110〉 FCC 16.0

Figs 2(b) and 5 −101.8 0.0105 〈111〉 BCC 13.3

Figs 2(c) and 6 −2.37 1.26 〈111〉 FCC 26.7

Table 1. Parameters for phase field simulations.

Figure 3. Simulation results of X concentration for an FCC superlattice associated with ( )0(2)
2

(2)
2

 type 1D 

diffusion, corresponding to Fig. 2(a). (a) Initial stage: chessboard-like modulation; (b) final stage: FCC 
superlattice.

Figure 4. Simulation results of six types of Yi concentrations for an FCC superlattice associated with 

( )0(2)
2

(2)
2

 type 1D diffusion, corresponding to Fig. 2(a).
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Figure 5. Simulation results of four types of Yi concentrations for an BCC superlattice associated with 

( )(3)
3

(3)
3

(3)
3

 type 1D diffusion, corresponding to Fig. 2(b).

Figure 6. Simulation results of four types of Yi concentrations for an FCC superlattice superlattice associated 
with ( )(3)

3
(3)
3

(3)
3

 type 1D diffusion, corresponding to Fig. 2(c).
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difference in the concentration modulations of Yi, i.e., different symmetry. Note that the symmetry of modula-
tions originates from the anisotropic diffusivities of Yi. Without changing the anisotropy, i.e., ( )(3)

3
(3)
3

(3)
3

 

type of diffusion, we can get completely different symmetries, which is caused by the change of scalar parameters 
(i.e., a1 and a2). For simplicity, we only consider one independent variable, a2, since a1 is a function of a2 at the 
critical condition (Eq. 14).

In fact, a2 reflects a competition between reaction (K) and diffusion (D0), and it is also influenced by the criti-
cal wavelength (λc = 2π/kc) and the critical concentration X( ) when the homogeneous system starts to lose stabil-
ity. In reaction-diffusion systems, it is well known that the change of reaction/diffusion rate could lead to 
bifurcation phenomena. Here a2 can be taken as a bifurcation parameter. Note that a2 is a scalar without any 
symmetry information. However, the change of a2 switches the symmetry of a superlattice. Such a unique bifur-
cation phenomenon could provide a new insight into the formation of void and gas bubble superlattices in crys-
tals induced by irradiation.

The reaction-diffusion system we discussed above could correspond to a solid crystal under irradiation. For 
example, a lattice atom can be knocked out by implanted particles (e.g., ions or neutrons), which generates a 
frenkel pair, i.e., a vacancy and an interstitial atom37. In crystals, vacancies and interstitials (also called 
self-interstitial atoms, SIAs) are point defects of opposite nature (e.g., defect and anti-defect), which can disappear 
through recombination, i.e., annihilation. The concentrations of vacancies and interstitials can be described by X 
and Y. In the literature, it has been reported that SIAs and their clusters (e.g., interstitial loops) usually diffuse 
along a 1D crystallographic direction because of the lattice discreteness of crystals38,39. As a result, Eqs 1 and 2 
capture the production, reaction and evolutions of defects in crystals under irradiation, in which the rate theory 
for production and reaction kinetics40 and the Cahn-Hillard approach for the phase separation description of 
void formation19,41 are coupled together. Thermodynamic instability are described through the formulation of F 
in Eq. 1, which leads the accumulation of vacancies and the formation of voids28–30,34,42,43. The types of SIAs 
depend on the symmetry of host crystals. For example, in a BCC crystal, if the SIAs diffuse in 1D along the 
close-packed directions 〈111〉, there are four types of SIAs (n = 4), which diffuse along [111], [111], [111], [111], 
respectively. In an FCC crystal, if the SIAs diffuse in 1D along 〈110〉, there are six types of SIAs or clusters (n = 6), 
which diffuse along [110], [011], [101], [110], [011], [101], respectively. Note that we treat the SIAs diffusing 
along different directions as distinct types of Yi, rather than treating them as a single type with equal diffusivity 
along several crystallographically equvalent directions. Theoretically, diffusivity is a second-rank tensor, which 
has to be isotropic in cubic crystal21. For example, if an interstitial atom jumps along four 〈111〉 directions with 
equal probability in one step, it essentially diffuses isotropically after several steps. Furthermore, it is possible that 
an interstitial atom does not jump strictly along one direction in reality, i.e., it may change its direction. In such a 
case, reaction terms among different Yi should be included. However, we do not consider those terms due to ana-
lytical complexity.

As suggested by experimental observations, only FCC superlattice can form in FCC host crystals27,44,45, while 
either BCC or FCC superlattice can form in BCC host crystals46–48, which agree with our theoretical predictions. 
As suggested by our analyses, the symmetry selection of superlattices is dictated by a1 and a2, which are deter-
mined by the interplay of thermodynamic/kinetic properties of the material systems and radiation conditions 
(details can be found in Supplemental Information). Void/gas bubble superlattices widely observed in experi-
ments also suggest the stability of superlattice under irradiation. In our phase field simulations, we obtain stable 
superlattices upon further relaxation, which is caused by the dynamic equilibrium between defect generation and 
recombination. Without irradiation (e.g., the reaction terms), the superlattice is not thermodynamically stable. 
Coarsening can occur driven by the minimization of surface energy. Such coarsening will be very slow for order 
superlattices. The study of superlattice stability is beyond our symmetry analyses in this paper, which will be 
conducted in future work.

Conclusion
Through analytical study and phase field simulations, we establish a general theoretical framework to predict the 
ordering and self-organization in reaction-diffusion systems with thermodynamic instability and kinetic ani-
sotropy. It is found that the pattern symmetry is determined by the interplay of anisotropic diffusions and local 
reactions. A new bifurcation phenomenon is demonstrated, which provides a new insight into the formation 
mechanism of irradiation-induced void/gas bubble superlattices in crystals.
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