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Ferroptosis is a type of regulated cell death catalyzed by the iron-dependent accumulation of lipid hydroperoxides to lethal levels.
Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder. However, the understanding of ferroptosis in CLL
remains largely poor. In this study, we investigated the stratification and prognostic role of ferroptosis-related genes in CLL
patients of ICGC cohort. We obtained fourteen genes with prognostic value by screening 110 ferroptosis-related genes (FRGs).
Based on the expression profiles of these 14 genes, we classified CLL patients into two clusters. Most of the FRGs were highly
expressed in cluster 1, and cluster 1 was associated with better overall survival (OS). Subsequently, we developed an eight-gene
signature (TP63, STEAP3, NQO1, ELAVL1, PRKAA1, HELLS, FANCD2, and CDKN2A) by using LASSO analysis. This risk
signature divided CLL patients into high- and low-risk groups. We used Cox regression analysis and ROC analysis
demonstrated the risk signature was reliable and robust. And we validated the risk model in an external cohort (GSE22762).
We also conducted enrichment analysis and genomic mutation analysis. Finally, we explored the potential effect of
chemotherapy between the two risk groups. Our study contributed to understanding the role of ferroptosis in CLL and
facilitated personalized and precision treatment.

1. Introduction

Ferroptosis is a new type of cell death catalyzed by the iron-
dependent accumulation of lipid hydroperoxides to lethal
levels, which was firstly defined in 2012 [1, 2]. Many studies
have provided evidence that ferroptosis represents an option

to eliminate leukemic cells but not normal hematopoietic
cells because leukemic cells demand a higher level of iron
[3]. For example, diffuse large B-cell lymphoma cells [4]
and acute myeloid leukemia cells [5] and menin-mixed-
lineage leukemia [6] are sensitive to ferroptosis induced in
hematologic malignancies. However, the susceptibility to
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ferroptosis is remarkably different in various cancer cells [7]
and the knowledge of the lymphocytic leukemia (CLL) sus-
ceptibility to ferroptosis is still lacking.

Lymphocytic leukemia (CLL) is a lymphoproliferative
malignancy, characterized by the presence of clonal CD5
+CD23+ B lymphocytes in the peripheral blood [8]. In west-
ern countries, CLL is the commonest leukemia with over
15000 newly diagnosed cases and about 4500 deaths in
2020 [9]. Despite great progress having been made in recent
years, CLL remains an incurable disease [10]. One-third of
patients with indolent CLL probably do not need medical
attention, another one-third may progress in many years
after initial diagnosis, and the last one-third need immediate
medical attention. Therefore, risk stratification of CLL
patients to guide clinical follow-up options, either to treat
or to wait and watch, is extremely important [11]. The
highly variable clinical course of the disease has made diffi-
culty to predict survival for patients with CLL. Currently,
two clinical staging systems, Rai and Binet, have been proved
to be good predictors to stratify patients with a good corre-
lation in terms of survival time; however, due to the recent
progress in CLL therapy, these staging systems are becoming
insufficient [9]. In recent years, biological markers, genetic
markers, and comprehensive prognostic scores (for instance,
CLL International Prognostic Index (CLL-IPI)) have been
applied to predict response to treatment and survival time.
However, those prognostic tools are still imperfect. To deter-
mine the best treatment strategy for individual patient, there
is still a critical need for prognostic models that better strat-
ify patients according to the likely outcome [12].

Recently, some studies have revealed the prognostic
value of ferroptosis-related genes in cancers such as hepato-
cellular carcinoma [13], glioma [14], and esophageal adeno-
carcinoma [15], but not in CLL. In the current study, we
analyzed the ferroptosis-related genes and corresponding
clinical data in CLL based on International Cancer Genome
Consortium (ICGC) and GSE22762. Our study indicated
that ferroptosis-related genes can be used to stratify CLL
patients based on overall survival (OS). Then, we developed
a risk signature containing eight ferroptosis-related genes for
predicting the OS of CLL patients. At last, we systematically
compared the differences (including biology function,
immunity, mutation status, and drug susceptibility) between
high- and low-risk CLL patients that were stratified by the
ferroptosis-related eight-gene signature.

2. Material and Methods

2.1. Data Collection. The transcriptome profiles, mutation
data, and corresponding clinical data of the CLL patients
were acquired from the CCLE-ES dataset of ICGC database
(https://dcc.icgc.org/) and the GEO database of NCBI
(https://www.ncbi.nlm.nih.gov/). Ferroptosis-related genes
were obtained from FerrDb (http://www.zhounan.org/
ferrdb/) and related literature [1, 2].

2.2. Identification of Ferroptosis-Related Prognostic Genes
and Patient Subgroups.When performing the R package “sur-
vival” analysis, the median value was used as the cutoff value to

calculate the relationship of all FRGs with prognosis. A
Kaplan-Meier curve was used to identify the prognostic value
of FRGs and we obtained 14 genes with p < 0:05. Fourteen
ferroptosis-related genes with significant prognostic value
were selected to classify patients. R package “ConsensusClus-
terPlus” was used to cluster patients of ICGC cohort and then
PCA method was utilized to verify the subgroups.

2.3. Construction and Validation of a Ferroptosis-Related
Risk Model. The least absolute shrinkage and selection oper-
ator (LASSO) method and R package “glmnet” were ducted
to screen key prognostic genes based on the fourteen
ferroptosis-related genes. After adjusted the penalty parame-
ter via ten-fold cross-validation to narrow the number of
genes, a risk model containing eight ferroptosis-related
prognostic genes was established based on the best lambda
value. The following formula was used to calculate the risk
score of patients in the ICGC and GSE22762 cohort: Risk
score = Coef gene1 × Expgene1 + Coefgene2 × Expgene2 +⋯ +
Coefgene8 × Expgene8. Coef was the coefficient with the
LASSO method and Exp was the gene expression value. Sub-
sequently, ROC and univariate and multivariate Cox regres-
sion were used to analyze and verify our risk model.

2.4. Functional Enrichment Analysis. The eight ferroptosis-
related prognostic genes classified CLL patients into high-
and low-risk groups. R package “DESeq2” was performed
to identify DEGs (FDR<0.05 and |log2FC|>1) between the
two groups. Next, the R package “clusterProfiler” was used
to analyze DEGs with gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways. The
gene set “50 hallmark gene sets” downloaded from msigdb
(http://www.gsea-msigdb.org/) was used to perform GSEA
analysis.

2.5. Estimation of Tumor Immune Microenvironment (TIM)
Scores and Immune Cell Fractions. R package “ESTIMATE”
was performed to calculate TIM scores for CLL patients.
CIBERSORT algorithm was conducted to calculate the pro-
portions of 22 immune cell types (Supplementary Table S1)
in the ICGC cohort. Moreover, Spearman’s analysis was
utilized to estimate the correlation between the risk score
and TIM scores or immune cell fractions.

2.6. Statistical Analysis. R package “survival” and “survmi-
ner” were used to perform the Kaplan-Meier survival analy-
sis in CLL patients and the p-value was based on the log-
rank test. The R package “survivalROC” was utilized to cal-
culate the area under the curve (AUC) value for 1-, 3-, and
5-year survival. Student’s t-test was used to compare differ-
ences between different patient groups. R v4.0.3 was used
for all analyses and p < 0:05 was considered statistical signif-
icance for all tests.

3. Results

3.1. CLL Classification Based on the Differential Expression of
Ferroptosis-Related Genes. To explore the prognostic value
of FRGs in patients with CLL, the ICGC database
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including 300 CLL patients was used as a training cohort.
Fourteen prognostic genes (p < 0:05) were obtained from
110 ferroptosis-related genes using R package “survival”.
Then, R package “ConsensusClusterPlus” was performed to
conduct the consensus clustering analysis based on the four-
teen prognostic genes. Two clusters were identified because
the CDF value was smaller when k was equal to 2
(Figure 1(a)). We compared the expression pattern of all
ferroptosis-related genes in the two clusters, and most of the
FRGs were highly expressed in cluster 1 (Figure 1(b)). The
Kaplan-Meier curve showed that the CLL patients of cluster
2 had a poorer OS rate than the CLL patients of cluster 1
(Figure 1(c)). To further demonstrate our classification strat-
egy, PCAmethod was conducted and we could observe a clear
separation between the two clusters of patients (Figure 1(d)).

3.2. Construction of a Ferroptosis-Related Eight-Gene
Signature in the ICGC Cohort. To construct LASSO model
with the minimum criterion, R package “glmnet” was con-
ducted to identify prognostic genes with the strong predict-
ing ability (Figure 2(a)). According to the optimal lambda
value of the prognostic model, an eight-gene signature
(TP63, STEAP3, NQO1, ELAVL1, PRKAA1, HELLS,
FANCD2, and CDKN2A) was generated (Figure 2(b)). Here
is the formula: Riskscores = 0:14 ∗ ExpTP63 + 0:45 ∗ Ex
pSTEAP3 + 0:79 ∗ ExpNQO1 + 0:14 ∗ ExpELAVL1 + ð−0:11Þ ∗ Ex
pPRKAA1 + ð−0:91Þ ∗ ExpHELLS + ð−0:16Þ ∗ ExpFANCD2 + ð−
0:41Þ ∗ ExpCDKN2A. Based on the median risk scores, CLL
patients were divided into high- and low-risk groups. Gene
expression profile of the eight genes is shown in
Figure 2(c). In general, risk genes (TP63, STEAP3, NQO1,
and ELAVL1) were higher expressed in high-risk group,
while the protective genes (PRKAA1, HELLS, FANCD2,
and CDKN2A) were higher expressed in low-risk group
(Figure 2(c)). The Kaplan-Meier results showed that the
high-risk group was significantly associated with a shorter
OS time (Figure 2(d)).

3.3. Independent Prognostic Value of the Eight-Gene
Signature and External Validation in a GSE Cohort. We per-
formed ROC analysis by R package “survivalROC” to access
the efficacy of eight-gene signature in predicting the clinical
outcomes of CLL. ROC curve showed that the eight-gene
signature had a good predictive accuracy for 1-, 3-, and 5-
year OS (for 1-year, AUC=0.872; for 3-year, AUC=0.707;
for 5-year, AUC=0.734) (Figure 3(a)). According to the risk
scores, the CLL patients were ranked from left to right
shown in the upper panel of Figure 3(b). The risk scores
increased from left to right. OS distribution of each patient
is shown in the lower panel of Figure 3(b), where CLL patients
were ranked from left to right according to risk scores. Univar-
iate and multivariate Cox regression analysis demonstrated
that the risk score was an independent risk factor in predicting
prognosis for CLL patients (Figures 3(c) and 3(d)).

Furthermore, external data “GSE22762” cohort was used
to validate the predictive value of the eight-gene signature. In
line with the results from the training cohort, the high-risk
group had a worse OS than the low-risk group (Figure 3(e)),
and the eight-gene signature showed a moderate sensitivity

and specificity for 1-, 3-, and 5-year OS (for 1-year,
AUCs=0.678; for 3-year, AUC=0.677; for 5-year,
AUC=0.781) in the GSE cohort (Figure 3(f)).

3.4. Identification of Differentially Expressed Genes (DEGs)
and Functional Enrichment Analysis. To better understand
the biological differences between the high- and low-risk
groups, R package “DESeq2” was used to analyze DEGs
between the two risk groups (Figure 4(a)). Seven hundred
and forty-six DEGs (|log2FC| >1 and FDR<0.05) were iden-
tified. Among those DEGs, 690 genes were upregulated and
56 genes were downregulated in the high-risk group com-
pared with the low-risk group. Subsequently, “biological
processes (BP)” term of Gene Ontology (GO), Kyoto Ency-
clopedia of Genes (KEGG) analysis, and Gene Set Enrich-
ment Analysis (GSEA) were conducted. The BP term of
GO results showed that the main biological processes
involved included “autophagy” and “the process utilizing
autophagic mechanisms” (Figure 4(b)). Pathway enrichment
analysis with reference to KEGG focused on “cytokine−cyto-
kine receptor interaction” and “IL−17 signaling pathway”
(Figure 4(c)). The GSEA results showed that hallmark gene
sets were enriched in the low-risk group, such as “TNFα sig-
naling via NF-kB,” “inflammatory response,” and “IL6 JAK
STAT3 signaling” (Figures 4(d)).

3.5. Identification of Immune Statues and Correlation
Analysis. Recently, a few studies explored the relationship
between ferroptosis and immune status [16] and immune-
related gene signatures were established for predicting prog-
nosis of CLL patients [17–20]. Moreover, the results of our
enrichment analysis showed that the two risk groups had a dif-
ference in immune-related pathways. Therefore, we further
investigated the TIM of the high- and low-risk groups. In
terms of ESTIMATE and immune scores, the high-risk group
had significantly higher values than the low-risk group
(Figure 5(a)). And, there was no significant difference in the
stromal scores between the two groups (Figure 5(a)). More-
over, the relative infiltration of 22 immune cells in the TIM
was calculated by using CIBERSORT algorithm. The 22
immune cells were significantly differentially infiltrated
between the two groups (Figure 5(b)). For example, the low-
risk group had significantly more memory B cells, while the
high-risk group had significantly more naive B cells.

The risk score had a significant correlation with the
immune score and the ESTIMATE score, but was not signif-
icantly correlated with stromal scores, using Spearman’s cor-
relation analysis (Figure 6(a)). In addition, the risk score was
significantly correlated with expression levels of five immune
cells, such as monocytes and NK cells resting (Figure 6(b)).

3.6. Genomic Mutation Analysis. In some cancers, tumor
mutation burden (TMB) is an important predictive bio-
marker for cancer immunotherapy [21]. Differences in the
somatic mutations of genes were found between the high-
and low-risk groups. High-risk group had relatively higher
mutation rates than the low-risk group (Figure 7(a)). Com-
pared with the low-risk group, the high-risk group also
had a higher tumor mutation burden (Figure 7(b)). Immune
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globulin heavy chain variable region (IGHV) gene is a clas-
sical clinical prognostic indicator for CLL [12]. Patients with
low IGHV mutation rates had a worse prognosis. We found
the high-risk group had a lower mutational level of IGHV
gene than the low-risk group (Figure 7(c)). Moreover, muta-
tions in the eight-gene signature were associated with a
shorter OS time (Figure 7(d)).

3.7. Drug Resistance Analysis. To investigate the potential
effect of chemotherapy in the two risk groups, we conducted
the R package “oncoPredict” to predict the IC50 value of over
200 clinical drugs in patients combined with GDSC2 drug
sensitivity database. We found that the low-risk group had
lower IC50 for three common CLL drugs compared to the
high-risk group, including fludarabine, cyclophosphamide,
and ibrutinib (Figure 8(a)). In addition, we found the risk
scores had a significant positive correlation with IC50 values
of the three drugs (Figure 8(b)). These results revealed that
low-risk patients were more likely to benefit from fludara-
bine, cyclophosphamide, and ibrutinib treatment.

4. Discussions

CLL accounts 10% of hematologic malignancies [22] and is
the most frequent subtype of leukemia in adults [8]. Ferrop-
tosis is a new form of programmed cell death [23] and usu-

ally caused by strong membrane lipid peroxidation and
oxidative stress [24]. Recently, a few studies have revealed
the prognostic value of ferroptosis-related genes in malig-
nancies [15, 25]. However, the prognosis value of
ferroptosis-related genes in CLL is still unclear.

In this study, for the first time, a ferroptosis-related gene
signature was established for predicting OS of CLL patients.
In the training and external cohorts, CLL patients were
divided into high-risk and low-risk groups by this reliable
and robust signature, and the former inclined worse OS than
the latter. Half of the signature genes are risk genes (TP63,
STEAP3, NQO1, and ELAVL1), while the other half are pro-
tective genes (PRKAA1, HELLS, FANCD2, and CDKN2A).
The eight ferroptosis-related signature genes have been sug-
gested to associate with prognosis in cancer. TP63 contrib-
utes to maintaining redox homeostasis through glutathione
biogenesis, utilization, and regeneration. TP63 is a prognos-
tic gene in breast cancer patients [26], lung squamous cell
carcinoma [27], pancreatic cancer [28], skin cutaneous mel-
anoma [29], anaplastic lymphoma kinase-negative anaplas-
tic large cell lymphoma [30], etc. STEAP3 is a metal
reductase, encoding a transmembrane protein that functions
as an iron transporter and coordinates the regulation of iron
homeostasis [31]. STEAP3 can predict outcomes in clear cell
renal cell carcinoma [32, 33], pancreatic adenocarcinoma
[34], uveal melanoma [35] and glioblastoma [36]. NQO1 is
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dysregulated in many cancers and considered a target for
tumor treatment and diagnosis [37]. In CLL, the increased
expression of NQO1 leads to resistance to drugs that induce
ROS accumulation [38]. NQO1 polymorphism is considered
a risk and prognostic factor for CLL [39]. HELLS is a
lymphoid-specific helicase that can lead to ferroptosis resis-
tance by reducing the concentration of iron and lipid hyper-
oxide. HELLS is associated with prognosis in adrenocortical
carcinoma [40], pancreatic cancer [41], soft tissue sarcoma

[42], cervical cancer [43], and clear cell renal cell carcinoma
[44]. PRKAA1 is a ferroptosis driver and inhibition of
PRKAA/AMPKα diminishes ferroptosis.35 Genetic varia-
tions of PRKAA1 associate with prognosis for patients with
colorectal cancer [45]. Recently, studies have revealed that
some noncoding RNAs (ncRNAs), particularly microRNAs,
long noncoding RNAs, and circular RNAs, were involved in
the regulation of ferroptosis and affect cancer growth [46].
Moreover, Katsaraki et al. proposed that ncRNA plays an
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Figure 2: Risk signature of eight ferroptosis-related genes. (a) Coefficients calculated by the LASSO analysis. (b) Coefficient spectrum of 8
genes in ICGC patients. (c) Survival analysis of ICGC patients was stratified by median risk score. (d) Heat map of risk groups with eight-
gene signature.
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important role in CLL and summarizes the important dis-
covery about their value as regulators, biomarkers, or thera-
peutic targets in B-CLL [47]. For example, two novel transfer
RNA-derived RNA fragments (tRFs), i-tRF-GlyGCC and i-
tRF-PheGAA, were identified as prognostic biomarkers in
CLL [48, 49]. Thus, the mechanisms of ncRNA regulating
the eight ferroptosis-related signature genes deserve further
investigation.

To further explore the functions of DEGs between the
high- and low-risk groups, we conducted GO, KEGG, and
GSEA enrichment analyses. The most abundant BP term of
GO was autophagy, the process utilizing autophagic mecha-
nisms, etc. In a previous report, ferroptosis was originally
defined as a programmed cell death distinct from autophagy,
apoptosis, and necrosis [7]. However, recent insights suggest
that ferroptosis is not a self-standing phenomenon and has
close connections with other cellular events [50]. For example,
ferroptosis dependents on autophagy, especially selective types
of autophagy, through direct or indirect regulation of iron
accumulation or lipid peroxidation [50, 51]. The top KEGG
result is cytokine−cytokine receptor and the top 2 GSEA
results are the hallmark gene sets of TNFα signaling via NF-
κB and inflammatory response. These results suggest signifi-
cant differences in immune function between the two risk

groups. In addition, the hallmark gene sets such as TNFβ sig-
naling and apoptosis were also enriched in the high-risk
groups. They had well-documented roles in apoptosis
[52–54]. Growing research suggests the interconnection of fer-
roptosis and apoptosis. For example, ferroptotic agents induce
endoplasmic reticulum stress-mediated activation of the
PERK-eIF2α-ATF4-CHOP pathway that is involved in the
synergistic interaction between ferroptosis and apoptosis
[55]. Inhibitor of apoptosis-stimulating protein of p53 inhibits
ferroptosis in acute lung injury [56]. For example, TGF-β and
TNFα work in concert to activate apoptosis in gastric cancer
cell [57]. Ferritin as a NF-κB downstream effector can inhibit
TNFα-induced apoptosis by reducing reactive oxygen species
(ROS) [58]. Moreover, deferoxamine-induced increase of the
intracellular iron can activate TGFβ and TNFα-dependent
NF-κB signaling in highly aggressive breast cancer cells [59].
Autophagy can contribute to ferroptosis through degradation
of the ferritin [50]. Given the evidences above, ferroptosis,
autophagy, apoptosis, and immune may together contribute
to significantly different outcomes between the high- and
low-risk groups.

CLL is characterized by a wide spectrum of immune dys-
functions. These immune alterations strongly impact the
course and management of CLL. Immunohistochemical
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Figure 3: Cox regression analysis and validation of the risk signature. (a) Time-dependent ROC curves for predicting 1-, 3-, and 5-year
overall survival probability in ICGC cohort. (b) Distribution of risk score, patient survival time, and status of patients. (c, d) Univariate
and multivariate Cox regression analysis for the risk score and other clinicopathological features. (e) Survival analysis for the overall time
of the 8 gene signature in GSE22762 cohort. (f) Time-dependent ROC curves for predicting 1-, 3-, and 5-year overall survival probability
in GSE22762 cohort.
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studies suggested that the sensitivity to ferroptosis is parallel
to anticancer immunity [60]. Moreover, immune parameters
have been demonstrated to associate with the prognostic rel-
evance of patients with CLL [17–20]. In recent years, T cells
inducing ferroptosis in mice bearing ovarian tumors have
been reported. Immunotherapy-activated CD8+ T cells
enhance ferroptosis in tumor cells, which in turn contributes
to increased efficiency of the immunotherapy [16]. IFN-γ
derived from immunotherapy-activated CD8+ T cells

enhances tumor lipid oxidation and ferroptosis in human
fibrosarcoma cells and melanoma cells [61]. The immune
statues in the high- and low-risk groups were explored in
this study. The high-risk group showed a remarked different
immune profile from the low-risk group. In comparison to
the low-risk group, the high-risk group exhibited a higher
level of ESTIMATE score, immune score, and immune cells
infiltration and thus potentially has a higher response rate to
immunotherapy. In addition, TMB can predict a better
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Figure 4: Different expression genes identification and enrichment analysis. (a) Volcanic diagram of DEGs between high-risk and low-risk
groups. (b, c) The functional annotation of DEGs using GO BP terms and KEGG pathway. (d) The enrichment analysis for the 50 hallmark
gene sets of tumor. At the bottom of the graph, red represented upregulated genes in high-risk patients and blue represented downregulated
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response to immunotherapy in some types of cancers [62,
63]. Bufu Tang et al. use ferroptosis-related genes to stratify
hepatoma patients into high- and low-risk groups, and the
high-risk group has a higher TMB [21]. In our study, TMB

of the high-risk group was also higher compared with the
low-risk group. Recently, the value of IGHV gene mutation
in predicting the durability of response to chemoimmuno-
therapy has been reported [64–66]. IGHV gene mutation
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Figure 7: Genetic changes of the 8 signature genes between the two risk groups. (a) The waterfall plot showed the mutation profile of CLL
patients in ICGC. (b) The comparison of tumor mutation burden between the high- and low-risk groups. (c) The comparison of IGHV gene
mutations between the two risk groups. (d) Survival analysis of CLL patients with 8-gene signature mutation and those without. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗ p < 0:001, and ∗∗∗∗ p < 0:0001.
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status is one of the strongest prognostic factors currently
used in clinical trials for CLL patients and associated with
better clinical outcomes [12]. The OS of patients with
mutated IGHV genes is significantly longer irrespective of
the disease stage [67, 68]. The low-risk group had a higher
level of IGHV gene mutations, which further approved our
stratification of the CLL patients.

It must be acknowledged that this study has some limita-
tions. First, the 8-gene signature needs to be validated by using
larger clinical cohorts. Second, we need more experiments to

explore the detailed mechanisms of the 8-gene signature in
CLL. Third, the relationship between ferroptosis and immu-
nity in CLL needs more experimental investigation.

In conclusion, by dividing CLL patients into high- and
low-risk groups, a ferroptosis-related gene signature for
prognostic prediction was firstly developed and validated.
The biology function, immunity, and mutation status were
remarkably different between the two groups. This eight-
gene signature is strongly associated with OS in CLL patients
and might serve as a potential prognostic biomarker for
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Figure 8: Drug sensitivity analysis. (a) Comparison of IC50 values for cyclophosphamide (left), fludarabine (middle), and ibrutinib (right)
between the two risk groups. (b) The correlation analysis of the risk scores with IC50 values of the three drugs.

21BioMed Research International



clinical use. In future work, the development of personalized
treatment strategies for each patient will be an essential
topic.
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