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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:DNA viruses often persist in the body of their host, becoming latent and recurring many

months or years later. By contrast, most RNA viruses cause acute infections that are cleared

from the host as they lack the mechanisms to persist. However, it is becoming clear that

viral RNA can persist after clinical recovery and elimination of detectable infectious virus.

This persistence can either be asymptomatic or associated with late progressive disease or

nonspecific lingering symptoms, such as may be the case following infection with Ebola or

Severe Acute Respiratory Syndrome Coronavirus 2 (SAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndromeCoronavirus2intheabstractandtext:Pleasecheckandcorrectifnecessary:ARS-CoV-2). Why does viral RNA

sometimes persist after recovery from an acute infection? Where does the RNA come from?

And what are the consequences?

Introduction

Viruses are obligate intracellular infectious agents that are maintained in a population by con-

tinuous transmission to new susceptible individuals. In the absence of a reservoir, such as an

insect vector or animal population capable of facilitating transmission to humans, viruses

require alternative strategies to remain within human populations (Fig 1). Herpesviruses (such

as varicella, herpes simplex, or Epstein–Barr) are DNA viruses with an optimum strategy,

because after the acute infection resolves and production of infectious virions ceases, they

become latent and can reactivate (in the form of shingles, mucosal ulcers, or asymptomatic

shedding) to produce infectious virions months, years or decades later to infect a new group of

susceptible people [1–3]. Of the RNA viruses, some (such as hepatitis C virus (HCV) and

human immunodeficiency virus (HIV)) can evade immune control and continuously produce

infectious virions [4–6]. Because these viruses do not cause rapidly lethal disease and can be

transmitted over a long period of time, transmission does not need to be efficient. However,

most acute viral infections are caused by RNA viruses that produce disease for a relatively

short period of time and are associated with recovery and immunity to reinfection (e.g., mea-

sles, rubella, polio, and hepatitis A viruses) [7]. For these acute RNA viral infections, infectious

virions are produced only transiently, so transmission to new susceptible hosts during this

time must be efficient. Because these viruses must find and infect susceptible people in the

population during the acute phase of disease to avoid dying out, they may become targets for

eradication [8].
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However, it has become increasingly clear that recovery, elimination of infectious virus,

and development of immunity to acute nonretroviral RNA viruses do not necessarily mean

simultaneous elimination of the viral RNA [9–22]. TAU : PleasecheckwhethertheeditstothesentenceTheneedtounderstandthepathophysiology:::arecorrectandamendifnecessary:he need to understand the pathophysiol-

ogy of the prolonged symptoms that for many complicate recovery after infection with Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—so-called “long Coronavirus Dis-

ease (CAU : PleasenotethatCOVIDhasbeendefinedasCoronavirusDiseaseinthesentenceTheneedtounderstandthepathophysiology::::Pleasecheckandcorrectifnecessary:OVID)” or post-acute sequelae of COVID-19 (PASC)—has recently called attention to

the potential role of RNA persistence in causing specific late complications, as well as in pre-

venting complete recovery from acute infection [23–28]; consequences are also seen following

other acute RNA virus infections (Table 1). But how and why does viral RNA persist, often

without evidence of infectious virus, and what are the potential consequences of this persis-

tence for human disease? These questions will form the basis of discussions in this Unsolved

Mystery.

Where does viral RNA persist?

The occurrence of long-term persistence of viral RNA has been known for decades, particu-

larly in sites with specialized relationships to the immune system (so-called “immune-privi-

leged” sites such as the brain, eyes, and testes), an early example being the identification of

measles virus as the cause of subacute sclerosing panencephalitis (SSPE), a progressive fatal

central nervous system (CNS) disease that becomes manifest many years after apparent recov-

ery from the original acute measles virus infection [51–53]. More recently, late appearance of

uveitis (Box 1) and recurrence of encephalomyelitis (Box 1) due to Ebola virus infection have

emphasized the importance of RNA persistence in the eye, as well as the brain, and the poten-

tial for causing progressive disease [47 49]. Sexual transmission of Zika, Marburg, and Ebola

viruses months to years after recovery from acute disease has also highlighted the importance

of virus persistence in the testes for triggering new chains of transmission and transfer to new

geographic regions [34,54–57].

Fig 1. Patterns of virus production over time that maintain human viruses within the population. Representative

patterns are shown for RNA viruses often associated with persistent RNA that can cause late complications and

occasionally reactivate (red), viruses that establish latency and reactivate (such as herpesviruses) (purple), and viruses

not cleared by the immune response that continue to produce infectious virus (such as HIV and HCV) (blue). HAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 3:Pleaseverifythatallentriesarecorrect:CV,

hepatitis C virus; HIV, human immunodeficiency virus.

https://doi.org/10.1371/journal.pbio.3001687.g001
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However, viral RNA persistence is not restricted to sites classically considered immune

privileged, but can also occur in other sites including blood, lymphoid tissue, joints, respira-

tory tract, gastrointestinal tissues, and kidney, with a variety of known and unknown conse-

quences [12,13,14,58–61] (Table 1, Fig 2). Organ-specific problems include chronic joint pain

after infection with alphaviruses such as chikungunya, Ross River, and Sindbis that acutely

cause rash and arthritis [10,32,62], cardiomyopathy (Box 1) after enterovirus infection [30],

asymptomatic shedding of respiratory viruses [63], and chronic pulmonary disease associated

with respiratory syncytial virus (RSV) and rhinovirus persistence [29,42,43]. Consequences

may also include more nonspecific postviral syndromes such as PASC, post-Ebola, and post-

polio syndromes, characterized by symptoms including fatigue, headache, muscle pain, and

joint pain [23,31,64].

Viral RNA persistence in the absence of culturable virus is typically detected in RNA

extracted from secretions, blood, or tissue samples. For long-lived cells such as neurons or

Table 1. AU : PleasecheckifTable1ispresentedcorrectly:Potential sites and consequences of RNA persistence after human infection with acute nonretroviral RNA viruses.

Virus Sites of RNA persistence Cell type Consequences References

Picornavirus
Rhinovirus Respiratory tract Epithelial cells? Asthma [29]

Enterovirus Heart Cardiac myocytes Cardiomyopathy [30]

Hepatitis A Liver Hepatocytes Late hepatitis relapse [7,15]

Polio Brain and spinal cord Motor neurons Late progression of paralysis and fatigue [19,31]

Alphavirus
Chikungunya Joints Macrophages Persistent joint pain [10]

Ross River Joints Macrophages Persistent joint pain [32]

Sindbis Joints Macrophages? Persistent joint pain [33]

Flavivirus
Zika Testes Sertoli cells Late sexual transmission [11,34]

Japanese

encephalitis

Brain Neurons Encephalitis relapse and PAU : Pleasenotethatasperstyle; eponymictermsshouldnotbeinpossessiveform:arkinson-like disease [35]

West Nile Kidney? Unknown Kidney failure? [36]

Tick-borne

encephalitis

Brain Neurons Late progressive encephalitis [37]

Coronavirus
SARS-CoV-2 Respiratory tract and

intestine

Epithelial cells and

macrophages?

Long COVID/PASC? [18,38]

Arenavirus
Lassa Testes, kidney, and

respiratory tract

Sertoli cells? Epididymitis [39,40]

Paramyxovirus
Measles Lymphoid tissue and brain Lymphocytes, monocytes, and

neurons

Life-long immunity; late progressive CNS disease (SSPE) [41]

Respiratory

syncytial

Respiratory tract Epithelial cells and

macrophages?

Chronic pulmonary disease [42–44]

Filovirus
Ebola Testes, eye, and brain Endothelial cells and

macrophages

Late sexual transmission; recurrent/progressive uveitis and

encephalitis; postviral syndrome

[45–49]

Marburg Testes Sertoli cells Late sexual transmission [50]

CNS, central nervous system; COVID, Coronavirus Disease; PASC, post-acute sequelae of COVID-19; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus

2; SSPE, subacute sclerosing panencephalitis.

https://doi.org/10.1371/journal.pbio.3001687.t001
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cardiac myocytes, this RNA is presumed to come from the originally infected surviving cells

present in those samples. However, few studies have attempted to identify or characterize the

cellular source of the RNA detected, and clearance from some tissues may be more effective

than from others. For example, after recovery of experimentally infected nonhuman primates

from acute Ebola and Marburg filovirus infections, viral RNA is no longer detectable in pri-

mary sites of replication such as the liver but can often be found in the eyes and testes, where

macrophages and Sertoli cells, respectively, remain RNA positive [45,46,50]. Tissue macro-

phages are also the sites of alphavirus RNA persistence in joints and Zika virus persistence in

lymphoid tissues [10,12,65]. Prolonged detection of viral RNA in respiratory secretions, stool,

Box 1. Definition of key terms used in this article

• Adaptive immune response—production of virus-specific antibodies and T cells

• Antigen—viral component, usually a protein, which stimulates production of virus-

specific antibodies and T cells

• Cardiomyopathy—dysfunction of the heart muscle

• Cytolytic—causing death of a cell due to lysis

• CpG—pairing of cytosine and guanosine in nucleic acid that is unusual in cellular

RNA and DNA

• Encephalomyelitis—inflammation of the brain and spinal cord that can be a response

to viral infection

• Immunocytochemical assays—methods for microscopically visualizing proteins, such

as viral proteins, in cells using antibody to the protein

• Innate immune mechanisms—intrinsic cellular responses to infection that usually

occur rapidly and can often control pathogen replication and spread prior to induction

of adaptive immune responses

• MHC class I—polymorphic MHC; molecule that can bind viral peptides produced by

infected cells, displaying them on the cell surface for presentation to virus-specific

CD8 T cells that may be able to kill the infected cell

• Peripheral blood mononuclear cells—lymphocytes and monocytes present in circulat-

ing blood that come primarily from bone marrow and lymphoid tissue and may infil-

trate sites of infection

• Ribonucleocapsid—viral RNA surrounded by nucleocapsid protein

• Reverse transcriptase polymerase chain reaction (RT-PCR)—it is a method for con-

verting RNA into a DNA copy for subsequent amplification using a thermostable

DNA polymerase and primers specific for the gene of interest. The amplified product

can be quantified or sequenced.

• Uveitis—inflammation of the uvea, which is the middle vascular layer of the eye

PLOS BIOLOGY
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Measles
Ebola
Tick-borne encephalitis
Western equine encephalitis

Ebola
Marburg

Measles

SARS-CoV-2
Respriatory syncytial
Rhinovirus

Enterovirus

Zika
Ebola
Marburg

Chikungunya
Ross River
Sindbis

Fig 2. Sites of RNA persistence following infection. Tissues in which RNA viruses persist after infection include the

nervous system, eyes, joints, lymph nodes, heart, respiratory tract, and testes. SARS-CoV-2, Severe Acute Respiratory

Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001687.g002
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sweat, conjunctival fluid, and urine likely comes from infected epithelial cells and is common

even though these cells are relatively short lived and continuously replaced [11,18,36,58,61,66–

68]. In measles virus infections, epithelial cells in multiple tissues, lymphocytes and monocytes

in blood, and lymphoid tissue are prominent sites of infection [69,70]. Infectious virus is

cleared during induction of the adaptive immune response and can no longer be cultured

from any site shortly after resolution of the rash. However, viral RNA remains detectable in

peripheral blood mononuclear cells (Box 1), respiratory secretions, and urine for weeks to

months, and even longer in lymphoid tissue [14,41,61,68,71]. Little is known about the nature

of the viral RNA that is detected in measles or other acute RNA viral infections or whether

cells with viral RNA are the originally infected cells that survived acute infection and avoided

immune elimination or newly infected cells through continued cell-to-cell transfer of viral

RNA.

Detection of infectious virus is inherently less sensitive than detection of viral RNA and

may be influenced by the presence of neutralizing antibody in the sample. Cocultivation of

cells from tissues or secretions with susceptible cells is required to recover viruses such as mea-

sles but may not have been attempted for studies reporting the presence of viral RNA. There-

fore, lack of detection of infectious virus may be due in part to differences in sensitivity and

availability of the assays used. Development of techniques that can more easily identify the

presence of assembled virions capable of initiating infection would provide increased under-

standing of the clearance and persistence of RNA viruses.

What form of viral RNA persists in the absence of infectious virus?

Because infectious virus cannot be recovered and RNA is susceptible to degradation, it is often

assumed that what is detected by reverse transcriptase polymerase chain reaction (RT-PCR;

Box 1) is fragmented or degraded viral RNA [25]. However, several studies have shown the

long-term presence of full-length RNA capable of resuming productive replication if immune

control is relaxed [16,21,72–74]. Unexpected late transmission of Ebola, Marburg and Zika

viruses attest to the presence of persistent full-length genomic RNA after apparent resolution

of these infections [57,75–77].

For picornaviruses, positive-strand RNAs are detectable for longer than negative-strand

RNAs, and for coronaviruses, genomic RNAs are detectable for longer than the subgenomic

RNAs that are produced during active virus replication [78,79]. However, these differences

may reflect the relative abundance of these RNAs, and for alphaviruses, subgenomic RNA,

which is more abundant than genomic RNA, is often detectable for longer.

For Borna disease virus that replicates in the nucleus, persistently infected cells retain geno-

mic RNA in aggregates of viral ribonucleoproteins tethered to host chromosomes with host

nuclear proteins that are maintained in daughter cells through the cell cycle [80,81]. However,

most RNA viruses replicate in the cytoplasm, and, therefore, this is the likely site for RNA to

persist, although reverse transcription by cellular enzymes has been postulated as a mechanism

of persistence for nonretroviral RNA viruses as endogenous viral elements [82,83]. In the cyto-

plasm, ribonucleocapsid structures (Box 1) may protect the RNA of negative-strand viruses,

while association with membranous structures may protect the RNA of positive-strand viruses,

but this hypothesis requires further investigation.

How do RNA viruses evade the immune system to persist?

Innate immune mechanisms (Box 1) can control intracellular virus replication and target viral

RNA for degradation, but adaptive immune responses are required for complete clearance of

infected cells. Many intrinsic cellular antiviral mechanisms detect features of viral RNAs that

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001687 June 1, 2022 6 / 19

https://doi.org/10.1371/journal.pbio.3001687


are distinct from cellular RNAs, such as CpG content (Box 1), 50 triphosphate, cap structure,

and double-stranded RNA [84,85]. Recognition by innate sensors can target viral RNA for

degradation or cause the inhibition of translation and replication and can activate pathways

that result in the production of the signaling molecule interferon (IFN). Synthesis of IFN-stim-

ulated antiviral proteins can further decrease virus replication and RNA synthesis [86]. There-

fore, viral pathogens have often evolved RNA sequences and structures that circumvent

induction of innate immune responses to promote virus replication and intracellular survival.

However, adaptive immune responses consisting of virus-specific antibody and T cells are still

induced.

Complete clearance of virus and virus-infected cells requires both prevention of virus

spread to new cells and elimination of previously infected cells, either through virus-induced

or immune-mediated cell death. Although viruses frequently lyse cells in tissue culture, pri-

mary cells and cells infected in vivo are often resistant to induction of cell death. These cells

activate intrinsic cellular pathways that promote survival and combine with both host and

viral strategies to downregulate replication and prevent lethal damage to the infected cell [87]

(Fig 3). Persistence can evolve in the infected host through rapid mutation and selection of less

lytic viral variants. This evolutionary process is facilitated by the error prone RNA-directed

RNA polymerases that characterize RNA viruses [88,89] and by editing enzymes in the host

cell [90,91]. In addition, early treatment with antibody may promote persistent infection

[92,93].

Immune mechanisms for eliminating virus-infected cells that survive infection include cell

killing by cytotoxic cells such as natural killer cells, which recognize a lack of major histocom-

patibility complex (MHC) class I expression (Box 1), and CD8+ T cells that recognize viral pep-

tides expressed in the context of MHC class I molecules. In addition, binding of antibodies to

Virus Host

DVGs

Non-cytolytic clearance

Mutations

Induce innate responses

IFN-�

Antibody

Immunosuppression
TGF-�

TregsTregs

IFN

IL-10

RNA sensor

Prevent virion maturation
Suppress RNA synthesis

PTMs

Fig 3. Mechanisms for suppressing production of infectious virions. Several mechanisms exist whereby the virus and host can suppress

the production of infectious virions to facilitate the survival of infected cells and viral RNA persistence. For example, the virus may acquire

mutations that decrease virion assembly, induce innate responses, or decrease RNA synthesis, while the host employs antiviral immune

responses that facilitate infected cell survival. DVG, defective viral genome; IFN, interferon; IL, interleukin; PTM, posttranslational

modification; TGF, transforming growth factor.

https://doi.org/10.1371/journal.pbio.3001687.g003

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001687 June 1, 2022 7 / 19

https://doi.org/10.1371/journal.pbio.3001687.g003
https://doi.org/10.1371/journal.pbio.3001687


the infected cell surface can direct cells toward antibody-mediated cytotoxicity or phagocytosis

by immune cells [94–96]. Therefore, immune-mediated clearance requires recognition of the

infected cell by immune effector cells, primarily through changes in surface expression of host

or viral proteins. However, adaptive immune-mediated virus clearance is not always cytolytic

(Box 1). For essential cells that are not easily replaced, such as neurons, noncytolytic control is

advantageous for the host [97,98]. Antibodies that recognize alphavirus surface glycoproteins

are required for clearance of infectious virions from the brains of infected mice and act by

inducing antiviral signaling cascades that suppress production of viral RNA and infectious

virions and inhibit virus release without harming the infected neurons [96,99–103]. Thus, the

infected neuron survives with viral RNA still present. T cells can also employ noncytolytic

mechanisms for cell type–specific clearance of infectious virus through local production of

cytokines with antiviral activity such as IFN-γ [104–107]. T cell cytotoxicity may also be

actively suppressed, particularly in immune-privileged sites, by expression of suppressive cyto-

kines (e.g., TGF-β) and preferential recruitment of regulatory T cells [50,108]. Thus, the adap-

tive immune response can employ several noncytolytic mechanisms for clearance of infectious

virus that allow survival of cells that still harbor viral RNA (Fig 3).

Strategies that avoid immune-mediated clearance of infected cells

To escape clearance, viruses must avoid both elimination by the immune response and killing

of all infected cells, processes that are more likely to occur in some types of cells and tissues

than in others. Avoiding immune-mediated clearance mechanisms requires the infected cell to

become invisible to the immune system or unresponsive to cytolytic immune effectors by elim-

inating both surface expression of viral proteins and MHC presentation of viral peptides.

Viruses infecting long-lived cells in immune-privileged tissues may be particularly likely to

survive and retain persistent RNA after infection [11,19,21,50,109–113]. Several early studies

of progressive tick-borne and western equine viral encephalitis conducted prior to the avail-

ability of sensitive methods for detecting viral RNA provided clinical and pathological evi-

dence of RNA persistence and ongoing inflammation in the absence of infectious virus in the

CNS [17,20,114–116]. As neurons (and likely other long-lived cells such as cardiac myocytes)

mature and become fully differentiated, they acquire the ability to restrict virus replication and

survive the stress of infection [117–119]. The mechanism(s) underlying differentiation-depen-

dent susceptibility to virus infection have not been fully elucidated but likely involve both

increased expression of innate factors that restrict virus replication and/or promote cell sur-

vival and decreased availability of factors required for virus replication in terminally differenti-

ated cells [117,120].

Survival of infected cells is often accompanied by acquisition of viral mutations that foster

persistence. For example, for viruses that are assembled and released from the cell surface,

mutations that limit or prevent cell surface expression of viral proteins can prevent recognition

by antibodies. In the measles virus-induced late disease SSPE, virion proteins required for par-

ticle assembly at the plasma membrane (hemagglutinin, fusion, and matrix) have acquired

changes that prevent cell surface expression and virion assembly but promote cell-to-cell ribo-

nucleoprotein transfer to uninfected cells, thereby allowing continued spread of viral RNA

without producing infectious virions [121–124]. Similar mutations have been observed in the

viral RNAs from persistent CNS infections due to mumps and mouse hepatitis viruses

[113,125].

Persistence in cells that are replaced more frequently (e.g., endothelial cells, epithelial cells,

lymphocytes, and monocytes) may continue for shorter periods of time. In lymphocytic cho-

riomeningitis virus (LCMV) infection of cell fate reporter mice, noncytolytic clearance from
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hepatocytes is accompanied by continuous infection of new cells to maintain persistence

[126]. Epithelial cells in the respiratory tract and elsewhere commonly permit rapid cell-to-cell

transfer of viral nucleocapsids without release of virus from the cell surface that may foster per-

sistence of detectable viral RNA long after infectious virions can be recovered [127]. It is not

clear whether the observed slow decrease in levels of detectable viral RNA in peripheral blood

mononuclear cells, urine, stool, and respiratory secretions (Fig 1) is due to turnover of these

cells, RNA degradation, or eventual immune-mediated elimination [14].

Strategies that avoid killing of infected cells

Avoiding virus-induced cell death usually requires limiting virus replication [87,128]. A variety

of mechanisms are employed by viruses to restrict replication. For example, several RNA

viruses (e.g., Borna disease virus, LCMV, coxsackievirus, and hantavirus) undergo 50-terminal

trimming of the genome that both suppresses replication and prevents the activation of innate

immune responses [129–132]. Ebola virus genomes from the eyes of infected humans and fer-

rets have acquired stop codons in the polymerase gene that would limit RNA synthesis

[133,134], and phosphorylation of the paramyxovirus P protein represses viral replication late

in infection and fosters persistence [135].

Replication may also be restricted through activation of IFN pathways and expression of

IFN-stimulated genes encoding antiviral proteins. For example, production of defective viral

genomes (DVGs), particularly so-called “copy-back” DVGs, by many RNA viruses leads to

induction of innate immune responses that control virus replication and permit persistence

[136]. Copy-back DVGs are generated when the viral polymerase becomes detached from the

template genome and switches to another genome template to duplicate the terminal end.

These shorter incomplete genomes have a replicative advantage over full-length genomes and

can induce both IFN and pro-survival pathways to promote persistence [137,138]. For exam-

ple, in lung infection with RSV, early production of DVGs activates RIG-I-like receptors to

stimulate the activation of IRF3 and IRF1, leading to production of TNFα, IFNλ, and IFIT1,

suppression of virus replication, and survival of persistently infected cells [136,139,140]. DVGs

have been demonstrated in the testes during filovirus infection of nonhuman primates [141]

and in the lungs of children with RSV infection [140].

What are the consequences of RNA persistence?

Viral RNA alone may stimulate innate immune responses and inflammation associated with

IFN production to drive chronic inflammation [60]. However, viral RNA persistence without

production of infectious virions is frequently accompanied by evidence of viral protein synthe-

sis and T cell activation, indicating that viral RNA is being translated, if not replicated or

assembled into culturable virus particles [10,142]. Viral protein can sometimes be detected by

immunocytochemical assays [10,15,19,143] (Box 1), but such techniques are relatively insensi-

tive compared with those for detecting RNA, and most often the evidence comes from ongoing

or renewed stimulation of a local or systemic adaptive immune response [144]. For example,

in mice that have recovered from acute rhabdovirus and influenza virus infections, passively

transferred immune cells detect and are activated by persistent viral antigens [145,146]

(Box 1). Although antigens may persist without ongoing translation of viral RNAs, longitudi-

nal studies of measles and Ebola have identified recurrent waves of immune activation consis-

tent with periodic increases in immune stimulation by viral proteins [71,147,148].

Consequences of chronic immune stimulation associated with persistent RNA are depen-

dent on the site of persistence. For example, persistence of RNA in the CNS of mice that have

recovered from acute alphavirus-induced encephalomyelitis is accompanied by detection of
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viral protein weeks after infection, and maintenance of B cells secreting antiviral antibodies

and T cells producing IFN-γ for more than a year [100,149–152]. Likewise, oligodendrocytes

surviving acute coronavirus infection with persistent RNA promote prolonged T cell residence

and inflammation in the CNS [111,153]. This type of late CNS pathology may or may not be

associated with progressive neurologic disease [17,115,154]. Persistence of alphavirus RNA in

synovial tissues is linked to the prolonged inflammation and joint pain that many patients

have after infection, and persistence of enteroviral RNA in the myocardium is associated with

progressive cardiac dysfunction [10,30].

Determining the importance of RNA persistence is of particular relevance for understand-

ing the failure to fully recover from acute infections such as occurs after SARS-CoV-2 infection

and Ebola virus disease. PASC afflicts 30% to 50% of those recovering from COVID-19 [23] and

encompasses a variety of symptoms that affect different organ systems including fatigue, brain

fog, muscle weakness, gastrointestinal distress, cough, and shortness of breath [26,155]. Infectious

virions in blood (viremia) have not been documented, but viral RNA in blood (RNAemia) is

found in those with more severe disease, suggesting systemic spread of infection, and is predictive

of PASC [27,28]. Those with persistent symptoms at 3 months after acute disease are more likely

to have increased levels of pro-inflammatory cytokines (e.g., TNF) and chemokines (e.g., IP-10

and MCP-1), as well as factors associated with vascular injury (e.g., VCAM-1 and ICAM-1)

[156]. Prolongation of symptoms due to ongoing immune stimulation is suggested by identifica-

tion of viral RNA and protein in a subset of monocytes [143]. The importance of persistent viral

RNA relative to inflammation, autoimmunity, or reactivation of latent infection with other

viruses (e.g., Epstein–Barr virus) in the pathogenesis of PASC remains to be determined, but

PASC is likely to be more than one disease with multiple contributing factors [28]. Persistent

RNA could continue to stimulate innate immune responses, but protein translation would be

needed for continued activation of adaptive immune responses (Box 1).

Persistence and long-term immune stimulation in lymphoid tissue may also provide benefit

to the host via prolonged stimulation and induction of durable immunity to reinfection

[41,70]. Macaques infected with measles virus have persistent RNA in lymphocytes and mye-

loid cells for months after resolution of the acute rash disease. Pathologic examination of their

lymph nodes shows a progressive increase in germinal centers with proliferating B cells accom-

panied by continued appearance of virus-specific peripheral follicular helper CD4+ T cells and

antibody-secreting cells in circulation and affinity maturation of antiviral antibody [41]. This

contrasts with the short-lived immunity induced by SARS-CoV-2 and many other respiratory

viruses potentially due to a failure to establish the persistence of RNA in lymphoid tissue

required for prolonged synthesis of viral antigens for immune stimulation [157–161].

Concluding remarks

Clinical recovery, elimination of detectable infectious virus, and development of immunity

after infection with RNA viruses that cause acute infections do not necessarily result in com-

plete elimination of the viral RNA. Both virus and host mechanisms can prevent production of

infectious virions while allowing persistence of viral RNA in previously infected cells. Viral

mechanisms include mutations in genes coding for proteins required for assembly or replica-

tion and evasion of the adaptive immune response. Host mechanisms include the use of non-

cytolytic clearance mechanisms that allow infected cells to survive and cell type–specific

activation of innate immune responses that suppress virus replication in infected cells. How

RNA is protected from degradation is unclear, but occasional late transmission and continuing

stimulation of adaptive immune responses indicate persistence of genomic and translatable

viral RNA.
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Our understanding of the long-term consequences related to disease and durable immunity

and the mechanisms of persistence will benefit from further investigation and development of

appropriate animal models. Future studies will be needed to identify the types and locations of

cells harboring viral RNA and the metabolic state of these cells compared with uninfected

cells. In addition, a better understanding of the state of the viral RNA, how it is protected from

degradation, the relative amounts of full-length and DVG or fragmented RNA, and the contri-

bution of continued RNA synthesis to persistence will help to solve this mystery and inform

potential interventions. Identification of the role of RNA persistence in late disease could be

advanced with longitudinal studies that evaluate treatments that suppress RNA replication and

examine their effects on RNA persistence and long-term outcomes.
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