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a b s t r a c t 

Major advances in RNA secondary structural motif prediction have been achieved in the last 

few years; however, few methods harness the predictive power of multiple approaches to deliver 

in-depth characterizations of local RNA motifs and their potential functionality. Additionally, 

most available methods do not predict RNA pseudoknots. This work combines complementary 

bioinformatic systems into one robust discovery pipeline where: 

• RNA sequences are folded to search for thermodynamically favorable motifs utilizing Scan- 

Fold. 

• Motifs are expanded and refolded into alternate pseudoknot conformations by Knotty/ 

Iterative HFold. 

• All conformations are evaluated for covariance via the cm-builder pipeline (Infernal and 

R-scape). 
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Cobretti ( https://github.com/moss-lab/Cobretti ) 

Introduction 

The impetus for the Cobretti python script was to automate the process of predicting regions of RNA likely to contain functional

structures. This provides a streamlined pipeline, moving from sequence to structure prediction to conservation analysis to reveal 

regions of RNA with a propensity to form functional structures. 

Compared to random RNAs of the same nucleotide frequency, functional RNAs are by and large more thermodynamically stable

[10] . Evolutionary pressures demur loss of function, leading to increasingly ordered RNA structures over time [1] . Based on these

findings, ordered thermodynamic stability can be measured to determine if a given RNA structure has undergone selection [1] . This is

the basis for ScanFold, previously used to uncover unusually stable local motifs in human immunodeficiency virus (HIV-1) [1] , Zika

virus (ZIKV) [1] , Epstein-Barr virus (EBV) [11] , severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [12] , and influenza

virus [13] . 

The Cobretti pipeline begins by folding sequences of interest using ScanFold [1] . ScanFold breaks up sequence analysis into

two parts: ScanFold-Scan and ScanFold-Fold [1] . ScanFold-Scan uses a scanning nucleotide window approach that folds the native 

sequence and calculates the minimum free energy (MFE) using RNAfold. RNAfold is a component of the ViennaRNA package that

utilizes a heuristic modeling approach based on the Turner thermodynamic energy models [2] . The native MFE is compared to MFEs

of 100 randomly shuffled sequences of the same nucleotide composition, resulting in a z-score (the number of standard deviations the

native MFE is above or below average, an approach adapted from Clote et. Al. [10] ). ScanFold-Scan then “steps ” the analysis window

one nucleotide down the input sequence, repeating z-score calculations for each step until the entire sequence has been analyzed

(i.e., scanned). Subsequently, ScanFold-Fold compiles base pairings across overlapping ScanFold-Scan windows to identify the most 

favorable pairing state [11] . For a default scan (single nucleotide step, window size optimized to 120 nucleotides [ 1 , 12 , 14 ]), each

nucleotide (outside of the extreme 5 ′ and 3 ′ ends) will appear in 120 separate MFE models. Base pairs across overlapping windows

are used to generate a weighted consensus structure; the weight is determined by the recurrence and window z-score for each base

pair configuration. The result is base pairs that most contribute to sequence-ordered stability. These models overcome inaccuracies 

in MFE-only models and have been shown to identify robust, highly probable, and experimentally supported secondary structures 

[ 1 , 11–13 , 15–27 ]. 

A major limitation of ScanFold is that the underlying folding algorithms forbid crossing/non-nested base pairings, which prevent 

the discovery of pseudoknots [2] . Pseudoknots are valuable functional targets, forming highly stable structures that are frequently 

involved in biologically significant processes [28] . To remedy this shortcoming, ScanFold motif regions can be extended on their 5 ′

and 3 ′ ends by Cobretti and refolded using two different pseudoknot prediction programs: Knotty and Iterative HFold. 

Knotty [3] uses free energy minimization and a novel dynamic programming algorithm to find pseudoknots within a given se-

quence. It does not include ScanFold structure as an input, and therefore provides an unrestrained prediction for a given sequence.

This approach is beneficial for identifying pseudoknot/hairpin [28] or multibranch/hairpin [29] hybrids (as seen in influenza) where 

conformational composition fluctuates depending on environmental conditions. 

Iterative HFold [4] is a heuristic pseudoknot prediction algorithm that can use ScanFold motifs as a constraint. The program

attempts to build a pseudoknot around the motif using four different prediction methods and outputs the lowest free energy struc-

ture, both ScanFold constrained and unconstrained [4] . A lack of a pseudoknot in the Iterative HFold lowest free energy structure,

corroborated with ScanFold or Knotty, may suggest a predominant multibranch loop or hairpin conformation. 

Conservation of RNA secondary structures is regarded as an indicator of evolutionary constraint and potential function [ 8 , 30 ].

Functional, structured RNAs are expected to have some level of structural conservation that can lead to statistically observable co-

evolution across base paired residues —covariation [31] . To check RNA secondary structures from ScanFold, Knotty and Iterative 

HFold (with and without ScanFold constraints) for covariance, Cobretti uses cm-builder [7] and R-scape (RNA Structural Covariation 

Above Phylogenetic Expectation) [8] . 

The cm-builder pipeline [7] , implemented within the RNA Framework toolkit [5] , uses the program Infernal (Inference of RNA

Alignment) [6] to generate homologous alignments of motif sequences of interest against an NCBI BLAST database. This database

can be obtained manually using the BLAST website, or through the BLAST + command line module [9] . Infernal [6] cannot analyze

non-nested (pseudoknotted) structures, so Cobretti breaks down motifs into nested substructures and trims unpaired nucleotides from 

the 5 ′ and 3 ′ ends to reduce noise [32] . 

Significant covariation in RNA sequence/structure alignments can be identified via the program R-scape [ 8 , 31 ]. R-scape estimates

the statistical power of alignments to determine if there is enough variation to detect covariation [ 31 , 33 ]. High-power covarying

alignments ( > 0.10) support a conserved RNA structure, whereas low-power results indicate inconclusive evidence of covariation and

high-power alignments with no observed covariance suggests evolutionary selection incompatible with a structured RNA [31] . One 
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caution to this approach is that deep evolutionary conservation is required to observe statistical covariance in functional RNA motifs;

not all functional RNAs (e.g., long ncRNAs [8] ) have sufficient depth for this approach to work. 

The Cobretti python script automates many of these previously manual processes (as well as file conversions between programs,

building and running SLURM scripts, user-friendly data outputs), minimizing setup by the end-user and reducing troubleshooting 

processes. 

Method details 

Install software and verify dependencies 

The software listed in the “Resource availability ” section have been ordered to ensure all dependencies are met prior to installation.

However, software requirements are always changing, so best practice is to check program dependencies at their source. 

For high-throughput operations, it is recommended to have all programs and dependencies available on a high-performance 

computing (HPC) node along with a SLURM queuing system ( https://slurm.schedmd.com/ ), NCBI BLAST + [9] , and local BLAST

databases. The most up-to-date Cobretti code, user’s guide, and example files are available on the Moss Lab GitHub page ( https:

//github.com/moss-lab/Cobretti ). 

ScanFold identifies and extracts thermodynamically stable secondary structures 

ScanFold has been optimized to find highly stable structured RNA regions and can be run using default settings (no probing

data, 120 nucleotide windows, –global_refold flag on, -2 z-score structures) for most applications. There are experimental approaches 

which probe RNA secondary structure in vivo or in vitro and these experiments yield per nucleotide structure reactivity values which

can help to inform RNA folding algorithms. Existing probing data can be used as a constraint to inform the final model but are not

required; purely in silico ScanFold results (especially -2 z-score motifs) correlate well with SHAPE and DMS reactivities [ 12 , 19 ]. A

120 nucleotide window size is sufficient for most structured RNAs (e.g., most known human cis-regulatory RNA structures are < ∼150

nucleotides [21] ), but the size can be reduced or increased depending on user needs. Window size can be increased to 150 nucleotides

with little decline in accuracy, although it is not recommended to exceed 200 nucleotides [ 1 , 12 ]. Adding the –global_refold flag extends

folding around ScanFold identified motifs (i.e., base pairs that are thermodynamically favored but not necessarily significantly stable) 

and is recommended for reasonably sized targets. All significantly stable (-2 z-score) motifs are extracted in dot-bracket notation (.dbn)

by ScanFold for subsequent analysis. This parameter is not typically altered, but can be rewritten within the ScanFold code to extract

alternate motifs (as we have done previously [19] ). 

For high-throughput operations, Cobretti is capable of scanning the current working directory for all FASTA format (.fa or .fasta)

files, building ScanFold shell scripts with default settings for each FASTA, and running all scripts in parallel in a SLURM queue

enabled HPC environment. Cobretti will then find the ScanFold extracted motifs for all runs and copy them to a centralized location

for analysis and further processing. 

Predicting alternate conformations within highly structured regions 

Cobretti extends the 5 ′ and 3 ′ ends of all ScanFold motifs and runs each motif through Knotty and Iterative HFold. The default

30 nucleotide extension by Cobretti allows for pseudoknot predictions localized around the ScanFold motif region without adding 

excessive noise or using excessive computational power. All resulting structures are then compiled into one text file for user analysis

and broken down into individual motif files for further evaluation. 

Covariation identifies evolutionarily interesting secondary structures 

Cobretti nests and trims motifs of interest, batching motifs together into cm-builder shell scripts and running each script. Trimming

of unpaired nucleotides in nested substructures generally improves the number of sequences Infernal can align, which in turn improves

R-scape’s ability to identify covariance [32] . Cobretti is set up to create BLAST + databases in parallel with the ScanFold runs, although

they are not used until this step. BLAST + is used in blastn mode with the nt database, providing 2500 target sequences with only the

top hit for each sequence (-max_hsps 1). While this could result in very large genomic databases, Cobretti only saves the accession

numbers and aligned sequences for each target sequence. Once all cm-builder alignments are complete, Cobretti runs R-scape and

compiles all covariance results into a PDF and a tab-separated file for analysis. The R-scape settings include a two-set statistical test

(-s, required for testing the proposed substructure) and multiple FastTree alignments ( —ntree 10, improves E-value repeatability). 

Method validation 

An initial pool of functional RNAs were acquired from previous studies – SimRNA [34] , AnnapuRNA [35] , and RNA-Puzzles

[36] . After removing duplicates and limiting analysis to single chain RNAs (i.e., single-stranded RNA, no protein interactions, with

or without a small molecule/ligand interaction), there were 252 remaining structures (Supplemental File 1). From this, RNApdbee 

2.0 [37] was used to determine sequence and secondary structures for each PDB using the following parameters: first model only;

3DNA/DSSR; do not include non-canonical; hybrid algorithm paired residues; no image. PDB IDs were searched on NCBI and due
3 
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Table 1 

Breakdown of all highly stable structural hits across 59 published structures. 

Structure Match 

( ≥ 5 bp) 

High-Power 

( ≥ 1 bp) 

High Covariance 

(Observed > 

Expected) 

Published Structure Hits (ScanFold Motif Hits) 

All Methods ScanFold Knotty Iterative 

HFold 

Iterative HFold 

w/ ScanFold 

32 (40) ∗ 27 (35) 32 (40) ∗ 

X 25 (32) 19 (21) 23 (30) 22 (29) 21 (27) 

X 22 (30) 14 (15) 20 (28) 19 (25) 20 (26) 

X X 17 (24) 11 (12) 16 (23) 14 (19) 14 (18) 

X X 14 (19) 7 (8) 10 (14) 8 (9) 9 (10) 

X X X 11 (16) 5 (6) 9 (13) 7 (8) 7 (8) 

∗ Includes ScanFold motifs that did not cover published regions prior to 30 nucleotide 5 ′ and 3 ′ extensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diligence was taken to analyze publications for species origin and sequence descriptors. If sequences were labeled as synthetic con-

structs, they were removed from the testing pool. Sequences were also removed if their origin could not be determined, or if they

were determined to be too ambiguous (i.e., less than a 90% match to any species-specific sequences in an NCBI BLAST search). Small

RNA modifications made by researchers to increase stability for NMR/x-ray analysis were retained. Accession numbers for sequences 

of interest were not always available, so the top BLAST hit (blastn search limited to each selected organism with default settings) was

used for the reference sequence. Reference sequences for RNA structures in minus strand sequences were reverse complemented, and

all duplicate sequences were removed, leaving 59 published structure sequences for further analysis. 

To reduce computational requirements and provide a comparable baseline, sequences were reduced to 1 kb centered on the 

region of interest. If any structure was located near the 5 ′ or 3 ′ end of a sequence, 1 kb of sequence was selected from the 5 ′ or 3 ′

end, respectively. In one case, the structure was larger than 1 kb (1NJN), so 500 nucleotides were added to each side of the region of

interest. If the reference sequence was less than 1 kb in length (1A60, 1KKS, 1MNX, 4R4V), the entire sequence was used regardless

of the location of the structure of interest. These sequences were then subjected to ScanFold [1] , outputting all ≤ -2 z-score motifs.

NCBI BLAST databases were built using the shortened 1 kb sequences with the blast-plus module on Iowa State University’s Pronto

HPCs (blastn, nt database, 2500 sequences). 

ScanFold identified 213 total motifs with a z-score ≤ -2. Of these, 35 motifs (16.4%) were found in 27 of the 59 published structure

sequences (45.8%). Another 5 motifs were within 30 nucleotides of published structure regions and were therefore included for

analysis for refolding by Knotty and Iterative HFold ( Table 1 ). Overall, 54.2% of the published structures (32 of 59) were represented.

Of the ScanFold predicted motifs, partial structure region matches (5 base pairs or more in common) were found in 19 of the 27

published structures (70.4%). After sequence extension and folding by Knotty and Iterative HFold, that number improved to 25 of 32

(78.1%). Thus, extending ScanFold with Knotty and Iterative HFold increased the likelihood of predicting a known structure. 

Extending and refolding all 213 ScanFold motifs using Knotty/Iterative HFold produced 852 total motifs, which further broke 

down into 1066 nested substructures. cm-builder and Infernal were able to align 859 (80.6%) of these nested substructures. R-scape

determined that 458 substructures had at least one high-power base pair, with 189 having more observed covarying base pairs than

expected. For method validation, all nested substructures were considered non-nested structures, where covariance in any nested 

substructure was measured as a hit for the original ScanFold motif ( Table 1 ). Of the 40 extended ScanFold motifs, 30 had at least one

high-power covarying base pair, resulting in 22 of the 59 published structures (37.3%) exhibiting some level of covariance. Further

analysis of high-power motifs revealed 14 unique published structures with more observed covarying base pairs than expected. 

Overall, 17 unique published structures (28.8% of 59) were found common to being highly stable, a partial match to published

structure, and as having at least one high-power covarying base pair, while 11 (18.6% of 59) also had more observed covarying

base pairs than expected. Of note, 9 of these 11 published structures contain published pseudoknots – Knotty managed to predict 8,

whereas ScanFold and Iterative HFold combined to predict 7 of the 9. 

Combined, ScanFold, Knotty and Iterative HFold with and without ScanFold constraints identified 107 of the original 213 motifs as

having a partial structure match (defined above). To qualitatively assess this result, the positive predictive value (PPV) and sensitivity

for all 107 partial structure matches were determined. All structures were aligned and predicted structures unassociated with the 

published structure region were removed to reduce noise. For method validation, sensitivity was defined as the number of matching

base pairs between the published and predicted structures divided by the total number of base pairs in the published structure. PPV

was defined as the number of matching base pairs divided by the total number of base pairs in the predicted structure. PPV and

sensitivity are measured from 0 to 1, where 1 is a perfect match. 

For all the partial structure matches, the average PPV was 0.71 and average sensitivity was 0.53 ( Table 2 ). While ScanFold

produced the least number of structure matches (21), it had the highest PPV across all predicted structures. Analysis of sensitivity

showed a broad range of values (0.01 to 1.00), which can be predominantly associated with sequence length. At maximum, the motifs

produced in this method will be 180 nucleotides (120 from the ScanFold window and 60 from 5 ′ and 3 ′ extensions). However, some

published structures are much larger than this (e.g., 1NJN at 2877 nucleotides), such that even large accurate predictions will produce

poor sensitivity. To address this, sequences were binned based on the size of the predicted structure ( Table 2 ). Indeed, as the size of

the published structure decreases, the sensitivity increases, with an average sensitivity of 0.82 across all methods for structures 60

nucleotides or smaller. Filtering structures by length for average PPV showed a slight improvement, but not to the extent of sensitivity.

The range of PPV values was wholly unaffected (0.24 to 1.00) by structure length. 
4 
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Table 2 

PPV and Sensitivity for all partial structure matches ( ≥ 5 bp). 

All Methods ScanFold Knotty Iterative HFold Iterative HFold w/ ScanFold 

Total Motifs 107 21 30 29 27 

Average (Minimum Range) ∗ 

PPV All Structures 0.71 

(0.24) 

0.84 

(0.24) 

0.62 

(0.26) 

0.71 

(0.26) 

0.69 

(0.24) 

≤ 180 nt 0.73 

(0.24) 

0.86 

(0.24) 

0.64 

(0.26) 

0.75 

(0.26) 

0.71 

(0.24) 

≤ 120 nt 0.72 

(0.24) 

0.82 

(0.24) 

0.66 

(0.26) 

0.82 

(0.26) 

0.75 

(0.24) 

≤ 60 nt 0.83 

(0.24) 

0.87 

(0.24) 

0.72 

(0.27) 

0.89 

(0.27) 

0.85 

(0.24) 

Sensitivity All Structures 0.53 

(0.01) 

0.57 

(0.01) 

0.52 

(0.01) 

0.51 

(0.01) 

0.52 

(0.01) 

≤ 180 nt 0.59 

(0.10) 

0.60 

(0.11) 

0.60 

(0.13) 

0.59 

(0.10) 

0.58 

(0.10) 

≤ 120 nt 0.76 

(0.13) 

0.71 

(0.13) 

0.72 

(0.13) 

0.73 

(0.13) 

0.71 

(0.13) 

≤ 60 nt 0.82 

(0.33) 

0.79 

(0.33) 

0.82 

(0.33) 

0.82 

(0.33) 

0.83 

(0.33) 

∗ All categories had a maximum range value of 1.00. 

 

 

 

 

 

 

 

 

 

 

 

 

To summarize, 59 sequences of interest were tested using the Cobretti pipeline, resulting in a prediction of 213 highly structured

regions. These motifs were refolded into 852 total conformations that contained 1066 nested substructures. Covariance analysis 

aligned 859 of those substructures, revealing 458 with at least one high-power covarying base pair, with 24 found in 17 of the

published structures. 189 of the 458 high-power structures had more observed covariance than expected, 16 of which were identified

in published structures. These 189 motifs represent 77 unique RNA regions, 11 of which are associated with published structured

regions (13.1% of 59). Of 107 published partial structure matches, there was an average PPV of 0.71 and an average sensitivity of

0.53, and sensitivity greatly improved with reduced structure size. 

Our lab continues to improve upon this method through incorporation of the recently published ScanFold 2 [38] , testing alternative

ScanFold and pseudoknot folding algorithms, and by finding more complementary ways to characterize RNA structure. It is our hope

that by making our methods available to the broader scientific community, others can weigh in and help improve this methodological

pipeline. 
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