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Background: RNA-binding proteins (RBPs) act as important regulators in the progression
of tumors. However, their role in the tumorigenesis and prognostic assessment in multiple
myeloma (MM), a B-cell hematological cancer, remains elusive. Thus, the current study
was designed to explore a novel prognostic B-cell-specific RBP signature and the
underlying molecular mechanisms.

Methods: Data used in the current study were obtained from the Gene Expression
Omnibus (GEO) database. Significantly upregulated RBPs in B cells were defined as B cell-
specific RBPs. The biological functions of B-cell-specific RBPs were analyzed by the
cluster Profiler package. Univariate and multivariate regressions were performed to identify
robust prognostic B-cell specific RBP signatures, followed by the construction of the risk
classification model. Gene set enrichment analysis (GSEA)-identified pathways were
enriched in stratified groups. The microenvironment of the low- and high-risk groups
was analyzed by single-sample GSEA (ssGSEA). Moreover, the correlations among the
risk score and differentially expressed immune checkpoints or differentially distributed
immune cells were calculated. The drug sensitivity of the low- and high-risk groups was
assessed via Genomics of Drug Sensitivity in Cancer by the pRRophetic algorithm. In
addition, we utilized a GEO dataset involving patients with MM receiving bortezomib
therapy to estimate the treatment response between different groups.

Results: A total of 56 B-cell-specific RBPs were identified, which were mainly enriched in
ribonucleoprotein complex biogenesis and the ribosome pathway. ADAR, FASTKD1 and
SNRPD3 were identified as prognostic B-cell specific RBP signatures in MM. The risk
model was constructed based on ADAR, FASTKD1 and SNRPD3. Receiver operating
characteristic (ROC) curves revealed the good predictive capacity of the risk model. A
nomogram based on the risk score and other independent prognostic factors exhibited
excellent performance in predicting the overall survival of MM patients. GSEA showed
enrichment of the Notch signaling pathway and mRNA cis-splicing via spliceosomes in the
high-risk group. Moreover, we found that the infiltration of diverse immune cell subtypes
and the expression of CD274, CD276, CTLA4 and VTCN1 were significantly different
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between the two groups. In addition, the IC50 values of 11 drugs were higher in the low-
risk group. Patients in the low-risk group exhibited a higher complete response rate to
bortezomib therapy.

Conclusion: Our study identified novel prognostic B-cell-specific RBP biomarkers in MM
and constructed a unique risk model for predicting MM outcomes. Moreover, we explored
the immune-related mechanisms of B cell-specific RBPs in regulating MM. Our findings
could pave the way for developing novel therapeutic strategies to improve the prognosis of
MM patients.

Keywords: multiple myeloma, tumor-infiltrating B lymphocyte, RNA-binding protein, prognostic signature, immune-
related signature, immunotherapy

1 INTRODUCTION

Multiple myeloma (MM) is a B-cell hematological malignancy. The
proliferation of plasma cells further induces end organ dysfunctions,
including anemia, hypercalcemia, bone lesions and renal failure
(Palumbo and Anderson, 2011). The incidence rate of MM has
rapidly increased by 126% globally over the past 2decades (Cowan
et al., 2018). The rapidly increasing incidence rate has underscored
the urgent need for treatment improvement. Although the overall
survival of multiple myeloma has been rapidly improved by the
widespread application of stem cell transplantation and novel drugs
represented by proteasome inhibitors and immunomodulatory
drugs (Attal et al., 2017; Facon et al., 2019; Mikkilineni and
Kochenderfer, 2021), MM remains incurable. The highly
heterogeneous clinical outcomes of MM patients depend on the
tumor burden, tumor cell characteristics, and especially genetic
abnormalities. Currently, a risk classification model based on
more detailed genetic and molecular information was created by
the International Multiple Myeloma Working Group in 2015
(Palumbo et al., 2015). This staging system is widely used in
clinical practice. Approximately 75% of patients who present
without cytogenetic abnormalities are considered as low risk.
These patients present heterogenous clinical outcomes (Binder
et al., 2017). There remains a group of patients who are divided
into low-risk groups characterized by therapy resistance, rapid
refractory periods and short overall survival. Meanwhile, existing
classification model fail to identify some of patients with 1q21
amplification and del 17p for very poor outcome. However, no
attempts have been made to further sub-stratify such amount of
patients (Walker et al., 2018). In light of the limitations of the current
staging system, it is necessary to identify novel biomarkers and
establish a prognostic model based on cytogenetic characterization
to distinguish good prognosis from poor prognosis patients, thereby
improving patients’ final prognosis.

The highly heterogeneous outcome of MM is mainly ascribed
to the complex genomic landscape, including chromosomal gains
or losses, structural variations, and cancer driver gene mutations
(Manier et al., 2017). These genomic instabilities contribute to the
clonal expansion of disease. As a result of the rapid development
of high-throughput sequencing, posttranscript regulation
(PTGR) has gained attention throughout the whole process of
tumors (Gerstberger et al., 2014). RNA-binding proteins (RBPs)
play key roles in posttranscript regulation by affecting gene

expression and cellular metabolism (Yan et al., 2021). Studies
have found that RBPs are functionally associated with tumor
progression in different types of cancers, including multiple
myeloma (Konishi et al., 2021; Wang et al., 2021).

The crucial role of the complex bone marrow microenvironment
in MM progression and therapeutic response has been well
established. The interactive relationship between tumor cells and
the bonemarrow environment is critical in promoting chromosomal
instability in MM(Neuse et al., 2020). Single-cell RNA-sequencing
datasets revealed in-depth interactions of stomal cells, myeloma cells
and immune cells within the bone marrow microenvironment.
These analyses found bone marrow mesenchymal stromal cells,
accompanied by immune cells and aberrant genes involved in
immune modulation and tumorigenesis (de Jong et al., 2021).

It has been gradually recognized that the success of
chemotherapy and immunotherapy relies on the anticancer
immune response (Fridman et al., 2017). The correlation
between tumor-infiltrating lymphocytes and the clinical
outcomes of cancers has been investigated (Fridman et al., 2012).
The prognostic value of infiltrating T lymphocytes has been widely
accepted. In contrast to T cells, the effects of infiltrating B cells in
tumorigenesis and treatment are far from clear.

Growing evidence has indicated that Tumor-infiltrating B
(TIL-B) cells contribute to the prognostic effect of tumors by
inducing CD4+ T cells and CD8+ T cells, which help to regulate
tumor invasion and metastasis (Wouters and Nelson, 2018).

Multiple myeloma is a plasmocytic disease. The core biological
process of MM is genetic dysfunction throughout the multistep
progression of B cell development (Pawlyn and Morgan, 2017). In
the present study, we investigated the TIL-B-related RBP signature
in MM. Furthermore, we propose a B-cell-specific RBP prognostic
model of MM for the first time by combining immune, RBP and
clinical characteristics. This model enables us to predict the clinical
prognosis and therapeutic response of MM patients.

2 MATERIALS AND METHODS

2.1 Patient and Tumor Cell Line Data
Preparation
Transcriptional data of MM patients were downloaded from
GSE24080, GSE4204 and GSE39754. GSE24080, including 559
newly diagnosed patients with MM(Mitchell et al., 2016), was
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used as the training set. GSE4204, including 538 newly diagnosed
MM patients (Driscoll et al., 2010), was used as the validation set.
These samples were analyzed on platforms GPL570, Affymetrix
Human Genome U133 plus 2.0 array. GSE39754, including gene
expression profiling of 170 newly diagnosed MM patients
receiving bortezomib therapy (Chauhan et al., 2012), was used
to compare the treatment response between different groups. A
total of 1,542 RBPs were obtained from a previous study
(Gerstberger et al., 2014). Expression data of RBPs in different
cell types were downloaded from GSE42058 (4 samples of CD11c
+ cells), GSE49910 (4 samples of B cells, four samples of
neutrophils, 24 samples of T cells, six samples of monocytes,
eight samples of erythroblasts and a sample of bone marrow and
progenitors), GSE51540 (9 samples of T cells), GSE59237 (10
samples of dendritic cells), GSE6863 (3 samples of dendritic
cells), GSE8059 (3 samples of NK cells), GSE13906 (2 samples
of gamma-delta T cells and two samples of lymphocytes),
GSE23371 (12 samples of dendritic cells), GSE25320 (11
samples of mast cells), GSE27291 (12 samples of T cells),
GSE27838 (16 samples of NK cells), GSE28490 (10 samples of
monocytes, five samples of B cells, 10 samples of T cells, five
samples of NK cells, four samples of eosinophils, five samples of
mDCs, three samples of neutrophils and five samples of pDCs),
GSE28726 (10 samples of NKT cells, eight samples of CD1d-aGC
+ Va24- T cells and eight samples of CD4 T cells), and GSE37750
(8 samples of plasmacytoid dendritic cells) and GSE39889 (16
samples of neutrophils). Each dataset was normalized, and all
subsequent analyses were performed on normalized datasets.

2.2 Identification and Functional Analysis of
Robust Prognostic B-Cell Specific RBP
Signatures in MM
The Limma package (Ritchie et al., 2015) was used to screen
differentially expressed RBPs among B cells and other cell types
by following model: design < - model.matrix (∼group+0). Genes
with FDR-corrected p-values below 0.01 were considered
differentially expressed genes. Significantly upregulated RBPs
in B cells were defined as B cell-specific RBPs. Gene ontology
(GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000) enrichment
analyses of B-cell-specific RBPs were applied by clusterProfiler in
the R package (Yu et al., 2012; Wu et al., 2021). K-M analysis was
performed to screen B-cell-specific RBPs associated with survival
(p < 0.05). Then, univariate and multivariate Cox regressions
were performed to further obtain a robust prognostic B-cell-
specific RBP signature in MM (p < 0.05).

2.3 Construction of the Risk Model and
Nomogram
The calculation formula for the risk score was defined as follows:

ExpGene1*Coef1 + ExpGene2*Coef2+ ExpGene3*Coef3.where
Coef indicates the regression coefficients of genes, and Exp is the
normalized expression value of each prognostic B cell-specific RBP
signature. According to the median value of the risk score, MM
patients in the training set were grouped according to the value of

the risk score. K-M analysis was performed to identify the overall
survival of all risk groups. ROC curves were plotted to evaluate the
effectiveness of the risk model using the “survivalROC” routine in
the R package. The risk model was tested in the validation set.
Thereafter, Cox regression analyses were performed to identify
independent prognostic factors for MM patients. The risk
predictive model was plotted as a nomogram based on
independent prognostic factors. The performance of the
nomogram was evaluated by calibration and decision curves.

2.4 Immune Microenvironment of MM
Patients in High- and Low-Risk Groups
Twenty-nine immune-related gene sets were used to perform
ssGSEA (Subramanian et al., 2005) to calculate the enrichment
infiltration of immune cells, pathways or functions in the MM
samples. The 29 gene sets represented all types of subtypes of
immune cells, potential functions, and related pathways
described in a previous study (He Y. et al., 2018). Moreover,
the correlations between the risk score and differentially enriched
immune cells, pathways or functions and the correlations
between the prognostic B-cell specific RBP signature and
differentially enriched immune cells, pathways or functions
were calculated. At the same time, the expression of immune
checkpoints, including CD274 (also named PD-L1), CD276,
CTLA4, PDCD1 and VTCNA, was compared between
different groups. Additionally, the correlations between the
risk score and differentially expressed immune checkpoints
were calculated. Correlations were evaluated using Pearson tests.

2.5 Observation of Chemotherapeutic
Response in Different Risk Groups
The IC50 values of 20 common chemotherapeutic drugs in the low-
and high-risk groupswere calculated by the pRRophetic algorithmvia
the GDSC database (Yang et al., 2013; Geeleher et al., 2014), while the
percentages of complete response (CR), very good partial response
(VGPR), no response, progression-free (NR) or progression and no
response (Prog) were calculated to evaluate the treatment response to
bortezomib therapy in the low- and high-risk groups.

2.6 Statistical Analysis
All of the data were analyzed by R software (version 4.0.0).
Comparisons between low- and high-risk groups were
calculated using Wilcoxon’s test.

3 RESULTS

3.1 Identification and Functional Analysis of
56B-cell-specific RBPs
By comparing the expression of RBPs among B cells and other cell
types, we found a total of 56 significantly upregulated RBPs (p <
0.01) and defined them as B cell-specific RBPs. Heatmap
displaying differential gene expression in B cells and other
cells (Figure 1A). GO enrichment analysis indicated that these
B cell-specific RBPs were enriched in ribosome-related and RNA
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metabolism- and catabolism-associated BP, CC and MF,
including ribonucleoprotein complex biogenesis, ribosome
biogenesis, mRNA catabolic process, ribosomal subunit and
catalytic activity, and acted on RNA. The top 10 BP, CC and
MF are shown in Figure 1B. Similar to the GO results, we found
that these B cell-specific RBPs were significantly enriched in
KEGG pathways of ribosome and ribosome biogenesis in
eukaryotes (Figure 1C).

3.2 Identification of ADAR, FASTKD1 and
SNRPD3 as Prognostic Signatures in MM
3.2.1 Purified Immune Cell Data
Thereafter, we investigated the prognostic value of these B cell-
specific RBPs. First, according to the expression of each RBP, we
divided MM patients into low- and high-RBP expression groups.
K-M analysis revealed that patients in the groups with lower
expression of FASKD1, SNRPD3, DDX21, MRPL3, ADAR,
CPSF3, DROSHA, and CAPRIN2 and higher expression of
SART1 had better survival (Figure 2), suggesting that
FASKD1, SNRPD3, DDX21, MRPL3, ADAR, CPSF3,
DROSHA, CAPRIN2 and SART1 might play important roles

in the prognosis of MM patients. Next, univariate Cox regression
analysis showed that FASKD1, SNPPD3, DDX21, MRPL3,
ADAR, CPSF3 and DROSHA were closely related to the
outcomes of patients (p < 0.05, Table 1). To further obtain a
robust prognostic signature, we performed multivariate Cox
regression algorithm analysis and found that ADAR, FASKD1
and SNRPD3 were significantly correlated with prognosis (p <
0.05, Table 2), and all of them acted as risk factors (HR > 1,
Figure 3). Thus, ADAR, FASKD1 and SNRPD3 were identified as
prognostic B cell-specific RBP signatures in MM and were used
for subsequent construction of the risk model.

3.2.2 Construction of the Risk Score Model and
Nomogram Based on the Prognostic B-Cell Specific
RBP Signature in MM
The risk scores of each patient were calculated according to the
expression levels and coefficients of ADAR, FASKD1 and
SNRPD3. Patients in the training set were divided into high-
and low-risk groups according to the median risk score
(Figure 4A). The distribution of all patients’ survival status in
the training set is shown in Figure 4B. Patients in the low-risk
group had a survival advantage over patients in the high-risk

FIGURE 1 | Identification of TILB-RBP related mRNAs. (A). Heatmap of differential RPB gene expression in B cells and other immune cells. (B). GO enrichment
analysis of TILB-RBP-related mRNAs. (C). KEGG pathway of TILB-RBPs-related mRNAs.
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group (Figure 4C). The areas under the ROC curves for 1-
,3–5 years survival were 0.648, 0.642 and 0.626, respectively,
suggesting good performance of the risk model in the training
set (Figure 4D). The risk model was further tested in the
validation set, and similar results were obtained (Figures 5A–D).

Next, we conducted univariate andmultivariate analyses to detect
independent prognostic factors. The univariate results showed that
age, B2M, BMPCand risk score were significantly associatedwith the
overall survival of MM patients (Figure 6A). Age, B2M, BMPC and

risk score were then included in the multivariate analysis, and we
found that the risk score was remarkably related to prognosis
(Figure 6B), indicating that the risk score was an independent
prognostic factor for poor prognosis in MM.

Thereafter, we constructed a nomogram with a C-index of
0.667 to predict the 1-, 3–5 years survival of MM patients,
combined with independent prognostic factors (age, B2M and
risk score) obtained by the above multivariate analysis
(Figure 7A). The slopes of the calibration curves for 1-,
3–5 years survival were close to 1 (Figure 7B), indicating the
high accuracy of the nomogram. In addition, the decision curves,
which displayed the clinical utility of each model, indicated that
the nomogram had better survival prediction performance than
the risk model (Figure 7C).

3.3 Functional Analysis of Prognostic
B-cell-specific RBP Genes by GSEA
To better understand the underlyingmechanisms of the prognostic
B cell-specific RBP signature in regulating MM, we first analyzed
the functions of genes byGSEA.We found that the Notch signaling
pathway, prespliceosome, mRNA cis-splicing via spliceosome and

FIGURE 2 | K-M analysis of nine differential genes regarding survival. (A–G). Kaplan-Meier survival curves of Multiple myeloma with different expression levels of
ADAR, CAPRIN2, CPSF3, DDX21, FASKD1, DROSHA, MRPL3, SART1, and SNRPD3.

TABLE 1 | Univariate Cox regression analysis results of differential RBPs.

Gene Hazard ratios CL95 p-value

ADAR 1.76 1.28–2.41 0.000
CPSF3 1.83 1.29–2.60 0.001
DDX21 1.58 1.17–2.11 0.002
DROSHA 1.64 1.12–2.39 0.010
FASTKD1 1.74 1.32–2.31 0.000
MRPL3 1.73 1.18–2.54 0.001
SNRPD3 1.48 1.19–1.84 0.000
CAPRIN2 0.82 0.58–1.16 0.262
SART1 0.79 0.58–1.06 0.118
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U5 snRNP were notably enriched in the high-risk group (p < 0.01),
while olfactory receptor activity, sensory perception of smell,
response to amphetamine, establishment of pigment granule
localization, regulation of renal system process, pigment granule
localization, olfactory transduction, mating, and odorant binding
were enriched in the low-risk group (p < 0.01, Figure 8).

3.4 Immune Microenvironment of Low- and
High-Risk Groups
Next, we performed ssGSEA to detect the enriched distribution of
different immune cells, pathways or functions. We analyzed the
expression of immune checkpoints further to evaluate the immune
microenvironment differences between the two groups. The
ssGSEA results showed that the enrichment level of Tfhs was
lower in the low-risk group, and other immune cells, including
B cells, CD8+ T cells, T cell coinhibition, T cell costimulation, Th1
cells and type II IFN response, DCs, iDCs, APC costimulation,
CCR, checkpoint, HLA, inflammation-promoting, macrophages,
mast cells, MHC class Ⅰ, and neutrophils, were more highly
enriched in the low-risk group (Figure 9A). All of the
enrichment levels of the immune cells, except Tfh and MHC
class I, were negatively correlated with the expression of ADAR,

FASKD1 and SNRPD3 (p < 0.05, Figure 9B). We also found that
the risk score was negatively correlated with enrichment levels of
the immune cells (p < 0.05, Figure 9C). Consistent with the
ssGSEA results, we observed that the expression of immune
checkpoints, including CD274, CD276, CTLA4 and VTCN1,
was remarkably higher in the low-risk group (p < 0.01,
Figure 9D), while the risk score was negatively correlated with
the expression of CD274, CD276, CTLA4 and VTCN1 (p < 0.01,
Figure 9E). All of these results suggested that the prognostic B-cell-
specific RBP signature influenced the immune microenvironment
of MM patients, and a higher risk score could indicate lower
antitumor immunity in MM patients.

3.5 Validation of the Prognostic Value of
TBIL-RBPs in the Chemotherapeutic
Response of MM
Given the different immune microenvironments between the
low- and high-risk groups, we hypothesized that the response
to drugs might be different between the two groups. The IC50 of
A.443,654, A.770,041, ABT.888, AG.014699, AICAR, AKT.
inhibitors VIII, ATRA, AUY922, axitinib, AZ628 and
AZD7762 were significantly higher in the low-risk group

FIGURE 3 | Forest plot visualizing the HRs of univariate Cox analysis of the TILB-RBPs and prognosis.

TABLE 2 | Multivariate Cox regression algorithm analysis of ADAR, FASKD1 and SNRPD3 gene expression with prognosis.

Gene Coef HR HR.95L HR.95H p-value

ADAR 0.40216328 1.49505543 1.07431169 2.08057937 0.01707585
FASTKD1 0.44163922 1.55525453 1.17418704 2.05999263 0.00207,193
SNRPD3 0.25941536 1.29617207 1.03397688 1.62485454 0.02446633
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FIGURE 5 | Validation of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the
validation set. (B). Survival status of all patients in the validation set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve
analysis according to the 1–5 years survival of the area under the ROC curve value in the validation set.

FIGURE 4 |Construction of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the
training set. (B). Survival status of all patients in the training set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve analysis
according to the 1–5 years survival of the area under the ROC curve value in the training set.
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(Figure 10A), indicating that patients in the low-risk group were
more sensitive to these drugs. In addition, we compared the
treatment response to bortezomib therapy in different risk
classification groups. We found that a larger proportion of
patients (36.6%) in the low-risk group had CR to bortezomib
therapy than that (27.7%) in the high-risk group (Figure 10B),
suggesting that the TBIL-RBPs might be a potential biomarker of
bortezomib treatment response for MM patients.

4 DISCUSSION

Multiple myeloma is a B cell hematological malignancy with
insidious onset. Once diagnosed, most patients suffer from
multiorgan dysfunction. The incidence rate of MM has
increased rapidly over the last decade. Substantial strides have
been made in the treatment of MM. However, for some reasons,
including a lack of early detection and complex cytogenetic
abnormalities, the majority of MM patients continue to
relapse, and a minority of MM patients even suffer from early

relapse and resistance to chemotherapy and immunotherapy,
gaining little benefit from advances in therapy (Kumar et al.,
2017). The application of genomic technologies has led to a better
understanding of the underlying biology of MM(Lohr et al.,
2014). At the same time, it is widely accepted that
dysregulated immunological processes in the tumor
microenvironment are closely related to the progression of
MM(Nakamura et al., 2020; Botta et al., 2021). Thus, we
concentrated on the cytogenetic heterogeneity of MM and the
correlation between tumor immune cell infiltration and tumor
cells. Using RNA sequencing data and clinical data in GEO, we
constructed a novel prognostic model based on B cell-specific
RBP-associated genes, which are of remarkable importance in the
early diagnosis, prognosis prediction and therapeutic evaluation.
Subsequently, we verified the predictive value of the model in
validation datasets. Furthermore, a nomogram with high
accuracy for predicting the overall survival of MM patients
was constructed based on the TBIL-RBPs and other
independent prognostic factors, as evidenced by calibration
and decision curves.

FIGURE 6 | Independence of the TILB-RBPs. A. Forest plot visualizing the HRs of univariate Cox analysis of the TILBlncSig and clinicopathological factors in (A) the
TCGA discovery dataset (B) the TCGA testing dataset; and (C) the GSE31684 dataset.
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In the present study, we first conducted a comparison analysis
among different immune cell lines. Fifty-six highly specifically
expressed TILB-RBPs were preferentially observed in B cell lines
compared with other immune cell lines. Furthermore, functional
enrichment analysis revealed that these B cell-specific RBPs were
closely related to the immune response, ribosome biogenesis and
RNA metabolism. RBPs play key roles in posttranscriptional
regulation via genetic changes, epigenetic alterations, and
noncoding RNA mediation, which are essential in the
malignant transformation of cancers (Bitaraf et al., 2021).
RBPs are also essential in tumorigenesis in hematological
malignancies. Insulin-like growth factor 2 mRNA binding
proteins (IGF2BPs) are described as major regulators of stem
cells. IGF2BP1 and IGF2BP3 are overexpressed in translocation-
ETV6/RUNX1-positive B-ALL (Elcheva et al., 2020). Acute
myelocytic leukemia patients with high expression of IGF2BP2
had worse overall survival (He X. et al., 2018). Musashi-2 protein
(MSI2) is overexpressed in acute myeloid leukemia (AML) cell
lines, and high expression of MSI2 promotes proliferation and
inhibits apoptosis of AML cells. High expression of MSI2 in AML
patients correlates with poorer survival in patients, thereby
defining MSI2 as a prognostic biomarker for therapy in AML
(Kharas et al., 2010). There have also been several reports of
specific low-occurrence mutations in RPL5 and RPL10 and

overexpression of RPS9 in MM that were closely related to
tumorigenesis and clinical outcomes (Dabbah et al., 2021).
These studies were in accordance with our findings that RBPs
could be potential prognostic biomarkers.

To further define the role of the TILB-RBPs in the clinical
outcomes of MM, the relationship between TILB-RBPs and
overall survival was assessed. We identified 3B cell-specific RBP
genes -- ADAR, FASTKD1 and SNRPD3—which were
significantly correlated with the outcomes of MM patients.
ADAR-mediated A-to-I editing is a key form of
posttranscriptional regulation in human physiology (Vesely
and Jantsch, 2021). ADAR1 is the most abundant and active
RNA editing enzyme in MM and is recognized as an oncogenic
central driver of cancer cell proliferation (Teoh et al., 2018).
ADAR1 promotes malignant regeneration of MM by mediating
the recoding of the self-renewal agonist GLI1, which activates
the Hh pathway and promotes the production of cancer stem
cells (Lazzari et al., 2017). FASTK family proteins have been
verified to be linked to mitochondrial diseases by regulating
mitochondrial RNA homeostasis (Boehm et al., 2017). Some
studies have confirmed that FASTKD1 is related to the
occurrence of tumors. For example, FASTKD1 was associated
with poor prognosis of ALL in children and adults (Wang et al.,
2015). FASTKD1 could also be used as a biomarker of primary

FIGURE 7 | Construction and verification of the nomogram (A) A nomogram combining clinical signatures and prognostic factors to predict the 1–5 years survival
rate of MM patients (B) The 5 years calibration chart verifies the predictive ability of the nomogram (C) The 5 years decision curve analysis of the clinical benefit rate.
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endometrial tumors (Colas et al., 2011). SNRPD3, also called
SMD3, binds to small nuclear RNA to affect the formation of
small nuclear ribonucleoprotein particles (Camasses et al.,
1998). Studies have revealed that silencing of SNRPD3 causes
overexpression of p53 levels, thereby modulating CDKN1A
expression and further influencing the cell cycle arrest and
cell death of NSCLC cells (Siebring-van Olst et al., 2017). In
addition, a study also found that SNRPD3 might be a novel
breast cancer-related biomarker (Zhang et al., 2015). In our
study, we found for the first time that FASTKD1 and SNRPD3
are related to the prognosis of multiple myeloma, and the

specific function and mechanism of these genes in
tumorigenesis in multiple myeloma require further study. At
the same time, we calculated the risk score and constructed a
predictive model based on these three genes. The results of the
ROC curve analysis showed that the model has good predictive
effects. In addition, univariate and multivariate regression
analyses indicated that the risk score was an independent
prognostic factor. At the same time, a nomogram was
constructed for predicting the survival of patients with
multiple myeloma at 1, 3 and 5 years. The C index and
correction curve of the nomogram showed that the

FIGURE 8 | Functional analysis of genes in the low- and high-risk groups by GSEA. (A). Notch signaling pathway, (B). prespliceosome, (C). mRNA cis-splicing via
spliceosome, (D). U5 snRNP.
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prediction model has high prediction accuracy for 1, 3 and
5 years and has clinical value.

To further clarify the role of the TILB-RBPs in stratifying
survival, the association of the TILB-RBPs and survival in MM
was assessed. Patients were grouped based on the risk score. First,
GSEA functional enrichment analysis was performed for all genes
in different groups. The results revealed that the Notch signaling
pathway and biological processes and cellular components related
to RNA splicing were significantly enriched in the high-risk
groups. The Notch pathway is crucial to cell cycle regulation.
Accumulating evidence has shown that the Notch pathway
deregulates MM in tumorigenesis and drug resistance,
especially in proteasome inhibitor resistance (Colombo et al.,
2013). Deregulation of Notch signaling inMM occurs throughout
the pathogenesis of plasma cells (Saltarella et al., 2019). Notch

receptors and their ligands affect not only MM cells but also bone
marrow stroma to further regulate the adhesive behavior of MM
(Nefedova et al., 2004). In addition, the Notch pathway plays a
vital role in immune regulation by stimulating the proliferation of
T regulatory cells and upregulating TGF-β receptor II to suppress
antitumor T-cell responses (Hue et al., 2012). An increasing
number of studies have shown that the RNA spliceosome
pathway is a major factor in cancer progression. A study
revealed that aberrant RNA splicing patterns were relevant to
worse survival outcomes of MM patients, which could be used for
the risk stratification of patients (Bauer et al., 2021). Moreover, a
study showed that inhibition of the spliceosome could synergize
with proteasome inhibitors to potentiate antitumor effects. This
unreported mechanism of the spliceosome suggests that
spliceosome targeting could serve as a potential therapeutic

FIGURE 9 | Immune microenvironment of the low- and high-risk groups. (A). Boxplots of the immune cell infiltration cluster in the high- (red)- and low- (green)-risk
groups stratified by the TILB RBP prognostic model. (B). Correlation between the expression of ADAR, SNRPD3 and FASTKD1 and the immune cell infiltration cluster.
(C). Correlation between the risk score and immune cell infiltration cluster. (D). The differential expression of immune checkpoints, including CD274, CD276, CTLA4 and
VTCN1, in the low-risk and high-risk groups. (E). Association between the risk score and the expression of CD274, CD276, CTLA4 and VTCN1.
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target in myeloma (Huang et al., 2020). The above results are in
accordance with our findings that prognostic characteristic genes
could affect the prognosis of patients with multiple myeloma by
regulating the splicing of precursor mRNA, activation of the
Notch pathway and RNase L and ribosomal nucleoprotein
synthesis.

Subsequently, we also compared the immune
microenvironment in different groups. We found that there
were significant differences in immune cell infiltration,
immune-related functions, immune-related pathways and the

expression of immune checkpoint genes between the two
groups. Several single-cell transcriptional studies have revealed
that transcriptional programs are associated with aggressive
myeloma progression and immune evasion (Ryu et al., 2020;
Liu et al., 2021). According to the above findings, we present the
hypotheses that the prognostic characteristic genes are highly
associated with different immune microenvironments in the two
groups. Subsequently, we conducted a correlation analysis of
TBIL-RBPs and immune cell infiltration. We found that the
expression of ADAR, FASTKD1 and SNRPD3 was negatively

FIGURE 10 |Chemotherapeutic response of MM patients in the low- and high-risk groups. (A). Comparison of IC50 of chemotherapeutic drugs between the high-
risk and low-risk groups. (B). Bortezomib treatment response of MM patients in the high-risk and low-risk groups.
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correlated with the infiltration, functions and pathways of
immune cells. The risk score was also negatively correlated
with the expression of immune checkpoints, indicating that
ADAR, FASTKD1 and SNRPD3 might interact with the
immune microenvironment of multiple myeloma. TBIL-RBPs
might further influence the immune response of MM patients,
response to treatment, and prognosis.

We finally analyzed the Genomics of Drug Sensitivity in
Cancer (GDSC) dataset to further validate the prognostic
effect of the risk score. The GDSC is a large dataset including
cell viability and response to drugs (Yang et al., 2013). We found
that the IC50 of 11 drugs in the low-risk group was significantly
higher than that in the high-risk group, indicating that patients in
the low-risk group might have greater sensitivity to these 11
drugs. Strikingly, the high-risk group presented less sensitivity to
bortezomib treatment. These results, together with previous
observations, supported the risk score based on TILB-RBPs
and demonstrated good accuracy for prognostic assessment.
The TILB-RBPs were shown to have prognostic value not only
for chemotherapy but also for immunotherapy. Nonetheless,
there are limitations of our current study. First the prognostic
model still needs to be further validated in other independent
large sample cohorts to ensure the reliability of the model before
clinical use. In addition, more functional experiments in vivo and
vitro are still needed to further reveal the possible mechanisms for
TILB-RBPs.

5 CONCLUSION

In conclusion, in this study, we identified 3 B lymphocyte-specific
RBPs significantly related to the overall survival of MM patients
and further established a risk model based on these genes. The

good predictive value of the model was verified in the validation
set. Application of the TBIL-RBPs to immunotherapy datasets
revealed that the risk model can assess not only chemotherapy but
also immunotherapy response. To the best of our knowledge, our
study is the first to investigate B lymphocyte specific RBPs inMM,
emphasizing the impact of TILB-RBPs on clinical outcomes and
treatment response. The results of this study could provide a basis
for individualized precision therapy in the future. The three
prognostic genes—ADAR, FASTKD1 and SNRPD3 -- could be
potential new prognostic and therapeutic biomarkers of MM.
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