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The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer
(TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging
therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive
understanding of the epigenome and transcription profiling in HCC1806 provides the framework for
evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of
transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling
using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide
locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF
using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision
mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on
experimental design, data generation, quality control analysis, and data validation. We discuss how these
data lay the foundation for future analysis to understand the relationship between the nascent transcription
and chromatin.

Design Type(s) epigenetic modification identification objective • replicate design

Measurement Type(s)
chromatin immunoprecipitation with exonuclease sequencing assay • precision
nuclear run-on sequencing assay

Technology Type(s) ChIP-exo • PRO-seq

Factor Type(s) biological replicate • technology type

Sample Characteristic(s) Homo sapiens • HCC1806 cell
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Background & Summary
Triple negative breast cancer (TNBC) is a highly aggressive and heterogeneous form of cancer1. TNBC is
characterized by a lack of expression for estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). Because TNBC lacks these proteins, targeted drug therapies
directed against ER, PR, and HER2 are not possible. Therefore, standard care typically includes surgical
resection, radiation, and chemotherapy. Prognosis remains poor for TNBC patients receiving standard
care, highlighting the need for new and innovative therapeutic strategies. Emerging efforts have focused
on the epigenome as a therapeutic target for TNBC2. It is now clear that epigenetic mechanisms play an
important role in the pathogenesis, maintenance, and therapeutic resistance of the disease3. Consistent
with this notion, a recently proposed model for transcriptional addiction in cancer suggests that
transcriptional and chromatin regulators are potential targets for therapeutic intervention using
innovative approaches4.

Given that epigenetic and transcriptional regulators are implicated in the pathogenesis of TNBC, there
is a need to better understand the mechanisms involved in the epigenetic modulation of genes expressed
in TNBC5. Functional genomic approaches offer an unbiased, comprehensive glimpse into how
transcriptional and chromatin regulators interact with the genome. For example, nascent transcriptional
profiling (Precision Run-On sequencing, PRO-seq) and protein-DNA contact profiling (Chromatin
Immunoprecipitation Exonuclease and sequencing, ChIP-exo) are state-of-the-art functional genomic
tools that enable interrogation of global RNA synthesis and protein-DNA interactions, respectively6,7.
PRO-seq and ChIP-exo studies generate scientifically valuable datasets due to their unique characteristics
and reanalysis potential, which advances the sharing and reuse of scientific data.

PRO-seq and other nascent profiling approaches, such as GRO-seq, are more sensitive at detecting
transcriptional responses than traditional assays like RNA-seq because they measure newly synthesized
RNA, rather than the steady-state abundance of total RNA synthesis and degradation. This distinction is
critical for detecting rapid transcriptional responses to stimuli, such as hormones and drug treatments8,9.
In addition to using PRO-seq data to compute RNA synthesis rates10, other biological features may be
inferred from the unique data structure, such as transcription factor (TF) binding and enhancer
activity11–13. Furthermore, computational tools have been developed to mine PRO-seq (or related GRO-
seq) data and provide de novo annotation of long noncoding RNAs, microRNAs, and enhancer
RNAs14–17. Taken together, the reanalysis potential of PRO-seq data is high.

ChIP-exo displays improved resolution and sensitivity over the traditional ChIP-seq method18. Rather
than sequencing from the distal sonication borders as in ChIP-seq, ChIP-exo enriched DNA fragments
are sequenced from the left and right 5’ DNA borders of the protein-DNA crosslink site. The precision of
the resulting data can be leveraged to provide unique and ultra-high resolution insights into the
functional organization of the genome19. For example, ChIP-exo was uniquely capable of spatially
resolving divergent, initiating, paused, and elongating RNA polymerase II (Pol II) on a genome-wide
scale20–22.

In this Data Descriptor, we provide a technical validation of twenty-two functional genomic data sets
that interrogate the nascent transcription, Pol II binding, and chromatin architecture using the HCC1806
preclinical model for TNBC24–26. In this study, we focused on the TNBC HCC1806 cell line and have
generated 2 PRO-seq data sets and 20 ChIP-exo data sets (2 biological replicates for each of the following
targets: Pol II, H2A.Z, H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K9ac, H3K27me3, H4K20me1,
and CTCF). ChIP-exo mapping of Pol II, a histone variant, and select histone modifications should
enable other investigators to use these data sets for their own research to further understand the detailed
interplay of Pol II and chromatin in ultra-high resolution in a preclinical model for breast cancer. On
average, 36 million uniquely aligned reads were generated for each PRO-seq and ChIP-exo data set
(Table 1). To facilitate interpretation of these data, we provide detailed information on experimental
design (Fig. 1), sequence quality control analyses (Fig. 2), and biological validation (Fig. 3).

Methods
Tissue culture
The human HCC1806 triple negative breast cancer cell line, basal-like 2 subtype (ATCC) was maintained
at 37 °C in 5% CO2 between 20–80% confluency in RPMI 1640 (Roswell Park Memorial Institute, Gibco
11875-093) containing 10% bovine calf serum (Gibco 16170-078), 1% L-glutamine (Gibco 25030-081),
and 1% Penicillin/Streptomycin (Gibco-15146-122).

PRO-seq library preparation
PRO-seq was performed as previously described7 with isolated nuclei from 25 million cells from two
biological replicates. To enable comparisons to drug treatment experiments, cells were treated with
vehicle (final 0.03% DMSO (dimethyl sulfoxide)) for 4 h prior to harvest.

ChIP-exo library preparation
ChIP-exo was performed as previously described6,20 with chromatin extracted from 50 million cells,
ProteinG MagSepharose resin (GE Healthcare), and 5 ug of antibody directed against RNA polymerase II
(Santa Cruz sc899), H2A.Z (EMD Millipore 07-594), H3K4me3 (Abcam ab8580), H3K4me2 (Abcam
ab7766), H3K4me1 (Abcam ab8895), H3K27ac (Abcam ab4729), H4K9Ac (Abcam ab4441), H3K27me3
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(EMD Millipore 07-449), H4K20me1 (Abcam ab9051), and CTCF (EMD Millipore 07-729). Two
biological replicates were prepared for each ChIP target. To enable future comparisons to drug treatment
experiments, cells were treated with vehicle (final 0.03% DMSO (dimethyl sulfoxide)) for 4 h prior to
harvest. Libraries were sequenced using an Illumina NextSeq500 sequencer as single-end reads 50 or 75
nucleotides in length (Table 1).

Sequence read alignment and quality control
The base call quality for each sequenced read was assessed using the FastQC program (bioinformatics.
babraham.ac.uk/projects/fastqc/) (Fig. 2a and Supp. Figs. 1–3). Sequence reads (fastq files) were aligned to
the human hg19 reference genome build using BWA-MEM algorithm with default parameters27. The
resulting bam files were first sorted using the Samtools Sort function, and then bam index files were
generated using the Samtools Index function28. The purpose of bam index files is to enable viewing of raw
sequencing data in a genome browser. Next, genome-wide read coverage and enrichment were assesses
using deepTOOLS fingerprint plots29 (Fig. 2b and Supp. Figs 4–6).

Biological validation
To estimate variance across biological replicates, the Pearson correlation coefficient for pairwise gene
Reads Per Kilobase of genome per Million reads (RPKM) was computed (Fig. 2c, Supp. Fig. 7) using the

ChIP
target

Antibody Replicate SRA
identification

Read
Length

Total Mapped
Reads

Uniquely Mapped
Reads

Unique Mapping
Rate

PRO-seq 1 SRX4485383 50 46,406,885 35,062,933 76%

2 SRX4485400 75 87,474,762 43,763,320 50%

TOTAL 133,881,647 78,826,253

Pol2 sc899 (Santa Cruz) 1 SRX4485384 50 82,965,774 63,381,472 76%

2 SRX4485397 50 32,051,539 24,838,833 77%

TOTAL 115,017,313 88,220,305

H2A.Z 07-594 (EMD Milipore) 1 SRX4485385 50 9,783,691 6,506,998 67%

2 SRX4485398 50 41,880,546 31,974,125 76%

TOTAL 51,664,237 38,481,123

H3K4me3 ab8580 (Abcam) 1 SRX4485387 50 37,105,094 30,487,398 82%

2 SRX4485404 75 76,560,088 59,872,974 78%

TOTAL 113,665,182 90,360,372

H3K4me2 ab7766 (Abcam) 1 SRX4485388 50 28,077,305 21,915,585 78%

2 SRX4485401 75 74,333,953 58,377,458 79%

TOTAL 102,411,258 80,293,043

H3K4me1 ab8895 (Abcam) 1 SRX4485389 50 43,663,792 32,717,084 75%

2 SRX4485402 50 37,395,250 28,813,014 77%

TOTAL 81,059,042 61,530,098

H3K27Ac ab4729 (Abcam) 1 SRX4485390 50 32,203,255 17,535,368 54%

2 SRX4485395 50 43,865,531 31,734,234 72%

TOTAL 76,068,786 49,269,602

H3K9Ac ab4441 (Abcam) 1 SRX4485392 50 30,684,340 26,874,881 88%

2 SRX4485394 50 16,339,334 14,037,513 86%

TOTAL 47,023,674 40,912,394

H3K27me3 07-449 (EMD Millipore) 1 SRX4485391 50 36,950,654 29,977,079 81%

2 SRX4485396 75 37,579,106 32,496,728 86%

TOTAL 74,529,760 62,473,807

H4K20me1 ab9051 (Abcam) 1 SRX4485399 75 79,587,575 62,260,072 78%

2 SRX4485393 75 44,993,047 36,175,837 80%

TOTAL 124,580,622 98,435,909

CTCF 07-729 (EMD Millipore) 1 SRX4485386 75 65,862,116 48,218,698 73%

2 SRX4485403 75 61,974,400 52,856,699 85%

TOTAL 127,836,516 101,075,397

Table 1. Sequencing read alignment statistics for PRO-seq and ChIP-exo data sets.
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HOMER (Hypergeometric Optimization of Motif EnRichment) suite30. Briefly, bam files were converted
to tag directories using the makeTagDirectory function with the –genome, –checkGC, and –format
options. To quantify and normalize tags within gene body regions to RPKM, the analyzeRepeats function
was used with the –rpkm and –d options (2019SciDataVenters_RPKM.xlsx, Data Citation 1).

bedTOOLS was used to convert files from bam to Bigwig, and then the ChAsE (Chromatin Analysis
and Exploration) suite was used to display the read distribution relative to the TSS from Bigwig files
(Fig. 3a,b, Supp. Fig. 8)33. Raw sequencing tags were binned, smoothed, and RPKM computed using the
deepTOOLS genomeCoverage tool (20 bp bin, 100 bp sliding window)29. Smoothed RPKM signal was
visualized with Integrative Genomics Viewer (IGV) (Fig. 3c)32.

Code availability
Below is a list of software used in this study.

FastQC v0.11.2 (www.bioinformatics.babraham.ac.uk/projects/fastqc/)
27BWA-MEM v0.7.13
28Samtools v1.3.1
30HOMER v4.6
31ChAsE v1.0.11
29deepTOOLS v2.2.4
33bedTOOLS v2.24.0
32IGV v2.3.77.

Data Records
PRO-seq and ChIP-exo bigwig data files from merged replicates were deposited in the NCBI Gene
Expression Omnibus (GEO) (Data Citation 2). GEO linked PRO-seq and ChIP-exo bam data files for
each replicate were deposited in the Sequence Read Archive (SRA) (Data Citation 3). Table 1 contains
sequencing statistics for each data set and linked to its SRA identification number.

Figure 1. Experimental design and overview of ChIP targets. (a) HCC1806 cells were cultured and harvested

for PRO-seq and ChIP-exo. PRO-seq measures nascent transcription. ChIP-exo identifies the exonuclease left

and right borders that flank protein-DNA interactions. (b) Illustration of the genomic context for ChIP targets:

Pol II, H2A.Z, H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K9ac, H3K27me3, H4K20me1, and CTCF.
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Technical Validation
Overview of experimental design
In this study, functional genomic experiments using HCC1806 cells were designed with two primary
goals in mind. First, PRO-seq data sets were generated to specifically measure nascent transcription.
Second, the ChIP targets (Pol II, H2A.Z, H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K9ac,
H3K27me3, H4K20me1, and CTCF) were selected so that Pol II binding and chromatin architecture may
be examined on a genome-scale at high precision (Fig. 1). Histone modifications follow patterns of
enrichment and delineate specific regions in the genome. For example, H3K4me1 and H3K27Ac are
known to be found around distal enhancer regions, along with the histone variant H2A.Z. H3K4me1/2/3
and H3K9Ac are associated with promoter proximal regions, where H3K27ac and H2A.Z are also
present23,34–43. H4K20me1 is critical for proper cell cycle progression and is typically depleted at
promoters, but enriched in the body of genes44. Repressive marks and structural transcription factors,
such as H3K27me3 and CTCF respectively, insulate regions of the genome that are not actively
transcribed35,45,46. Taken together, reanalysis of this collection of data should enable new biological
insights into chromatin dynamics in a pre-clinical breast cancer model. Below, we briefly describe the
rationale and considerations for sequencing data analysis with respect to general read quality, genome
alignment, ChIP enrichment, replicate correlation, and biological validation.

Raw sequence quality control analyses
To assess the quality of the raw sequencing data sets, base call scores were analyzed using the FastQC
program and displayed as a box plot distribution at each base position (Fig. 2a and Supp. Figs. 1–3). The
average base quality score for a majority of the data sets in the present study fell within the high
confidence range (base quality score of 30–40, green region).

Raw sequence reads were aligned to the hg19 build of the human genome. On average, 46 million total
aligned reads were generated for each PRO-seq and ChIP-exo data sets (Table 1). Because of the
ambiguity of reads that align to multiple locations throughout the genome, we only retain uniquely
aligned reads for subsequent analyses. On average, 36 million uniquely aligned reads were obtained per
data set, representing an average unique alignment rate of 76%.

Figure 2. Quality control, enrichment analysis, and reproducibility for PRO-seq and ChIP-exo data.

(a) Box-plot distribution of base quality scores are shown for H2A.Z ChIP-exo replicate 2. A score greater than

30 (green region) indicates a high confidence base call. (b) ChIP enrichment analysis plot that displays the

cumulative percent of total reads found in a given percent of the mappable human genome. No ChIP

enrichment would result in a diagonal trace. (c) Scatter plot correlation analysis for H2A.Z ChIP-exo biological

replicates as measured by the Spearman correlation coefficient R-values (upper left corner).
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Two critical questions for assessing ChIP sequencing data quality are: 1) how much of the genome is
represented by a given experiment? and 2) to what extent did the ChIP assay enrich for specific regions of
the genome? Typically, high genome coverage and strong ChIP enrichment are desirable in ChIP
experiments. To determine genome coverage and ChIP enrichment simultaneously, we used the

Figure 3. Genomic distribution of RPKM normalized signal for PRO-seq and ChIP-exo targets (Pol II,

H2A.Z, H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K9ac, H3K27me3, H4K20me1, and CTCF). (a)

Row-linked heatmaps show RPKM normalized number of reads across a 4 kb genomic interval in 40 bp bins

relative to the TSS. Heatmaps were generated from merged biological replicate pairs for each data set. Regions are

sorted in descending order based on average row tag density for Pol II. Each row represents a gene, with 18,793

genes displayed. Red and blue reflect high and low read densities, respectively. (b) Composite plots below each

heatmap quantify the normalized tag density. The central trace denotes the average tag density for each 40 bp bin

and the orange fill reflects the standard deviation. (c) Genome browser view of PRO-seq and ChIP-exo signal for

the indicated targets in HCC1806 cells shown at the MYC gene. Tag distributions were smoothed and RPKM

normalized using deepTOOLS. Traces were generated from merged biological replicate pairs.
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deepTOOLS suite to perform a fingerprint analysis (Fig. 2b). In the case of H2A.Z ChIP-exo (Fig. 2b), the
fingerprint plot trace intersects the x-axis at 25, indicating 75% genome coverage. In fingerprint plots, a
rightward deflection of the trace indicates the extent of ChIP enrichment. Given a point along the trace
that is the point of intersection from the axes, the corresponding values on the x- and y-axes denote the
percent of genome and the percent of all uniquely aligned reads, respectively. Together, these values
reflect ChIP enrichment.

For example, the H2A.Z ChIP-exo fingerprint trace reveals that 10% of the genome is enriched with
60% of all uniquely aligned reads, suggesting strong enrichment in the H2A.Z ChIP-exo data set (Fig. 2b).
Fingerprint plots for other replicates showed similar patterns of genome coverage and ChIP enrichment
(Supp. Figs 4–6). Theoretically, complete genome coverage with no enrichment would be result in a trace
with a slope equal to one that intersects the origin (eg: whole genome sequencing wherein 50% of the
genome is contains 50% of all aligned reads).

Biological validation
After verifying the quality of the raw sequencing data, we next sought to provide evidence of biological
validity for the data. First, we determined the extent to which biological replicates were reproducible
using correlation scatter plots (Fig. 2c). For each gene, the RPKM was computed using the HOMER suite
(Data Citation 1). Pearson correlation coefficients (R values) were computed for pairwise correlation plots
of gene RPKM across biological replicates. For example, biological replicates for H2A.Z ChIP-exo analysis
displayed an R value of 0.85, indicating high reproducibility (Fig. 2c). Overall, correlation analysis
resulted in an average R-values of 0.86 (Supp. Fig. 7). Because CTCF is typically enriched in intergenic
regions rather than within gene bodies, correlation analysis compared peak RPKM.

Given that certain histone modifications are consistently found at distinct regions of the stereotypical
gene, analyzing global patterns of ChIP signal relative to TSSs is a useful method to assess biological
validation47. For example, it is well established that once Pol II initiates transcription of genes in
metazoans, Pol II moves into a stable paused state 30–50 bp downstream of the TSS. Nascent
transcription profiling with PRO-seq enables quantification of RNA synthesis and largely coincides with
Pol II ChIP-exo density. H3K4me1/2/3 and H3K9Ac are associated with promoter proximal regions,
surrounding the TSS of active genes in combination with H3K27Ac. The histone variant H2A.Z is
consistently incorporated into the + 1 nucleosome of actively transcribed genes. Distal to gene promoters,
H3K4me1 and H3K27Ac have been used as predictive marks of enhancers, which regulate the
transcription of their target genes in a distance and orientation independent manner.

Thus, to examine global patterns of ChIP enrichment, the Chromatin Analysis and Exploration
(ChAsE) heatmap tool was used to align ChIP signal merged from both biological replicates to TSSs (Fig.
3a, sorted by max peak; and Supp. Fig. 8, sorted by max peak position). Quantification of signal density
relative to TSSs is displayed as a composite plot below each heatmap (Fig. 3b). As expected, Pol II was
strongly enriched at the pause site just downstream of the TSS. H2A.Z enrichment at the -1 and + 1
nucleosomes immediately flanked Pol II density. H3K4me2, H3K4me3, and H3K9ac were enriched at the
+ 1 nucleosome as well, but also spread into the body of gene, overlapping the + 1, + 2, and + 3
nucleosome positions. Interestingly, H3K27ac density was similar to H3K9ac but avoided the + 1
nucleosome position. H3K4me1 and H4K20me1 density excluded promoter regions, but were enriched
further downstream into the gene body. In contrast to the other histone modifications and consistent
with its association to gene repression, H3K27me3 was enriched at genes with the least Pol II and PRO-
seq density. Lastly, as expected, gene bodies largely lacked CTCF signal. To examine individual examples
of global patterns, RPKM normalized tracks for PRO-seq and ChIP-exo signal were displayed using the
Integrative Genome Viewer (IGV), and displayed at the MYC gene locus (Fig. 3c). Finally, a comparison
of Pol II ChIP-exo and ChIP-seq signal at promoters (Supp. Fig. 9) shows that Pol II ChIP-exo more
clearly resolves adjacent peaks of Pol II enrichment corresponding to Pol II pausing just after the TSS and
divergent transcription just upstream of the TSS. This is evident both as a genome-wide pattern (Supp.
Fig. 9a,b) and in several anecdotal examples (Supp. Fig. 9c).

Taken together, the data presented in this Data Descriptor represents high quality next generation
sequencing data that are biologically valid, and should be useful to future studies that seek to understand
the interplay of Pol II and chromatin in high resolution on a global scale.
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