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Auxin/indoleacetic acid (Aux/IAA) family genes respond to the hormone auxin, which have been implicated in the regulation of
multiple biological processes. In this study, all 25 Aux/IAA family genes were identified in Tartary buckwheat (Fagopyrum
tataricum) by a reiterative database search and manual annotation. Our study provided comprehensive information of
Aux/IAA family genes in buckwheat, including gene structures, chromosome locations, phylogenetic relationships, and
expression patterns. Aux/IAA family genes were nonuniformly distributed in the buckwheat chromosomes and divided into
seven groups by phylogenetic analysis. Aux/IAA family genes maintained a certain correlation and a certain species-specificity
through evolutionary analysis with Arabidopsis and other grain crops. In addition, all Aux/IAA genes showed a complex
response pattern under treatment of indole-3-acetic acid (IAA). These results provide valuable reference information for
dissecting function and molecular mechanism of Aux/IAA family genes in buckwheat.

1. Introduction

Tartary buckwheat (Fagopyrum tataricum), also named as
bitter buckwheat or kuqiao, is an annual eudicot plant
belonging to the genus Fagopyrum [1]. It is originated in
southwest China and currently grown on western China,
Japan, South Korea, Canada, and Europe, for exhibits strong
abiotic resistance to harsh eco-climatic environments [2, 3].
Buckwheat is considered an important medicinal and edible
food crop, rich in protein, and a balance of essential amino
acids, as well as beneficial phytochemicals. ([4–6]. Flavo-
noids, especially rutin, significantly higher than in other
crops, have antifatigue properties and anti-inflammatory
activity and can be used to treat microangiopathy [7]. The
study on the mechanism of the important metabolites can
effectively promote the use of buckwheat. In addition, study-
ing the resistance mechanism of buckwheat is not only ben-

eficial to the production of buckwheat under stress but also
can get meaningful resistance genes for other crops. Auxin
plays an important role in controlling multitudinous vital
processes [8–11] and stress tolerance ([12–14]. It is signifi-
cant to study the response of buckwheat to hormones.

The classical plant hormones, including auxins, cytoki-
nins, gibberellins, abscisic acid, and ethylene, were discov-
ered several decades ago. Recently, a number of additional
molecules have been identified that might also be classified
as plant hormones. While a considerable amount is known
about the biosynthesis and distribution of these hormones
in plants, the receptors and signal transduction pathways
of plant hormones are only beginning to be unraveled.
Auxin has many roles in plant growth and development. It
mediates elongation of stem and root growth, enlargement
of fruits and tubers, and promotion of cell division, through
regulating cell division, expansion, differentiation, and
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patterning [15, 16]. In an attempt to understand the
molecular mechanism of auxin action, six gene families that
regulating auxin-responsive have been identified and charac-
terized from different species, which including the auxin
response factor (ARF) gene family [17], small auxin-up RNA
(SAUR) gene family [18–20], Gretchenhagen-3 (GH3) gene
family [21, 22], Auxin input carrier (AUX1) gene family
[23], Transport inhibitor response 1 (TIR1) gene family [24],
and auxin/indoleacetic acid (Aux/IAA) gene family [25, 26].

Dynamic spatial and temporal changes in auxin levels
can trigger gene reprogramming precisely and rapidly,
which requires auxin early response genes, such as the Aux/-
IAA, ARF, SAUR, and GH3 families. Among these genes,
Auxin/indole-3-acetic acid (Aux/IAA) family numbers have
identified as short-lived nuclear proteins that represent a
class of primary auxin-responsive genes and play a pivotal
role to perception and signaling of the plant hormone auxin
[27, 28]. At high auxin levels, Aux/IAA proteins can be
ubiquitinated by interacting with TIR1/AFB receptors and
subsequently degraded via the 26S proteasome [29, 30], the
different protein results in distinct auxin-sensing effects in
different tissues and developmental phases [31, 32], thereby
regulating the processes of plant growth and development in
a precise manner.

The first isolated Aux/IAA genes were the PS-IAA4/5
and PS-IAA6 genes from pea [33, 34]. Subsequently, 14
Aux/IAA genes were isolated from Arabidopsis based on
the homologues to the genes from pea [35]. With the advent
of genome sequencing, the IAA/Aux gene family has been
identified in more than 30 plant species by genome-wide
analysis ([36–39]. Over the past two decades, members of
this family have been intensely studied in Arabidopsis and
shown to have distinct functions in plant growth and devel-
opment processes. The mechanism by which the Aux/IAA
gene family responds to auxin stimulation has been effec-
tively analyzed [40]. Aux/IAA genes encode short-lived
nuclear proteins, comprising four highly conserved domains
[41], namely, domains I and II, which are located at
the N-terminus, and domains III and IV located at
the C-terminus. Domain I has the amphiphilic motif
LXLXLX that is associated with ethylene response factors,
can bind to corepressors, and is required for the transcrip-
tional inhibitory function of Aux/IAA proteins [40, 42].
The domain II core sequence VGWPP is the target of Aux/-
IAA protein ubiquitination for degradation [43–45].
Domains III and IV are sites that bind to the auxin response
factor, and their secondary structure can be folded into a
helix-roentle-helix motif. Domain IV may also contribute
to the dimerization. Furthermore, in domains II and IV,
there are generally two nuclear localization signals (NLS)
[46]. In addition, the phosphorylation site of photosensitive
pigments between domains I and II suggests that the
Aux/IAA protein could mediate the auxin and optical
signaling pathways through phosphorylation of the photo-
sensitive pigments [47]. While considerable information
has been obtained about the biosynthesis and distribution
of these hormones in plants, the receptors and signal trans-
duction pathways for plant hormones are only beginning to
be unraveled.

Sequences derived from large-scale sequencing projects
are informative in functional genomics research, providing
an opportunity to scan gene families. Since the first publica-
tion of the buckwheat genome sequence, understanding of
the genome information of buckwheat has been greatly
enhanced [3]. In this study, we identified at least 25 putative
members of buckwheat Aux/IAA genes using a special
Aux/IAA domain hidden Markov model (HMM) of the
whole genome. Therefore, we performed bioinformatics
analyses, including phylogenetic, gene structure, and motif
composition analyses, to determine the chromosomal loca-
tions of the genes. Subsequently, phylogenetic comparisons
with Arabidopsis and other crops were performed. This
study contributes to the clarification of the functions of
Aux/IAA proteins and provides a foundation for further
comparative genomic studies in Tartary buckwheat.

2. Results

2.1. Identification and Annotation of the Aux/IAA Genes in
Tartary Buckwheat. A total of 25 genes (shown in Table 1)
were identified using Basic Local Alignment Search Tool
(BLAST) methods through the conserved sequences gener-
ated from the HMM profile in Pfam using the 261 aa
conserved sequences of Aux/IAA proteins based on the
potential orthologs in Arabidopsis. The genes confirmed to
contain conserved domains of Aux/IAA proteins, and the
transcripts with the lowest E-value of domain examination
were named FtAux/IAA genes. Gene sequence analysis of
the 25 FtAux/IAAs showed that the predicted protein
lengths were 160 and 890 aa, and the CDS sequences varied
in size from 540 bp to 2673 bp. Moreover, the pI (theoretical
isoelectric point) and MW (molecular weight) ranged from
5.4 to 9.15 and 20280.1 kDa to 99377.01 kDa, respectively.

2.2. Chromosomal Locations of FtAux/IAA. The FtAux/IAA
gene sequences were initially mapped onto the Tartary buck-
wheat genome, and all 25 FtAux/IAA genes were separately
mapped onto eight chromosomes. Most FtAux/IAA genes
were observed at the top and bottom arms of the chromo-
somes, and a cluster was distributed on different chromo-
somes (Figure 1). Four genes (16%) were located on Chr. 1,
and three genes on Chr. 2, which comprised 12% of the total
number of genes. Chr. 3 had six FtAux/IAA genes, which was
the highest number in a single chromosome. The lowest pro-
portion of genes (4%) was on the Chr. 4, Chr. 5, and Chr. 8,
containing one gene each. There were four (15%) and five
(20%) genes on Chr. 6 and Chr. 7, respectively. In terms of
distribution, the genes of different families remained rela-
tively regional, with all but a few of the 31 genes in the cluster,
whose number was between two and three decibels. In addi-
tion, the genes FtAux/IAA 01 and FtAux/IAA 02 were
located adjacent to each other on the first chromosome and
showed a tight chain. The same observation was found on
Chr. 2, Chr. 3, Chr. 6, and Chr. 7, where there were two, four,
two, and two closely linked genes, respectively. These data
suggest that the distribution of some FtAux/IAA genes on
the buckwheat genome probably results from either reverse
or direct tandem duplication.
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The genes in the same evolutionary group have a similar
structure and tend to have similar gene functions, which as it
has been shown in other species, such as Arabidopsis and
rice [48]. We analyzed the structure of introns and exons
of the FtAux/IAA gene sequences using the plaza database
(https://bioinformatics.psb.ugent.be/plaza/versions/plaza) of
full-length cDNA (Figure 1). All FtAux/IAAs had different
numbers of exons and introns in the translated region; the
number of introns and exons varied from 1 to 14 and 2 to
15, respectively. Four genes (FtAux/IAA9, FtAux/IAA14,
FtAux/IAA17, and FtAux/IAA23) contained two exons and
one intron. FtAux/IAA8, FtAux/IAA15, and FtAux/IAA22
contained three exons and two introns. Genes with four
exons were FtAux/IAA10, FtAux/IAA13, and FtAux/IAA20.
There were eight genes, namely, FtAux/IAA1, FtAux/IAA4,
FtAux/IAA5, FtAux/IAA12, FtAux/IAA16, FtAux/IAA19,
FtAux/IAA21, and FtAux/IAA24, with five exons. FtAux/-
IAA6 and FtAux/IAA25 had six exons and five introns.
There were three genes (FtAux/IAA2, FtAux/IAA7, and
FtAux/IAA18) containing 14 exons, and FtAux/IAA3 con-
tained the most number of exons. In general, genes of the
FtAux/IAA family showed rich structural variation in buck-
wheat and may be involved in various metabolic regulatory
networks and developmental processes.

2.3. Gene Peptide Sequence and Motif Composition of the
FtAux/IAA Gene Family. The peptide sequences of all 25
FtAux/IAAs are shown in Figure 2; all the results were veri-
fied using DNAMAN. The overall identity of the various
proteins is low, which is similar to those of the Aux/IAA
polypeptides previously determined in other plants. To
examine in detail the domain organization of FtAux/IAA
proteins, multiple sequence alignments of the full-length
protein sequences were performed using the ClustalX pro-
gram. Alignment of the amino acid sequences of FtAux/IAA
revealed four typical highly conserved domains [34].
According to the Pfam outcome of the protein sequences,
most of the genes contained four conserved structures,
except for the missing domain I in the genes FtAux/IAA10
and FtAux/IAA17. In the second domain, many of the vari-
ations were the same in domains II, III, and IV. A pairwise
analysis of the full-length FtAux/IAA protein sequences
indicated that the overall identities ranged from 19% to
69%. However, the amino acid identity within the conserved
domains reached 90%. Domain I contained a leucine-rich
region and was the least conserved among the family
members. The proline-rich domain II was comparatively
more conserved. The classification of all the genes as
Aux/IAA family members was confirmed by constructing a

Table 1: Aux/IAA family in buckwheat.

Gene ID Chromosome CDS (bp) Introns No. of aa pl MW (kDa)

FtPinG0008442000.01.T01 Chr1 1005 5 334 8.07 36303.04

FtPinG0008443000.01.T01 Chr1 2250 13 749 5.4 83729.44

FtPinG0000387700.01.T01 Chr1 1809 14 602 6.03 67736.99

FtPinG0004315700.01.T01 Chr1 678 4 225 6.06 24894.23

FtPinG0005029300.01.T01 Chr2 744 4 247 7.52 26767.1

FtPinG0000809900.01.T01 Chr2 1071 5 356 6.77 38851.25

FtPinG0000807700.01.T01 Chr2 2613 13 870 5.4 96264.2

FtPinG0006568700.01.T01 Chr3 591 2 196 6.63 21774.63

FtPinG0001961200.01.T01 Chr3 558 1 185 6.38 20844.57

FtPinG0007273100.01.T01 Chr3 798 3 265 8.42 29805.87

FtPinG0005142100.01.T01 Chr3 573 2 190 8.29 21405.48

FtPinG0005142700.01.T01 Chr3 621 4 206 5.44 22602.56

FtPinG0004530400.01.T01 Chr3 738 3 245 7.69 27386.98

FtPinG0005535200.01.T01 Chr4 615 1 204 5.98 23337.24

FtPinG0005745300.01.T01 Chr5 540 2 179 5.37 20362.13

FtPinG0007581000.01.T01 Chr6 693 2 230 8.23 25518.44

FtPinG0007581100.01.T01 Chr6 603 1 200 6.81 22823.65

FtPinG0001971700.01.T01 Chr6 2673 13 890 5.66 99377.01

FtPinG0002984800.01.T01 Chr6 915 4 160 7.66 33443.35

FtPinG0002846500.01.T01 Chr7 585 3 194 9.15 21554.57

FtPinG0007414500.01.T01 Chr7 696 4 231 6.62 25370.15

FtPinG0007414000.01.T01 Chr7 543 2 180 6.75 20280.1

FtPinG0007012600.01.T01 Chr7 552 1 183 5.58 20986.88

FtPinG0009157200.01.T01 Chr7 702 4 233 6.2 25555.18

FtPinG0009368700.01.T01 Chr8 1077 5 358 8.4 38717.69

The information listed in Table 1 was obtained from Tartary Buckwheat Genome Project. CDS: coding sequence; aa: amino acids; pl: isoelectric point; MW:
molecular weight.
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phylogenetic tree based on domain III and IV amino acid
sequences of the 25 FtAux/IAA and two representative pro-
teins. Amino acid sequence analysis yielded the same results
as the gene structure analysis and the same results as other
gene family analyses.

2.4. Gene Structure and Motif Composition of the FtAux/IAA
Gene Family. To study the evolutionary relationship of the
buckwheat Aux/IAA family gene, a phylogenetic tree was
constructed using the amino acid sequences of the FtAux/-
IAA genes. The sequences of buckwheat Aux/IAA proteins
were further analyzed using the online software MEME to
understand the diversity and evolutionary relationships.
Figure 3 shows that FtAux/IAA proteins are grouped into
seven distinct clades, and each group contains a different
number, between one and five, of members of the FtAux/-

IAA family. In group I, there were four members of FtAux/-
IAA14, FtAux/IAA23, FtAux/IAA09, and FtAux/IAA08.
Group II contained three members: FtAux/IAA22, FtAux/-
IAA15, and FtAux/IAA17. The five most common genes
were FtAux/IAA12, FtAux/IAA04, FtAux/IAA24, FtAux/-
IAA16, and FtAux/IAA21. In group IV, four members
named FtAux/IAA05, FtAux/IAA25, FtAux/IAA01, and
FtAux/IAA06 were on the branch. In group V, there was
only one gene, FtAux/IAA11. FtAux/IAA10, FtAux/IAA19,
FtAux/IAA13, and FtAux/IAA20 comprised group VI, and
four genes (FtAux/IAA03, FtAux/IAA18, FtAux/IAA02,
and FtAux/IAA07) comprised group VII. In all groups,
seven sister gene pairs were found to have a relatively close
relationship with other FtAux/IAA family members in the
evolutionary tree. These results indicate that the functions
of the FtAux/IAA genes in different groups are diverse.
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Figure 1: Distribution and gene structure of FtAux/IAA genes among eight chromosomes. Constrictions on the chromosomes (vertical bar)
indicate the position of genes. The chromosome numbers and sizes (Mb) are indicated at the top of each bar. The UTR and exon-intron
organization of the FtAux/IAA genes. The UTRs and exons and introns are represented by boxes and lines, respectively.
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The motifs with similar functional domain distributions
were highly conserved in family genes, although there were
significant differences (Figure 3(a)). In general, these genes
can be divided into two categories, with 20 genes carrying
three identical motifs and the gene FtAux/IAA containing
four motifs other than motif six, in addition to the same
sequence of motif 5-2-1. In addition, FtAux/IAA02, FtAux/-
IAA03, FtAux/IAA07, and FtAux/IAA18 contained nine
motifs, 6-9-4-3-7-10-8-2-1. These results are similar to those
reported in a previous study, suggesting that these motifs
may contribute to the specific functions of these genes
[49]. Gene domains with different functions are shown in
Figure 3(b), with 14 genes containing only the Aux/IAA
domain and seven genes containing only the herpes BLLF
1 superfamily domain and all the genes belonging in groups

I to VI. The FtAux/IAA03, FtAux/IAA18, and FtAux/IAA02
genes in group VII had three domains: B3, Auxin-resp, and
Aux/IAA superfamily; gene FtAux/IAA07 had four domains
in the order B3, Auxin-resp, herpes BLLF 1 superfamily, and
Aux/IAA superfamily.

2.5. Phylogenetic Analysis of the FtAux/IAA Genes in Maize,
Arabidopsis, Rice, and Sorghum. In order to analyze the phy-
logenetic organization, we performed a phylogenetic analysis
of 25 buckwheat Aux/IAAs and 36 Arabidopsis Aux/IAAs
by generating a phylogenetic tree based on the neighbor-
joining (NJ) method using MEGA [50]. Based on their phy-
logenetic relationships, we divided these Aux/IAAs into 10
groups, designated as groups I to X (Figure 4(a)). The family
genes showed stronger clustering between buckwheat and

Figure 2: Multiple sequence alignment of the full-length FtAux/IAA proteins obtained with DNAMAN. Conserved domains of FtAux/IAA
proteins are underlined. The gene ID is mentioned on the left of each sequence and amino acid position on the right of each sequence.
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Arabidopsis, and the nodes at the base of the larger clades
were not well supported, but the nodes at the base of many
smaller clades were robust. Buckwheat genes were concen-
trated in groups I, VI, VII, VIII, IX, and X. Genes in group
I were all buckwheat, and groups II, III, IV, and V contained
only Arabidopsis genes. In the other groups, the genes were
distributed in both buckwheat and Arabidopsis. Phyloge-
netic analysis was performed using 30 rice (blue), 28 maize
(green), 26 sorghum (gray), and 25 buckwheat (red) genes.
Interestingly, using phylogenetic analyses, some Aux/IAA

genes were suggested to form species-specific clades or sub-
clades after the divergence of these species in this study.

2.6. The Expression of Aux/IAA Gene Family in Tartary
Buckwheat. To examine the physiological roles of the
FtAux/IAA genes and their response to auxin, we examined
their expression in the roots, stems, and leaves at the
two-leaf stage. The results of quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) show-
ing the expression of FtAux/IAA family genes in Tartary
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buckwheat in different tissues are presented in Figure 5.
Overall, all genes except FtAux/IAA09 and FtAux/IAA23
were expressed in all three tissues. In the leaves, the expres-
sion levels of different genes varied greatly, and the relative
expression levels ranged from 1 to 3. Among all genes,
FtAux/IAA02 had the highest expression levels. However,
the expression levels of most genes in the leaves were signif-
icantly lower than those in the stem and root tissues. The
expression levels of the genes FtAux/IAA01, FtAux/IAA03,
FtAux/IAA07, FtAux/IAA13, FtAux/IAA18, FtAux/IAA20,
and FtAux/IAA25 in stem tissue were lower than those in
the leaf tissue, although different genes had higher expression
levels in the stem tissue. FtAux/IAA09 and FtAux/IAA23
genes were not expressed, FtAux/IAA11 and FtAux/IAA13
genes were slightly expressed, and the remaining genes were
primarily expressed in the roots. The tissue expression results
showed that 18 genes expressed at high levels in the stem, and
four genes, FtAux/IAA08, FtAux/IAA09, FtAux/IAA11, and
FtAux/IAA14, had significantly higher levels of expression
in the stem than in the leaf and root. FtAux/IAA02 had
higher expression in the leaves than in the roots and stems.
FtAux/IAA01, FtAux/IAA03, FtAux/IAA07, FtAux/IAA13,
FtAux/IAA20, and FtAux/IAA25 genes had the highest
expression in the roots. In addition, some genes showed sig-
nificantly higher tissue expression than other member genes.
The relatively high expression in different tissues suggests
that the genes might play a role in seedling plant growth.

Expression levels were always in the middle of the upper
levels of different tissue expressions. These results are similar
to those of previous functional studies on soybean [51] and
Arabidopsis thaliana [52].

As an important gene family that responds to auxin
signaling, Aux/IAA is the most essential gene family that is
regulated by exogenous IAA. The expression patterns of
FtAux/IAAs in plantlets after IAA treatment were investi-
gated using qRT-PCR. After treatment with 10μmol L–1

IAA for 3, 6, 9, and 12h, expression of Aux/IAA genes was
consistently upregulated compared to that of the control
(Figure 6). The expression levels of all 25 FtAux/IAAs dis-
played a similar pattern in response to IAA treatment, and
the expression levels were upregulated in all tissues. In addi-
tion, we found that the expression levels of FtAux/IAAs
showed different degrees of increase under short-time IAA
treatment, which is similar to the results of previous studies
[53]. After IAA treatment for 1 day, 2 days, and 3 days, expres-
sion of genes showed diversity in trends, and the expression of
genes such as FtAux/IAA04, FtAux/IAA07, FtAux/IAA14,
and FtAux/IAA24 was significantly upregulated over time.
However, expression of the genes FtAux/IAA01, FtAux/-
IAA02, FtAux/IAA06, FtAux/IAA10, FtAux/IAA12, FtAux/-
IAA16, FtAux/IAA17, FtAux/IAA21, and FtAux/IAA25 was
first upregulated and then downregulated. None of these was
downregulated upon long-term treatment. In general, differ-
ent genes showed different trends upon treatment for longer
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Figure 5: Expression of FtAux/IAA genes in different tissues from Tartary buckwheat. qRT-PCR was used to assess FtAux/IAA gene
transcript levels in total RNA samples extracted from the leaves, stems, and roots of seeding plants at the two-leaf stage.
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periods of time. The expression of some genes was also differ-
ent in the different tissues.

3. Discussion

Auxin signaling is a key signaling pathway in many plant
biological processes, such as growth, organogenesis, and
response to a variety of environmental changes [54–56].
Among the six auxin-related gene families (Aux/IAA, ARF,
GH3, SUAR, AUX1, and TIR1), Aux/IAA is very important,
representing a class of primary auxin-responsive genes,
which are rapidly induced by auxin [57]. Therefore, studies
on the function of the Aux/IAA gene family are beneficial
for the analysis of plant development, stress resistance, and
other biological processes, as a gene family directly respond-
ing to IAA treatment [52, 58, 59]. In recent years, a large
number of Aux/IAA genes that regulate auxin signal trans-
duction and auxin degradation have been identified in vari-
ous plants ([25, 39, 52, 60] by the comprehensive application
of physiological, genetic, molecular, and biochemical
methods [15]. The complete genomic sequence has opened

new avenues for understanding the plant genome and iden-
tifying the gene family [3] in Tartary buckwheat.

The comprehensive identification and subsequent char-
acterization of the Tartary buckwheat Aux/IAA gene family
members described here provide new insights into the
potential role of some Aux/IAA genes in mediating plant
responses to auxin, their putative function, and their mode
of action. In this study, 25 FtAux/IAA genes were identified,
and the number of FtAux/IAA members from Tartary buck-
wheat was found to be comparable to that of Arabidopsis
[52, 61], rice [25], maize [39], tomato [36], cucumber [37],
hybrid aspen [60], chickpea, and soybean [62, 63], although
their genome sizes are quite different. These results indicate
that the Aux/IAA gene family exists widely in the plant
kingdom. Phylogenetic comparison of Aux/IAA proteins
between Tartary buckwheat and Arabidopsis thaliana
showed that there were genes similar to Arabidopsis thaliana
genes in all but two branches. In addition, Tartary buck-
wheat had two independent branches, which had no corre-
sponding Arabidopsis thaliana genes. The same trends
were observed in the comparisons with rice, maize, sor-
ghum, and other species. As an illustration of the wide
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diversification of Aux/IAA proteins in higher plants, the two
clades are also expanded in Populus trichocarpa [38] and
Solanum lycopersicum [36]. This diversification is also
reflected by the important structural variations found within
the Aux/IAA proteins. This partially accounts for the Aux/-
IAA conservation in these species during the evolutionary
process ([25, 39, 64, 65]. Twelve of the 25 FtAux/IAA loci
formed six sister pairs in the NJ reconstructions, four of
which had strong bootstrap support, indicating that Aux/-
IAA genes in Tartary buckwheat may play nonredundant
roles during plant development. Considering that their
expression pattern is apparently restricted to narrow devel-
opmental stages and their atypical long-lived features, the
buckwheat noncanonical Aux/IAA proteins may have a spe-
cific function in mediating auxin responses during well-
defined plant developmental events.

Gene structure analysis showed that the genes of this
family contained 2–15 exons and 1–14 introns. Eighteen of
the genes had UTR regions at either ends of the genes, and
another seven lacked UTRs at either ends. According to
motif structure, family genes can be divided into two groups.
One group had more than nine motif structures and showed
consistent sequences; however, there were differences in
location and gene length. In the other group, 21 genes
showed 3–4 motifs. These conserved motifs comprised sev-
eral major conserved structures in the Aux/IAA family, such
as the Aux/IAA superfamily, Aux/IAA, and Herpes BLLF1
segments. These results show that a large proportion of Aux/-
IAA genes was produced by gene repeat events, such as seg-
mental, tandem, or both, in the course of evolution [62, 66],
and the expanded Aux/IAA gene members in land plants cre-
ate functional redundancy and may be associated with new
functions to adapt to environmental changes [63, 67, 68].

Gene expression patterns in Tartary buckwheat seedlings
and responses to short- and long-term hormonal stimuli
were identified using qRT-PCR analysis, providing new
insights regarding the potential role in mediating plant
responses to auxin. Transcript abundance in particular
organs at a given time is an important prerequisite for the
subsequent elucidation of the corresponding proteins
required for proper execution of developmental, metabolic,
and signaling processes. Virtually, all 25 FtAux/IAA genes
were expressed in all organs/tissues analyzed, but their
expression levels varied considerably. These genes can be
effectively differentially expressed in different tissues. There
were higher expression levels in the stem, and the expression
of these genes tended to be upregulated after IAA treatment.
The expression of FtAux/IAAs suggests that these genes could
be involved in the regulation of buckwheat growth and devel-
opment. This study will pave the way for further functional
verification of the Aux/IAA gene family in buckwheat.

4. Materials and Methods

4.1. Plant Material and Hormone Treatments. Tartary buck-
wheat (Fagopyrum tataricum) seeds were sterilized, rinsed
with sterile water, and sown in an improved Hoagland rec-
ipe. Plants were grown under standard greenhouse condi-
tions, and the conditions in the culture chamber rooms

were set as follows: 14 h day/10 h night cycle, 25/20°C
day/night temperatures, 80% relative humidity, and
250mmolm-2 s-1 intense luminosity. The roots, stems,
and leaves at the seeding period were collected for expres-
sion analysis of the tissue-specific buckwheat auxin
response gene family. Seeds with the same growth were
treated with 10μmol L-1 IAA for 24h in Hoagland liquid
medium. All tissues and organs were stored at -80°C for
RNA extraction.

4.2. Identification of the Auxin Response Gene Family in
Buckwheat. The Tartary buckwheat genome was down-
loaded from the Tartary Buckwheat Genome Project (TBGP;
available online: http://www.mbkbase.org/Pinku1/). The
FtAux/IAA gene family members were identified using a
BLASTp search. The FtAux/IAA genes were searched using
two BLASTp methods, and the maximum number of
Aux/IAA genes was determined. First, all known Arabidop-
sis Aux/IAA genes were used to query the initial protein on
the TBGP website, and the candidate genes were identified
using a BLASTp search at a score value of ≥100 and e −
value ≤ 1 × 10 − 10. Second, the HMM file corresponding to
the Aux/IAA domain (PF02519) was downloaded from the
Pfam protein family database (http://pfam.sanger.ac.uk/).
The Aux/IAA genes were retrieved from the Tartary buck-
wheat genomic database using HMMER3.0. The default
parameter cutoffwas set to 0.01. The existence of the Aux/IAA
core sequences was verified with the PFAM and SMART pro-
grams, and the HMMER results of all candidate genes that
might contain the Aux/IAA domain were further verified.
The sequence length, molecular weight, isoelectric point, and
subcellular localization of the Aux/IAA proteins were deter-
mined using the ExPasy website (available online: http://web
.expasy.org/protparam/) ([69, 70].

4.3. Chromosomal Distribution Analysis of Aux/IAA Family
Genes. All FtAux/IAA genes were mapped to the chromo-
somes from the physical location information obtained from
the Tartary buckwheat genomic database using Circos [71].
Multiple collinear scanning toolkits (MCScanX) were used
to analyze gene duplication events using default parameters
[72]. To reveal the synteny relationship of orthologous
Aux/IAA genes between Tartary buckwheat and other spe-
cies selected, the syntenic analysis maps were constructed
using the Dual Systeny Plotter software (available online:
https://github.com/CJ-Chen/TBtools) [73]. The substitution
of nonsynonymous (Ka) and synonymous (Ks) for each
repeated Aux/IAA gene was calculated using the KaKs_Cal-
culator 2.0 [74].

4.4. Gene Structure and Motif Characterization of
FtAux/IAA Genes. Multiple sequence alignments of FtAux/-
IAAs were performed using DNAMAN through the highly
conserved domains [24], to explore the structure of FtAux/-
IAA genes using the default parameter Clustal W [70]. In
addition, the structural differences between FtAux/IAA pro-
teins were predicted by comparing several conserved motif
sequences with MEME Suite [75]. Motifs were evaluated
using the Gene Structure Display Server (GSDS; http://gsds
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.cbi.pku.edu.cn/) with the following parameters: the opti-
mum motif width was 6–200, and the maximum number
of motifs was 20 [76].

4.5. Analysis of Phylogenetic Relationships. Phylogenetic
analysis of all complete FtAux/IAA protein sequences was
performed using the MEGA 7 program by the NJ method
[69]. The phylogenetic trees were divided into different
groups according to the conserved domain, and a bootstrap
test was carried out with 1000 iterations [77, 78]. The same
methods were applied to analyze the evolutionary relation-
ships between buckwheat and Arabidopsis. In addition, the
evolutionary relationships between buckwheat and rice,
maize, and sorghum were analyzed using MEGA 7.

4.6. RNA Isolation and qRT-PCR Analysis. Total RNA was
extracted using a total RNA extraction kit (Sangon, Shanghai,
China, SK1321), and genomic DNA was removed with
RNase-free DNase I treatment [12]. The first cDNA strand
was generated by reverse transcription usingM-MLV (TakaRa,
Dalian, China), according to the manufacturer’s protocol.

The gene expression level of the housekeeping gene his-
tone 3 (GenBank ID: HM628903) of Tartary buckwheat was
used as the endogenous control [79]. The gene-specific
primers are summarized in Table 2, and the qRT-PCR reac-
tions were performed in a total volume of 20μL (2μL diluted
cDNA, 1μL each forward and reverse primer, 10μL SYBR
Premix Ex Taq, and 6μL ddH2O). The qPCR program was
as follows: 95°C for 3min, followed by 30 cycles of 95°C for
15 s, 60°C for 30 s, and 72°C for 20 s. Gene expression was cal-
culated using the 2-ΔΔc method [80], and the mean of three
biological replicates indicated their relative expression levels.
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Table 2: Primer sequences of FtAux/IAA genes for qRT-PCR.

Name Primer (5′->3′)

FtAux/IAA 01
ATGGTGCTCCATATCTGCGG//
CAATAGCGTCAGCGCCTTTC

FtAux/IAA 02
GAGCAAAGCGTCAGCAAACA//
CTGGGTACCGTGAACTGCTT

FtAux/IAA 03
CCCTATTTCCTGCCAAGCCA//
GGTCAACACCGAACAAACGG

FtAux/IAA 04
AGAAAAACGGCGATGTCCCT//
CGAGTCCTATGGCTTCCGAC

FtAux/IAA 05
TGAGAACGATGTGGGAACCG//
ACATCTTCTCCAAAGCCGCA

FtAux/IAA 06
GACTGGATGCTTGTGGGTGA//
AATGGCGTCAGAGCCTTTCA

FtAux/IAA 07
ATTGCCCCAAGTAGGAAGCC//
CCACGTGTTGTCGTGCAAAT

FtAux/IAA 08
GCTGTCCAAGAAGAACCCGA//
CCATCCCACAATCTGTGCCT

FtAux/IAA 09
CGGGTTAATGGATCCGGGTT//
ACGAACATCTCCCACGGAAC

FtAux/IAA 10
CGCAGCCTCCAAATCAATCG//
AGACGCGCAACCTCTTTACA

FtAux/IAA 11
GGCCTCCAGTTTGCTCGTAT//
CGAACGCTTTCGGTTCTTCC

FtAux/IAA 12
AGACAGAGCTCACTCTCGGT//
GGCGACCAGAGAGGTTCAAA

FtAux/IAA 13
GCCGGTGAACTCATTCCGTA//
AGCCGCTTTACGGTCGATAG

FtAux/IAA 14
CCAACCGACGACCACAAGTA//
TATAGGATTGAACCGGCGGC

FtAux/IAA 15
TTCAATGGGGTCAACCTCCG//
ACGAGCATCCAATCTCCGTC

FtAux/IAA 16
GGCCACCAGTGAGGTCATAC//
ATCGCCGTCTTTGTCTTCGT

FtAux/IAA 17
GCACTTCTTCCGATGCAAGC//
TGGTGGCCATCCAACAACTT

FtAux/IAA 18
CTCAGGGTCACAGTGAGCAG//
AGTCGGACTAGCCCTTGGAT

FtAux/IAA 19
GAAGCTCCAAGCACCAATGC//
TTTGAGCGGCAAGAAGACCT

FtAux/IAA 20
GTCACTGAACTCGCAAGGGA//
CTCGCTTCCACATGCAAAGG

FtAux/IAA 21
AGAGGCTTCTCTGAGACCGT//
TTCTCCGCGACCATTGACTC

FtAux/IAA 22
ACAACGTTGATGCCTCCGAA//
ATAAGGTGCTCCGTCCATGC

FtAux/IAA 23
AAAAGACCCGAGAGCGATCC//
CCCACGGAACATCTCCTACG

FtAux/IAA 24
GCCGTCCAAAAGAGTTGCAG//
GACCAACATCCAATCCCCGT

FtAux/IAA 25
TTAAGGCTTGGACTGCCTGG//
ATGGCGTCGGAACCTTTCAT
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