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Abstract

Malaria remains one of the world’s greatest killers and a vaccine is urgently required. There are no established correlates of
protection against malaria either for natural immunity to the disease or for immunity conferred by candidate malaria
vaccines. The RTS,S/AS02A vaccine offers significant partial efficacy against malaria. mRNA expression of five key cytokines
interferon-gamma (IFN-c), monokine induced by gamma (MIG), interleukin-10 (IL-10), transforming growth factor-b (TGF-b)
and forkhead box P3 (FoxP3) in peripheral blood mononuclear cells were measured by real-time RT-PCR before and after
vaccination with RTS,S/AS02A and Modified Vaccinia virus Ankara encoding the circumsporozoite protein (MVA-CS) in
healthy malaria-naı̈ve adult volunteers. The only significant change was in IFN-c mRNA expression, which was increased
seven days after vaccination (P = 0.04). Expression of MIG mRNA seven days after vaccination correlated inversely with time
to detection of parasites by blood film in an experimental sporozoite challenge (r = 0.94 P = 0.005). An inverse relationship
was seen between both TGF-b1 and IL-10 mRNA at baseline and the anti-circumsporozoite IgG antibody response
(r = 20.644 P = 0.022 and r = 20.554 P = 0.031 respectively). This study demonstrates the potential for MIG expression as a
correlate of protection against malaria. Baseline levels of the regulatory cytokines TGF-b and IL-10 inversely correlated with
antibody levels post vaccination and warrant further studies to improve understanding of individual differences in response
to vaccination.

Citation: Dunachie SJ, Berthoud T, Keating SM, Hill AVS, Fletcher HA (2010) MIG and the Regulatory Cytokines IL-10 and TGF-b1 Correlate with Malaria Vaccine
Immunogenicity and Efficacy. PLoS ONE 5(9): e12557. doi:10.1371/journal.pone.0012557

Editor: Aric Gregson, University of California Los Angeles, United States of America

Received February 17, 2010; Accepted July 13, 2010; Published September 3, 2010

Copyright: � 2010 Dunachie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by funding from the Wellcome Trust, the UK Medical Research Council, the PATH Malaria Vaccine Initiative and an NIHR award to the Oxford
Biomedical Research Centre. AVSH is a Wellcome Trust Principal Research Fellow and SJD was an MRC Clinical Fellow when most of this work was performed. SJD
is now an Academic Clinical Lecturer at Oxford University Clinical Academic Graduate School (OUCAGS@medsci.ox.ac.uk). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: susie.dunachie@ndm.ox.ac.uk

Introduction

A vaccine for malaria is urgently required, but clear correlates of

immunity against malaria have not been established. A better

understanding of immune markers induced by candidate malaria

vaccines would greatly enhance vaccine development, immunogenic-

ity monitoring and estimation of vaccine efficacy in the field. Neither

IFN-c secretion, nor antibody levels correlate consistently with

protection from malaria [1]. Many studies of T-cell effector function

in mice [2], malaria-exposed humans [3] and vaccinated malaria-

naı̈ve populations [4] have underlined the complexity and diversity of

T-cell immunity. Antibodies, CD8+ T cells, CD4+ T cells, IFN-c, IL-

12 and nitric oxide (NO) have all been implicated as critical effectors

in protection against pre-erythrocytic stage malaria [5]. There is

increasing evidence that, in addition to antibodies, protection from

blood-stage malaria is determined by the balance of pro and anti-

inflammatory immune responses induced by the parasite [3,6–9].

The only candidate vaccine to demonstrate reproducible

efficacy in the field is RTS,S, a pre-erythrocytic stage vaccine

based on the P. falciparum circumsporozoite (CS) protein and

administered in either the proprietary adjuvant AS02A (RTS,S/

AS02A), or more recently in adjuvant AS01E (RTS,S/AS01E).

RTS,S/AS02A induces strong IgG antibody responses to the

NANP repeat region of the circumsporozoite antigen, as well as

some CD4+ T-cell responses [4,10]. This vaccine has been shown

to confer protection against clinical malaria in a significant

proportion of healthy non-immune U.S. adults in challenge studies

[11], and partial protection in field studies [12–15] More recently

a phase IIb trial of RTS,S administered in the adjuvant AS01E in

Kenyan children aged 5–17 months reported an efficacy against

clinical malaria of 53% [16] for eight months of follow-up and

phase III trials are underway across Africa.

A clinical trial conducted in the UK [17] aimed to enhance the

immunogenicity of RTS,S/AS02A alone by combining it in a

prime-boost strategy with MVA that encoded the circumspor-

ozoite (CS) protein. T-cell responses as measured by IFN-c ex vivo

ELISPOT assays were induced, but the responses were low to

moderate, with heterologous boosting yielding only small incre-

ments in T-cell immunogenicity and no enhancement in antibody

responses. No increase in protection against sporozoite challenge

compared to RTS,S/AS02A alone was seen [16]. Nevertheless, as

a total of four volunteers, two from each arm of the study,

developed sterile protection this trial provided an opportunity to

monitor responses to the circumsporozoite antigen before and

after vaccination with RTS,S/AS02A in an effort to identify

immune correlates of protection.
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Our group has previously reported an association between the

up-regulation of TGF-b1, FoxP3 and the generation of Treg cells

along with faster rates of parasitic growth in subjects infected with

P. falciparum [8]. We have also demonstrated that MIG (CXCL9),

as a marker of bioactive IFN-c, is useful for measuring vaccine

induced pro-inflammatory immune responses [18] in line with a

previous report [19].We hypothesised that levels of anti-inflam-

matory and pro-inflammatory cytokines may be associated with

vaccine efficacy and we have used real time RT-PCR to monitor

changes in TGF-b1, FoxP3, IL-10, IFN-c and MIG in malaria-

naı̈ve adults receiving the candidate malaria vaccines RTS,S/

AS02A and MVA-CS in a clinical trial. Although the number of

subjects included in the clinical trial with RTS,S/AS02A and

MVA-CS was small, such exploratory studies with real time RT-

PCR may help to guide the selection of immune markers for

analysis in larger efficacy trials.

Results

Vaccine induced changes in gene expression and
correlation with protection from malaria challenge

In this trial subjects received two doses of the RTS,S/AS02A (R

vaccine) vaccine (R vaccine) (GSK Biologicals, Rixensart, Belgium)

and one dose of MVA-CS (M vaccine) (Oxford University,

Oxford, UK). 28 days after the final immunisation the efficacy of

the vaccine schedule (either MRR or RMM) was assessed in twelve

of the volunteers by experimental sporozoite challenge.

Gene expression studies were performed using cryopreserved

samples from subjects before and after vaccination (Day 0, the day

of first vaccination, and 7 and 28 days after the final vaccination).

For each cytokine studied expression levels relative to the

housekeeping gene HPRT were determined for both CS

stimulated (Figure 1) and unstimulated PBMCs (Figure 2), and

Figure 1. The Expression of Cytokines in CS-stimulated Cells Before and After Vaccination. Expression of IFN-c, MIG, TGF-b1, FoxP3 and
IL-10 was measured by real-time RT-PCR in total PBMCs following 12 hour culture with the vaccine antigen CS in subjects who received vaccination
with RTS,S/AS02A and MVA-CS. Results are expressed as copy number relative to the housekeeping gene HPRT. Median values (9 subjects) are shown.
Vac+7 = seven days after the final vaccination, Vac+28 = 28 days after the final vaccination, each subject received two doses of RTS,S/AS02A and one
dose of MVA-CS. A) IFN-g mRNA, B) MIG mRNA, C) TGF-b1 mRNA, D) FoxP3 mRNA, E) IL-10 mRNA and F) Correlation of MIG mRNA expression at day 7
with days to parasitemia following sporozoite challenge, n = 6–12.
doi:10.1371/journal.pone.0012557.g001
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the fold change in expression level in the CS-stimulated cells

compared to the unstimulated cells at each timepoint determined

(Table 1).

In the CS stimulated PBMC the only gene with a significant

median increase in expression following vaccination was IFN-c,

P = 0.04 (Figure 1A). MIG, FoxP3 and IL-10 were non-significantly

Figure 2. The Expression of Cytokines in Unstimulated Cells Before and After Vaccination. Expression of IFN-c, MIG, TGF-b1, FoxP3 and
IL-10 was measured by real-time RT-PCR in total PBMCs following 12 hour culture in media only in subjects who received vaccination with RTS,S/
AS02A and MVA-CS. Results are expressed as copy number relative to the housekeeping gene HPRT. Median values (6–12 subjects) are shown.
Vac+7 = seven days after the final vaccination, Vac+28 = 28 days after the final vaccination, each subject received two doses of RTS,S/AS02A and one
dose of MVA-CS. A) IFN-g mRNA, B) MIG mRNA, C) TGF-b1 mRNA, D) FoxP3 mRNA, E) IL-10 mRNA and F) Correlation of MIG mRNA expression at day 7
with days to parasitemia following sporozoite challenge.
doi:10.1371/journal.pone.0012557.g002

Table 1. Foldchange of Gene Expression at Each Timepoint in CS-Stimulated Cells Compared to Unstimulated Cells.

Day 0 Vac+7 Vac+28

IFN-c median foldchange (range) 0.9 (0.4–1.8) n = 12 2.7 (1.1–29.7) n = 12 1.5 (0.8–3.7) n = 9

FoxP3 median foldchange (range) 0.8 (0.6–1.5) n = 12 1.5 (0.7–2.5) n = 9 0.9 (0.7–3.3) n = 10

MIG median foldchange (range) 3.4 (0.2–7.7) n = 12 7.9 (0.6–25.4) n = 9 1.4 (0.3–11.2) n = 10

IL-10 median foldchange (range) 0.8 (0.2–2.6) n = 11 0.6 (0.1–1.8) n = 8 (0.6–2.0) n = 11

TGF-b1 median foldchange (range) 1.1 (0.5–1.8) n = 12 (0.0–1.8) n = 11 1.1 (0.8–2.2) n = 12

Day 0 = baseline prior to vaccination.
Vac+7 = seven days after the final vaccination.
Vac+28 = 28 days after the final vaccination.
doi:10.1371/journal.pone.0012557.t001
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increased at the 7 day post vaccination time point (Figure 1B, D,

and E) and TGF-b1 appeared unchanged (Figure 1C). In the

unstimulated PBMC there was no significant change in the median

expression of any gene studied (Figure 2). We have previously shown

that in this clinical trial neither IFN-c, measured by ex vivo

ELISPOT, nor anti-CS IgG antibodies correlated with protection

against malaria in a sporozoite challenge [17]. In our challenge

studies volunteers are closely followed and daily blood films are

taken for 21 days following sporozoite challenge when sterile

protection is assumed. We are therefore able to identify the day

upon which a challenged volunteer becomes blood film positive and

to assess whether the vaccine group have a delay in the development

of detectable parasitemia when compared to the control group. As

we follow volunteers for a maximum of 21 days, volunteers with

sterile protection are assigned a delay to parasitemia of 21 days for

statistical analysis. In the current study, When mRNA data was

examined for correlation with delay to parasitemia, we found that

MIG mRNA in unstimulated PBMC at the 7 day post vaccination

time point correlated with protection from sporozoite challenge

(r = 0.94 P = 0.005, Figure 2F). A similar trend was seen in CS

stimulated PBMC, although this did not reach statistical significance

(r = .794 P = .059, Figure 1F).

The gene with the greatest fold change increase in expression

both before and following vaccination was MIG, followed by IFN-c
then FoxP3 (Table 1). There was no fold increase in expression of

TGF-b1 or IL-10. The fold change in expression of none of these

cytokines showed any correlation with protection against malaria in

the sporozoite challenge.

Correlation of gene expression with IFN-c ex vivo
ELISPOT and anti-CS IgG antibody responses

There was no correlation of the day 7 IFN-c ELISPOT response

with MIG mRNA expression in either CS stimulated or

unstimulated PBMC and no correlation of IFN-c ELISPOT with

protection from malaria. None of the cytokines measured by RT-

PCR in CS stimulated PBMC correlated with the IFN-c ELISPOT.

There was an inverse relationship between TGF-b1 mRNA in

unstimulated PBMC at baseline and the anti-CS IgG antibody

response measured on the day of malaria challenge r = 20.644

P = 0.022 (Figure 3A). TGF-b1 mRNA at day 7 also correlated

Figure 3. Inverse Correlation between Anti-inflammatory Cytokines and Antibody Response on the Day of Malaria Challenge. The
anti-CS IgG antibody response on the day of malaria challenge induced by vaccination with RTS,S and MVA-CS inversely correlates with the anti-
inflammatory cytokines TGF-b1 and IL-10 measured in unstimulated PBMC. A) TGF-b1 at baseline inversely correlates with anti-CS IgG measured on
day of challenge r = 20.644 P = 0.022. B) TGF-b1 at day 7 inversely correlates with anti-CS IgG measured on day of challenge, r = 20.670 P = 0.009. C)
IL-10 mRNA at baseline inversely correlates with anti-CS IgG measured on day of challenge r = 20.554 P = 0.031. D) IL-10 mRNA at day 28 inversely
correlates with anti-CS IgG measured on day of challenge r = 20.762 P = 0.005. The volunteers with sterile protection are indicated by open circles
and triangles indicate volunteers who did not enter the challenge study. Correlations were performed using Spearman’s two-tailed test, n = 9–12.
doi:10.1371/journal.pone.0012557.g003
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with anti-CS IgG antibodies on the day of malaria challenge,

r = 20.670 P = 0.009 (Figure 3B). An inverse relationship was also

seen for IL-10 at baseline and anti-CS IgG antibody on the day of

challenge in unstimulated PBMC r = 20.554 P = 0.031

(Figure 3C), and similarly for IL-10 at day 28 and anti-CS IgG,

r = 2.762 P = .005 (Figure 3D).

Correlation between MIG and pro- and anti-inflammatory
cytokine mRNA expression

As MIG mRNA was associated with protection from malaria we

searched for correlations between MIG mRNA and the remaining

cytokines in our data set. In the CS stimulated PBMC the

expression of IFN-c mRNA correlated with the expression of MIG

mRNA, r = 0.851 P = 0.004 (Figure 4A). For this analysis samples

were available from only two of the four volunteers with sterile

protection. Both of the volunteers with sterile protection had a

higher proportion of MIG mRNA compared to IFN-c mRNA.

In the unstimulated PBMC the only cytokine to correlate with

MIG expression was IL-10. There was an inverse relationship

between the expression of IL-10 at baseline and MIG at baseline

(Figure 4B), day 7 (Figure 4C) and day 28 (Figure 4D). At the day

7 timepoint (Figure 4C) both of the volunteers with sterile

protection had a higher proportion of MIG mRNA when

compared to IL-10 mRNA. Although the numbers are small

these results indicate that MIG expression may be influenced by

both IFN-c and IL-10 and that high MIG expression may be a

marker of sterile protection.

Correlation of IL-10 with FoxP3 and TGF-b1 mRNA
expression

Although in this study there were insufficient cells to confirm the

presence of regulatory T cells by flow cytometry analysis and cell

depletion studies we were able to look for associations between the

anti-inflammatory cytokines IL-10 and TGF-b1 and the regula-

tory T cell transcription factor, FoxP3. IL-10 expression correlated

with FoxP3 expression in unstimulated cells in all time points

tested (Figure 5A, B and C). IL-10 expression also correlated with

TGF-b1 at day 28 following vaccination with RTS,S and

MVA-CS.

Discussion

Malaria vaccine development is at an exciting stage with both

antibody-targeted and T cell-targeted pre-erythrocytic vaccines

showing partial protection in humans [20]. However, frustratingly

the most effective vaccine candidate RTS,S still only shows about

50% efficacy in the most successful phase IIa efficacy trials [21],

and varying levels of protection in IIb field trials [16]. A better

understanding of how some vaccine recipients are better protected

than others could be crucial to developing a higher efficacy

vaccine. Real time RT-PCR is an emerging method for measuring

both pro-inflammatory and anti-inflammatory immune responses

in humans and shows real potential for the monitoring of vaccine

trials where cell numbers are limited and immune responses are

often low. Using real time RT-PCR to monitor changes in gene

Figure 4. The Correlation of MIG mRNA with Pro- and Anti-inflammatory Cytokines. A) In CS stimulated PBMC the expression of MIG
mRNA at day 7 correlated with the expression of IFN-g mRNA at day 7 r = 0.851 P = 0.004. In unstimulated PBMC IL-10 mRNA at baseline inversely
correlated with B) baseline MIG mRNA r = 20.497 P = 0.05. C) Day 7 MIG mRNA, r = 20.787 P = 0.006. D) Day 28 MIG mRNA, r = 20.657 P = 0.02. The
volunteers with sterile protection are indicated by open circles and triangles indicate volunteers who did not enter the challenge study. Correlations
were performed using Spearman’s test, n = 9–12.
doi:10.1371/journal.pone.0012557.g004
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expression in stored samples from volunteers vaccinated with

RTS,S/AS02A and MVA-CS we have found that mRNA

expression of pro and anti-inflammatory cytokine responses in

unstimulated PBMC are associated with vaccine immunogenicity

and protection from malaria in a sporozoite challenge model. The

associations we have found are strongest in unstimulated PBMC

and in the timepoint seven days following vaccination.

Previous studies have reported MIG detection to be a more

sensitive measure of immunogenicity than the measurement IFN-c
by ELISPOT, ELISA or flow cytometry [19,22,23]. MIG has also

been shown to be important for protection from Trypanosoma cruzi

infection in mice [24] and is associated with disease severity in

human tuberculosis [25]. MIG is induced by IFN-c and mediated

via the JAK-STAT signalling pathway [26] and is therefore a

marker of bioactive IFN-c and functional JAK-STAT signalling.

In CS stimulated PBMC there was a correlation between MIG

and IFN-c mRNA, although in the two volunteers with sterile

protection there was more MIG relative to IFN-c. This may

indicate either higher levels of bioactive IFN-c or greater JAK-

STAT signalling in the protected volunteers when compared to

the rest of the challenge group. IL-10 is an anti-inflammatory

cytokine with the primary function of regulating immune

responses by activation of the macrophage JAK-STAT pathway

[27]. Activation of this pathway through the IFN-c receptor is pro-

inflammatory and leads to the expression of IFN-c induced genes,

including MIG, whereas activation through the IL-10 receptor

leads to immune regulation. We saw a reciprocal relationship

between the expression of MIG and IL-10 mRNA at all time

points studied and have found that MIG expression 7 days

following final vaccination correlated inversely with time to

detection of parasites by blood film in a human sporozoite

challenge model. The correlation of MIG with delay to blood film

positivity supports the hypothesis that T cells and bioavailable

IFN-c immune responses are important in host defence against the

parasite, with previous studies demonstrating the correlation of

MIG and bioavailable IFN-c in humans as detected by RT-PCR

and flow cytometry [18,19].

Although in our study anti-CS IgG antibodies did not correlate

with protection from disease, immune protection from malaria is

complex and T cells as well as antibodies have been shown to be

important [1,5,21,28,29]. There was no evidence that the addition

of MVA-CS to the RTS,S/AS02A regimen enhanced the efficacy

of RTS,S/AS02A. RTS,S/AS02A is a known powerful inducer of

an antibody response [30,31] and analysis of the immune

responses from subjects in this study showed a strong antibody

response and only a modest T-cell responses [17]. We have found

that both IL-10 and TGF-b1 mRNA inversely correlate with the

levels of anti-CS IgG antibodies following vaccination with RTS,S

Figure 5. The Correlation of IL-10 expression with FoxP3 and TGFb1 mRNA Expression. For the A) baseline (r = 0.557 P = 0.030), b) 7 days
following vaccination (r = 0.695 P = 0.019) and C) 28 days following vaccination time points (r = 0.554 P = 0.048) IL-10mRNA expression correlates with
FoxP3 expression. At the 28 days time point D) IL-10 mRNA also correlates with TGF-b1 mRNA expression (r = 0.642 P = 0.023). The volunteers with
sterile protection are indicated by open circles and triangles indicate volunteers who did not enter the challenge study. Correlations were performed
using Spearman’s one-sided test, n = 9–12.
doi:10.1371/journal.pone.0012557.g005
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and MVA-CS. TGF-b1 is a peptide with pleiotropic effects on

inflammation and immunoregulation and is a potent inhibitor of B

cell maturation, proliferation, IgM and IgG production in the

mouse [32,33] and has also been shown to inhibit IgG production

in humans [34,35]. TGF-b1 has also been demonstrated to play a

key role in the induction and maintenance of peripheral regulatory

T cells in humans [36–38]. The inverse relationship found

between TGF-b1 levels and antibody response on day of challenge

is of interest. Exposure to enteric bacteria is likely to result in the

development of regulatory lymphocytes as proposed in the hygiene

hypothesis [39] and children with food allergy have reduced TGF-

b+ T-cells in the duodenal mucosa [40]. There is also evidence of

a strong genetic contribution to circulating TGF-b1 levels [41].

There is a wide variation in TGF-b levels within and between

populations, for example levels of duodenal TGF-b+cells in rural

Gambian infants are up to ten times higher than in UK controls

[42]. We hypothesise that levels of TGF-b may be related to

immune responses to vaccination. In a murine model of malaria a

relationship between response to vaccination, gut parasite

infestation and TGF-b1 levels has been reported [43]. Parallel

studies in our laboratory have demonstrated down-regulation of

TGF-b1 and increased IFN-c ELISPOT responses following

boosting of BCG vaccinated subjects with the novel tuberculosis

vaccine MVA-85A [44]. Due to limited cell numbers we were

unable to confirm if regulatory T cells were influencing the vaccine

induced immune response or protection from disease.

Although protection induced by vaccination with RTS,S is

partial it remains the best performing candidate malaria vaccine in

the world. There has been no immune correlate of protection

identified for RTS,S to date although both antibodies, and

possibly also T cells, are thought to be important for protection

[10–13,45]. Our results support the view that a functional IFN-c
immune response is important for protection induced by RTS,S

although whether this would work by a direct effect of cellular

immunity at the liver-stage or by modulating the quality of

protective antibodies induced remains unclear. The role of the

MVA-CS vaccine cannot be fully ascertained in this study. MVA-

CS neither induced nor boosted antibody responses and there was

no evidence of improvement in efficacy compared to RTS,S used

alone in other studies [17]. IL-10 and TGF-b1 may play a dual

role in the attenuation of both protective T cell and IgG antibody

responses induced by vaccination [46], and suggest pathways for

the next generation of vaccines to target to enhance responses.

This study was based on mRNA measurement in relatively

small cell numbers, giving potential for development of monitoring

assays using fingerprick blood samples suitable for field trials. An

immune correlate of protection would greatly facilitate the

development and testing of new malaria vaccines. Our findings,

in such a small dataset of twelve subjects, need to be confirmed in

a larger challenge study cohort and in a field setting and more

detailed analysis of the pathways involved is required. In particular

the impact of baseline IL-10 and TGF-beta levels on the induction

of antibodies in African populations could be assessed by

monitoring volunteer samples collected prior to vaccination with

RTS,S and other candidate malaria vaccines. The feasibility of

mRNA profiling to assess immune responses in an African vaccine

trial has been demonstrated [47]. Factors affecting the develop-

ment of protective immune responses following vaccination with

RTS,S/AS02A are of considerable interest to the vaccine

community as further elucidation of these mechanisms could hold

the key to understanding why some individuals acquire effective

immunity after vaccination to life-threatening infections while

others remain devastatingly vulnerable, opening doors to design-

ing the next generation of highly effective malaria vaccines.

Materials and Methods

Clinical Trial
Eighteen healthy adult malaria-naı̈ve volunteers in Oxford, UK

participated in a vaccine trial as described previously [17]. The

study received ethical approval from the Oxfordshire Research

Ethics Committee and the Human Subjects’ Protection Commit-

tee at PATH (Program for Appropriate Technology in Health) in

Seattle, WA, USA. All participants gave written, informed consent

prior to participation. The trial was conducted according to Good

Clinical Practice guidelines, was externally monitored, and was

approved by the UK Medicines and Healthcare products

Regulatory Agency (MHRA). Subjects received two doses of the

RTS,S/AS02A vaccine (GSK Biologicals, Rixensart, Belgium)

and one dose of MVA-CS (Oxford University, Oxford, UK). 28

days after the final immunisation the efficacy of the vaccine

schedule was assessed in twelve of the volunteers by experimental

sporozoite challenge, whereby the volunteers were exposed to the

bites of five laboratory-reared mosquitoes infected with the

chloroquine-sensitive 3D7 strain of Plasmodium falciparum. In this

study four out of twelve vaccinated subjects demonstrated

complete (sterile) protection against clinical malaria (no parasit-

emia detectable within 21 days of challenge). For the twelve

subjects as a group number of days to parasitemia was used to

assess partial or complete efficacy against malaria.

Antibody monitoring
Anti-CS repeat region antibody concentrations were measured

in serum at the Walter Reed Army Institute of Research by Dr. V.

Ann Stewart by specific IgG ELISA to a recombinant protein

containing 32 P. falciparum derived tetrapeptide repeat sequences

MDP-[(NANP)15NDVP]2LR [48] and expressed as GMCs

(Geometric Mean Concentrations) in mg/ml. Antibodies were

measured at baseline, 28 days after each vaccine dose, and three

months after the malaria challenge.

PBMC separation
Peripheral blood mononuclear cells (PBMC) were isolated by

density gradient, using Lymphoprep (Axis-Shield, Oslo, Norway),

resuspended in culture media comprising RPMI 1640 (Sigma-

Aldrich, Poole, Dorset, UK) with 10% heat-inactivated normal human

AB sera (UK Blood Bank Service, National Health Service, UK), 1000 U/

ml penicillin-streptomycin and 2 mM L-glutamine (both Invitrogen

Life Technologies, Paisley, UK) and stored in 10% DMSO-Foetal Calf

Serum (both Sigma-Aldrich, Poole, Dorset, UK) in liquid nitrogen until

required.

Cell stimulation for gene expression studies
Cells for gene expression studies by RT-PCR were stimulated

with one peptide pool (consisting of 61 separate 15-mer peptides

designed to span the CS protein) for 12 hours overnight at a

concentration of 2 mg/ml. For each sample, 1 million cells in

100 ml were plated out in each of two wells of a 96-well U-

bottomed plate and incubated at 37uC for 5 hours prior to

stimulation. This 5 hour resting period prior to stimulation had

been shown to produce optimal results in terms of RNA yield and

antigen-specific responses. 100 ml of either peptide pool or media

was then added to each well to commence the 12 hour stimulation

at 37uC.

RNA extraction and RT-PCR
RNA extraction and reverse transcription of RNA into cDNA

were performed using the RNeasy Mini-kit and the Omniscript kit

(both Qiagen, Crawley, West Sussex, UK) according to the manufac-

Malaria Vaccine Immunogenicity
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turer’s instructions. Quantitative real time Reverse Transcription

PCR was performed using the Lightcycler 2.0 (Roche, Basel,

Switzerland) carousel-based system using Quantitect SYBR Green

Mastermix (Qiagen, Crawley, West Sussex, UK). All reactions were

performed in duplicate with two negative controls per run.

Samples were run using the Lightcycler programme, with a 15-

minute incubation at 95uC followed by 45 thermal cycles,

consisting of a 15-second denaturation step at 94uC, then a 20-

second annealing step at 60uC, and a 20-second extension step at

72uC after which fluorescence was read. Data were produced as

amplification plots with fluorescence plotted against number of

cycles. The CT (threshold cycle) value for each sample was

calculated with the threshold set during the log-linear phase of

amplification using the ‘‘Fit points’’ method, where the noiseband

for each experiment was manually adjusted to 0.1 fluorescence

units. A melt curve programme was performed at the end of each

to check the melting points of the products detected for

identification and specificity.

The primer sequences used were TGF-b1 F: 59-GGACAT-

CAACGGGTTCACTA-39, TGF-b1 R: 59-CCGGTTCATGC-

CATGAATGG-39, IFN-c F: 59-ATTCGGTAACTGACTTG-

AATGTCC-39, IFN-c R: 59-CTCTTCGACCTCGAAACAGC-

39, MIG F: 59-GCATCATCTTGCTGGTTCTGATTGG-39,

MIG R: 59-GCGACCCTTTCTCACTACTGGGGT-39, FoxP3

F: 59-CACTTACAGGCACTCCTCCAGG-39, FoxP3 R: 59-

CCACCGTTGAGAGCTGGTGCAT-39, IL-10 F: 59-GGCCG-

TGGAGCAGGT-39 and IL-10 R: 59-CACTCATGG CTTTG-

TAGATGCC-39.

Statistical Analysis
The number of subjects included in this exploratory study is

small. Significant findings, while useful for observing trends in the

data, are prone to error and must be confirmed in larger studies.

Real time RT-PCR data were interpreted using standard curves

derived for each gene. To normalise for cell number, the copy

number for each gene of interest was expressed as a ratio relative

to the copy number of the housekeeping gene HPRT for that

sample. As the data were not normally distributed non-parametric

tests were used. For analysis of difference between two related

samples Wilcoxon’s signed rank test for significance was used. For

testing of significance of correlations the two-tailed Spearman’s

Rank test was used unless otherwise stated. A P value of less than

0.05 was considered significant. The data was represented

graphically using GraphPad Prism version 4 software to plot

best-fit linear regression lines.
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