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ABSTRACT 

The mineralocorticoid receptor ( MR) is a nuclear transcription factor that plays a critical role in regulating fluid, 
electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease ( CKD) and heart 
failure ( HF) , MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, 
and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and 
pro-fibrotic pathways. It is widely expressed in various cell types throughout the body, including the gastrointestinal 
tract, heart, brain, kidneys, immune cells, and vasculature. Animal studies suggest that MR activation induces oxidative 
stress in the kidneys and mediates renal inflammation and fibrosis. Immune cell-specific deletion of MR has shown 

protection against cardiac fibrosis, indicating the MR’s role in pathological remodeling. In vascular smooth muscle cells, 
the MR regulates vascular tone and vasoconstriction. 
Mineralocorticoid receptor antagonists ( MRAs) can be categorized based on their chemical structure as either steroidal 
or nonsteroidal. Steroidal MRAs ( sMRA) , such as spironolactone and eplerenone, have demonstrated cardiovascular 
benefits but are limited by hyperkalemia, gynecomastia, and sexual dysfunction. Nonsteroidal MRAs ( nsMRA) have 
shown promise in preclinical studies and clinical trials. They offer a promising alternative by effectively blocking MR 
without hormone-like effects, potentially improving cardiovascular and renal disease management. 
Further education is necessary regarding the significance of MRA utilization in CKD and HF, balancing benefits with the 
risk of hyperkalemia. This risk could be mitigated by combining MRAs with potassium-binding agents. Studies are 
underway to explore the synergistic effects between nsMRAs and other agents, such as SGLT-2i inhibitors and 
Glucagon-like peptide-1 agonists, to optimize cardiorenal outcomes. 
Overall, MR overactivation remains a significant therapeutic target, with nsMRAs showing promise as pivotal therapies 
in CKD and HF management. This review highlights the evolving landscape of MR-targeted therapies, their molecular 
mechanisms, and clinical implications in cardiorenal diseases. 
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NTRODUCTION 

he mineralocorticoid receptor ( MR) is a ligand-activated nu- 
lear transcription factor present in various cell types through- 
ut the body, including the kidney, heart, and the blood vessels 
upplying them [1 ]. The MR plays a crucial role in regulating fluid 
nd electrolytes and, in turn, affects blood pressure and hemo- 
ynamic stability [2 ]. However, in conditions such as chronic kid- 
ey disease ( CKD) and heart failure ( HF) , the MR is overactivated,
nducing increased salt and water retention and the expression 
f genes involved in inflammatory and fibrotic pathways, caus- 
ng organ injury [1 ]. 

MR nonligand activation refers to the activation of the MR by 
echanisms other than its traditional ligands, which are aldos- 

erone and cortisol. This can occur through various factors such 
s oxidative stress, protein–protein interactions with other cel- 
ular proteins, or changes in the cellular environment such as 
igh blood sugar or sodium levels [3 ]. 
Since their discovery in the 1950s, the use of mineralocor- 

icoid receptor antagonists ( MRAs) , despite having documented 
ardiovascular mortality benefits, has been limited by side ef- 
ects such as hyperkalemia and breast complaints [4 , 5 ]. In this 
eview article, we aim to discuss the clinical implications of MR 
veractivation as well as provide an overview of the safety and 
fficacy of MRA use in CKD. 

ATHOPHYSIOLOGY OF MR OVERACTIVATION 

he MR belongs to steroid hormonal receptors, intracellular in 
ature, found typically in a transcriptionally inactive state in 
he cytoplasm [2 ]. On activation, these receptors undergo confor- 
ational changes, allowing translocation to the nucleus where 

hey interact with cell-specific co-regulator proteins [2 ]. These 
roteins play a vital role in transcriptional regulation, epige- 
etics, and post-transcriptional modification. The MR, a ligand- 
ctivated nuclear transcription factor, is expressed in diverse cell 
ypes throughout the body, including the gastrointestinal tract,
eart, brain, kidneys, immune cells, and vasculature [6 ]. The MR 
emonstrates similar affinities for various endogenous steroids 
uch as progesterone, cortisol, and aldosterone. 

Epithelial tissues expressing 11 β-HSD2 convert cortisol into 
R-inactive metabolites, cortisone, making aldosterone the pri- 
ary ligand in these tissues [2 , 7 ]. However, in other cell 

ypes lacking 11 β-HSD2, such as macrophages and cardiomy- 
cytes, cortisol may play a crucial role in regulating MR activity,
hich could be a therapeutic target not addressed by current 
enin–angiotensin–aldosterone system-modulating agents such 
s Angiotensin-converting enzyme inhibitors or Angiotensin II 
eceptor blockers [2 ]. 

It is now acknowledged that mechanisms independent of al- 
osterone can activate the MR, and the MR’s role in disease pro- 
ression extends beyond its traditional impact on salt and fluid 
omeostasis. The MR is implicated in metabolic, proinflamma- 
ory, and pro-fibrotic pathways. MR activation in non-epithelial 
ells revealed a proinflammatory and pro-fibrotic effect, result- 
ng in structural changes, including cardiac and vascular remod- 
ling, endothelial dysfunction, proteinuria, and kidney injury [2 ,
 –11 ]. Conditions characterized by an increase in either aldos- 
erone release, or reactive-oxygen species ( ROS) production can 
ead to an excessive activation of extra-renal MRs or what is 
nown as MR overactivation [12 ]. This overactivation contributes 
o the creation of a proinflammatory environment marked by 
he release of cytokines such as TNF- α, IL-1 β, and IL-6, along with
hemokines [12 ] ( Fig. 1 ) . 
idney 

vidence from animal models suggests that MR activation in- 
uces oxidative stress in the kidney and serves as a central 
ediator of renal inflammation and fibrosis [8 , 13 –16 ]. This is
videnced by DNA damage, increased nicotinamide adenine din- 
cleotide phosphate ( NADPH) oxidase activity, and ROS genera- 
ion in the kidney [17 ]. MR function assessed in tissue-specific 
nockout or via overexpression of the MR reveals differences in 
R function between epithelial and non-epithelial cells [2 , 18 ].
ithin renal epithelial cells, MR activation showed salt retention 
nd fluid retention, while knockout models showed salt wasting 
n the setting of decreased epithelial sodium channel ( ENaC) ac- 
ivity [18 –20 ]. MR knockouts in myeloid and macrophage cells 
ave shown a decrease in renal injury and, thus, proteinuria.
ncreased sodium reabsorption and potassium excretion in the 
ldosterone-sensitive distal nephron of the kidney result in in- 
reasing blood volume and blood pressure, leading to hyperten- 
ion [21 , 22 ]. Hypertension can cause damage to the kidneys,
eart, and blood vessels and increase the risk of myocardial in- 
arction, stroke, and HF. In addition, hypokalemia can lead to 
ymptoms such as fatigue, weakness, cramps, constipation, pal- 
itations, or numbness and can impair insulin secretion and 
lucose metabolism through the ATP-sensitive potassium ( KATP ) 
hannel in islet cells, leading to hyperglycemia and diabetes [23 ,
4 ]. 

In rats with unilateral nephrectomy, aldosterone administra- 
ion induces renal fibrosis characterized by increased expression 
f TGF- β, collagen, and connective tissue growth factor, lead- 
ng to medullary and cortical fibrosis [25 ]. Also, aldosterone af- 
ects plasminogen activator inhibitor-1 production, contribut- 
ng to glomerulosclerosis [26 ]. In renal fibroblasts expressing 
Rs, aldosterone stimulates extracellular signal-regulated ki- 
ase ( ERK) 1/2 phosphorylation and mRNA levels of collagens I,
II, and IV, promoting collagen synthesis [27 ]. Additionally, aldos- 
erone activates c-Jun, N-terminal kinase, and activator protein 
 in fibroblasts, inducing fibronectin synthesis, growth-factor 
eceptor activation, and phosphoinositide 3-kinase/mitogen- 
ctivated protein kinase ( PI3K/MAPK) signaling, promoting fi- 
roblast proliferation and kidney fibrosis [28 , 29 ]. 

eart 

he first indication of MR activation promoting cardiac fibro- 
is dates back to 1958 when the administration of a mineralo- 
orticoid agent resulted in cardiac necrosis and subsequent fi- 
rotic scarring in dogs [30 ]. Furthermore, studies on immune cell 
R activity revealed that macrophage-specific deletion of MR 

n mice protected against deoxycorticosterone/salt-induced car- 
iac fibrosis [31 ]. This has been further verified with the knock- 
ut of the MR in cardiomyocytes and T cells in mice that showed
mprovement of post-MI ventricular remodeling [32 ]. Reduction 
n cardiac remodeling, fibrosis, and contractility dysfunction has 
een linked to MR knockouts in cardiomyocytes [33 –35 ]. Thus,
R antagonism in cardiomyocytes and myeloid cells may be as- 
ociated with a decrease in inflammatory and fibrotic processes,
athological remodeling, and organ dysfunction [31 , 36 –38 ]. 

essels 

he MR expressed in vascular smooth muscle cells plays a vi- 
al role in regulating vascular tone and, thus, vasoconstriction 
39 , 40 ]. Deletion of the MR in vascular smooth muscle cells re-
uces ROS production, which prevents sulfenic modification on 
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Figure 1. Pathophysiology of MR overactivation. 
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with MI. 
he endothelin-B receptor, impairing its signaling and inactivat- 
ng endothelial nitric oxide synthase [39 ]. MR activation in iso-
ated smooth muscle cells promotes the activation of NADPH 

xidase, causing various detrimental effects, including vascular 
alcification, fibrosis, stiffness, and inflammation by increasing 
ellular expression of several genes ( collagen I and III, alkaline 
hosphatase, parathyroid hormone receptor-2, and bone mor- 
hogenetic protein-2) [41 , 42 ]. 

HERAPEUTIC TARGETING OF MR 

VERACTIVATION 

teroidal MRA ( sMRA) 

teroidal MRAs represent a critical therapeutic option in man- 
ging conditions associated with MR overactivation. These 
ompounds, which include well-known drugs such as spirono- 
actone and eplerenone, function by antagonizing the effects of 
ldosterone, thereby mitigating the pathological activation of 
R. However, the clinical utility of sMRAs has been tempered 
y their side-effect profiles, limiting their use in broader patient
opulations ( Table 1 ) [43 , 44 ]. 
Spironolactone introduced 27 years before cloning the MR,

as the first sMRA launched [4 ]. Spironolactone was initially re-
eased as a potassium-sparing diuretic to counteract potassium 

oss induced by loop diuretics with a blood pressure-controlling 
apability [4 ]. The second sMRA, eplerenone, was discovered 
ecades later during the period when the role of aldosterone and
R in anti-fibrosis and cardiac remodeling was being explored

4 ]. Eplerenone exhibits greater selectivity than spironolactone
ut has ∼40-fold lower in vitro affinity for the MR than spirono-
actone [45 ]. 

Compelling evidence supporting the therapeutic efficacy of 
MRAs in patients with chronic heart failure with reduced ejec-
ion fraction ( HFrEF) is derived from the RALES [46 ], EPHESUS
47 ], and EMPASIS-HF [48 ] trials. The RALES trial showed that
pironolactone reduced mortality by 30% ( relative risk 0.70, 95%
I 0.60–0.82, P < .001) in patients with severe HF. Similarly, EPH-
SUS trial indicated a 15% mortality reduction ( relative risk 0.85,
5% CI 0.75–0.96, P = .008) with eplerenone in patients with acute
yocardial infarction complicated by left ventricular dysfunc- 

ion. The EMPHASIS-HF trial further supported these findings,
howing a 37% reduction ( hazard ratio 0.63, 95% CI 0.54–0.74,
 < .001) in the primary composite outcome of cardiovascular
eath or heart failure hospitalization with eplerenone in pa-
ients with systolic heart failure and mild symptoms. 

However, the REMINDER [49 ] trial, which assessed eplerenone
dministration during the acute phase of ST-elevation myocar- 
ial infarction in patients without evidence of HF, and the ALBA-
ROSS [50 ] trial, which investigated a single intravenous bolus of
otassium followed by oral spironolactone for 6 months in pa-
ients with acute MI, did not demonstrate a clear benefit of early
MRA use when added to standard care for patients admitted
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Table 1: Summary of RCTs on steroidal MRA in cardiovascular and renal disease. 

Trial Drug name Aim of the study Study results Side effect 

RALES Spironolactone To determine the effect on mortality 
and morbidity in patients with severe 
heart failure 

37% reduction in 
mortality and 
hospitalizations 

gynecomastia, impo- 
tence/hyperkalemia 

ALBATROSS Spironolactone Investigate the clinical effects of a 
rapid and prolonged MRA regimen 
initiated early after the onset of any 
type of MI 

The study failed to show 

the benefit of early MRA 

use in addition to 
standard therapy in 
patients admitted for MI 

not specified 

TOPCAT Spironolactone To assess the effectiveness in patients 
with HFpEF 

No significant 
difference in primary 
outcomes 

hyperkalemia, 
increased serum 

creatinine 
EPHESUS Eplerenone To evaluate the efficacy of eplerenone 

post-AMI in patients with HF and 
systolic LV dysfunction 

Reduced overall 
mortality and CV 
mortality or 
hospitalization 

hyperkalemia 

EMPHASIS-HF Eplerenone To assess the effect on cardiovascular 
outcomes in patients with mildly 
symptomatic LV systolic dysfunction 

Significant 
improvements in 
all-causes mortality, CV 
mortality, all-cause 
hospitalization, and HF 
hospitalization 

hyperkalemia 

REMINDER Eplerenone Assess the impact of early eplerenone 
treatment on cardiovascular 
outcomes in patients with acute 
STEMI without known heart failure 

Improved outcomes 
when added to standard 
therapy within 24 hours 
of MI symptoms 
without HF or low 

ejection fraction 

non-significant 

ALCHEMIST Spironolactone To compare spironolactone to placebo 
in time to onset of the first incident of 
the composite endpoint of nonfatal 
MI, ACS, hospitalization for HF, 
nonfatal stroke, or CV death 

No reduction of the 
primary composite 
endpoint but a potential 
reduction in the risk of 
HF hospitalization 

 ـــــــــــ

SPIRRIT-HFpEF Spironolactone To determine whether treatment with 
Spironolactone combined with usual 
care improves outcomes in HFpEF 
patients 

ongoing ـــــــــــ 

SPIRIT-HF Spironolactone To compare Spironolactone to Placebo 
in reducing the rate of the composite 
endpoint of recurrent heart failure 
hospitalizations and cardiovascular 
death in symptomatic HF patients 

ongoing ـــــــــــ 

ACHIEVE Spironolactone To determine whether spironolactone 
reduces death or hospitalization for 
HF and is well tolerated in patients 
that require dialysis 

ongoing ـــــــــــ 

AMI: acute myocardial infarction, HFpEF: heart failure with preserved ejection fraction, LV: left ventricle, MI: myocardial infarction, STEMI: ST-elevation myocardial 
infarction. 
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Despite spironolactone not showing a significant benefit 
n the primary composite endpoint of the TOPCAT 51 trial,
ubsequent analyses revealed notable regional variation in 
vent rates and drug adherence, leading to different treatment 
ffects and a significant reduction in HF hospitalization as well 
s in primary outcome in North/South American group ( HR 0.82,
5% CI 0.69–0.98, P = .026) [51 , 52 ]. Two ongoing studies that 
re currently recruiting, SPIRRIT-HFpEF [53 ] and SPIRIT-HF [54 ],
re exploring the effects of spironolactone in HF patients. The 
PIRRIT-HFpEF [53 ] trial is a registry-based prospective random- 
zed clinical trial involving patients from the Swedish Heart Fail- 
re Registry and the USA, focusing on cardiovascular death or 
ime to HF hospitalization. The SPIRIT-HF [54 ] study, funded by 
he German Centre for Cardiovascular Research, is investigating 
pironolactone’s impact on recurrent HF hospitalization and car- 
iovascular death in symptomatic patients with HF and mid- 
ange or preserved ejection fraction across several European 
ountries. 

There are two large studies in end-stage kidney disease 
 ESKD) patients will clarify safety and efficacy of spironolac- 
one use in this patient population. The ALdosterone antagonist 
hronic HEModialysis Interventional Survival Trial ( ALCHEMIST,
CT01848639) , which has concluded and aims to measure 
 primary composite endpoint of time to onset of the first 
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Table 2: Summary of RCTs on nonsteroidal MRA in cardiovascular and renal disease. 

Trial Drug name Aim of the study Study results Main side effect 

BLOCK-CKD Ocedurenone 
( KBP-5074) 

Assess the efficacy and safety of 
Ocedurenone in patients with 
moderate-to-severe CKD with 
uncontrolled or resistant 
hypertension 

Significant reduction of SBP in 
patients with CKD and 
uncontrolled hypertension 

hyperkalemia 

ESAX-HTN Esaxerenone 
( CS-3150) 

Evaluate antihypertensive effect and 
safety of Esaxerenone compared to 
Eplerenone in patients with essential 
hypertension 

Esaxerenone 5 mg/day showed 
superior antihypertensive 
activity to Eplerenone 
50 mg/day 

hyperkalemia 

ESAX-DN Esaxerenone 
( CS-3150) 

Evaluate efficacy and safety of 
different doses of Esaxerenone 
compared to placebo in T2D patients 
with microalbuminuria 

Higher UACR remission rate 
and significant reduction in 
UACR 

hyperkalemia 

FIDELIO-DKD Finerenone Assess Finerenone efficacy and safety 
in reducing the progression of kidney 
disease, as measured by the 
composite endpoint of time to first 
occurrence of kidney failure, a 
sustained decrease of eGFR ≥40% 

from baseline over at least 4 weeks, or 
renal death 

Reduced risk of CKD 

progression and CV events in 
patients with T2D and CKD 

hyperkalemia 

FIGARO-DKD Finerenone Composite of death from CV causes, 
nonfatal MI, nonfatal stroke, or HF 
hospitalization 

Improved CV outcomes in 
patients with T2D and CKD 

hyperkalemia 

MIRACLE Balcinrenone 
( AZD9977) 

Evaluate the efficacy and safety of 
balcinrenone in combination with 
dapagliflozin on UACR 

No significant reduction in 
UACR in patients treated with 
balcinrenone plus 
dapagliflozin compared with 
dapagliflozin plus placebo 

dose-dependent 
hyperkalemia 

FINEARTS-HF Finerenone Evaluate efficacy and safety in 
reducing CV death and HF events in 
patients with preserved ejection 
fraction ≥40% 

Significantly reduced the 
composite of cardiovascular 
death and total ( first and 
recurrent) heart failure events 
compared to placebo 

hyperkalemia 

MI: myocardial infarction, SBP: systolic blood pressure. 
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ncident of nonfatal MI, acute coronary syndrome ( ACS) , hospi- 
alization for HF, nonfatal stroke, or cardiovascular ( CV) death 
55 ]. The preliminary results presented at the American Society
f Nephrology Kidney Week 2023 show no reduction of the pri-
ary composite endpoint but a potential reduction in the risk
f HF hospitalization [56 ]. The other major trial with spirono-
actone in ESKD patients that is still ongoing is the aldosterone
loCkade for Health Improvement EValuation in End-stage renal 
isease trial ( ACHIEVE, NCT03020303) with a primary endpoint 
f CV death or hypertensive HF ( HHF) [57 ]. 

ide-effect profile and barriers to implementation of sMRA 

oth steroidal MRAs carry the risk of potentially life-threatening 
yperkalemia, particularly in patients with worsening kidney 
unction when combined with other renin–angiotensin sys- 
em blockers. However, Spironolactone has additional sexual 
ide effects, including impotence and gynecomastia, due to its 
nselective binding to androgen and progesterone receptors.
he underutilization of steroidal MRAs in patients with HFrEF,
espite the proven mortality benefit, may be attributed to a lack
f widespread educational initiatives and concerns regarding 
he perceived risk of hyperkalemia [58 , 59 ]. 
onsteroidal MRA ( nsMRA) 

onsteroidal MRAs are a promising therapeutic option in man-
ging conditions with MR overactivation. They offer a new mech-
nism of action that effectively blocks the MR without the
ormone-like effects of sMRAs, which can cause adverse side
ffects. This breakthrough has opened up new possibilities in
reating cardiovascular and renal diseases where MR overacti-
ation is a major factor ( Table 2 ) [44 ]. 

PF-3882845, discovered by Pfizer, and KBP-5074 
 Ocedurenone) are nsMRAs that showed promise in preclinical 
tudies. PF-3882845 demonstrated a superior therapeutic in- 
ex compared to eplerenone in a preclinical CKD model [60 ].
lthough phase I trials were conducted, further development
as terminated in 2012 [61 ]. KBP-5074, closely related to PF-
882845, exhibited a 39-fold improved therapeutic index over
plerenone and is being investigated for treatment-resistant 
ypertension in CKD [62 ]. The BLOCK-CKD study, a phase II
tudy, demonstrated its efficacy in reducing blood pressure
ith a lower risk of hyperkalemia [63 ]. Should these results
e reproducible in a larger Phase III trial, KBP-5074 could add
dditional treatment options for resistant hypertension in 
eople with advanced CKD. 
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AZD9977, a nsMR ligand, was discontinued in phase I due 
o safety and efficacy reasons in 2015 [64 ]. However, a recent 
hase II trial, MIRACLE ( NCT04595370) , explores balcinrenone 
 AZD9977) in combination with dapagliflozin in patients with HF 
nd CKD and the effect of the combination in different doses of 
ZD9977 on urinary albumin-to-creatinine ratio after 12 weeks.
he trial showed no significant reduction in urinary albumin- 
o-creatinine ratio ( UACR) in patients treated with balcinrenone 
lus dapagliflozin compared with dapagliflozin plus placebo,
ith reduced estimated glomerular filtration rate ( eGFR) in high- 
st dose group [65 ]. 

Apararenone ( MT-3995) showed weaker inhibitory poten- 
ial on androgen-, progesterone-, and glucocorticoid receptors 
ompared to spironolactone [66 ]. Clinical studies in patients 
ith diabetic nephropathy ( DN) demonstrated efficacy in reduc- 

ng UACR, especially in those concomitantly receiving renin–
ngiotensin system ( RAS) blockers [67 ]. While the antihyperten- 
ive effect was modest in patients with normal baseline blood 
ressure, a notable reduction in systolic blood pressure was ob- 
erved in those with elevated baseline blood pressure [67 ]. How- 
ver, despite promising results, Mitsubishi Tanabe decided to 
iscontinue the development of apararenone [68 ]. 
Esaxerenone ( CS-3150) exhibits a high binding affinity for 

he human MR surpassing both spironolactone and eplerenone 
69 ]. The drug demonstrates selectivity for the MR over other 
teroid hormone receptors and has shown antihypertensive 
nd cardiorenal protective effects in preclinical animal mod- 
ls [69 ]. A pivotal Phase III trial ( ESAX-HTN, NCT02890173) in 
apanese patients with essential hypertension demonstrated 
hat esaxerenone is an effective antihypertensive, non-inferior 
o eplerenone, with superior blood pressure reductions at a 
 mg/day dosage [70 ]. Additionally, the ESAX-DN trial explored 
saxerenone’s efficacy and safety in type 2 diabetes ( T2D) pa- 
ients with microalbuminuria, showing positive outcomes but 
ith a higher incidence of hyperkalemia compared to the 
lacebo ( 4% vs 0.4% of patients, respectively) [71 ]. 
Finerenone, a potent antagonist at the human MR, demon- 

trates high selectivity ( at least 500-fold) for the MR compared 
o spironolactone and eplerenone [72 ]. In non-diabetic kidney 
isease models, finerenone reduces proteinuria, and tubuloin- 
erstitial fibrosis [73 ]. It demonstrates anti-fibrotic efficacy in 
eart and kidneys, providing vascular benefits and improving 
ndothelial dysfunction [74 ]. The drug exhibits blood pressure- 
ndependent effects and is associated with less kidney hypertro- 
hy compared to eplerenone [75 ]. 
Clinical trials, including FIDELIO-DKD [76 ] and FIGARO-DKD 

77 ], show finerenone’s efficacy in reducing kidney failure, CV 

eath, and morbidity in CKD patients with T2D [76 , 77 ]. The pri- 
ary outcome measured in the FIDELIO-DKD trial was a com- 
osite endpoint of the time to first occurrence of kidney failure,
efined as either the initiation of chronic dialysis over 90 days 
r renal transplantation ( ESKD) or a persistent decline in eGFR 
 15 ml/min/1.73 m2 sustained for a minimum of 4 weeks. This 
rimary endpoint was achieved as specified in the trial with an 
8% reduction in the group on finerenone compared to those on 
lacebo ( HR: 0.82, 95% CI, 0.73–0.93, P = .001) .76 Similarly, a 14% 

eduction in secondary composite CV outcome was seen in pa- 
ients on finerenone compared to those on placebo ( HR 0.86, 95% 

I, 0.75–0.99, P = .03) [76 ]. The incidence of hyperkalemia-related 
iscontinuation was higher in the finerenone group compared 
o the placebo group ( 2.3% and 0.9%, respectively) but markedly 
ower than the group on spironolactone on top of RAS blockade 
n CKD [78 ]. Thus, the FIDELIO-DKD trial showed that finerenone,
hen combined with optimized RAS blockade therapy, slows 
KD progression and plays a role in CV event prevention, offer- 
ng an effective treatment modality to patients with DKD. 

Whereas the primary outcome measure in FIGARO-DKD in- 
olves a composite outcome of time to first occurrence of CV 

ortality and morbidity, as evaluated by the composite endpoint 
f time to first occurrence of CV death, nonfatal MI, nonfatal 
troke, or hospitalization for HF [77 ]. The key prespecified sec- 
ndary endpoint is a composite evaluation of the time to first 
ccurrence of kidney failure, a sustained decrease of eGFR ≥40% 

rom baseline over at least 4 weeks, or renal death [77 ]. The pri-
ary composite CV outcome was reduced by 13% ( HR 0.87, 95% 

I, 0.76–0.98, P = .03) , with the benefit driven primarily by a lower
ncidence of hospitalized HF ( HR 0.71; 95% CI, 0.56–0.90) , while 
he secondary composite kidney outcome was reduced non- 
ignificantly by 13% ( HR 0.87, 95% CI, 0.76–1.01) . Hence, FIGARO- 
KD showed the association of finerenone with a lower risk of 
V morbidity and mortality, particularly in terms of a lower in- 
idence of hospitalized HF in patients with DKD ( stage 2–4 CKD 

ith moderately elevated albuminuria or stage 1 or 2 CKD with 
everely elevated albuminuria) . 

Additionally, FINEARTS-HF79, a recently published clinical 
rial evaluating finerenone’s efficacy and safety in patients with 
F and preserved or mildly reduced ejection fraction, showed 
hat finerenone resulted in a significant decrease in compos- 
te of HF events and CV related deaths compared to placebo 
79 ]. The primary outcome was a composite of total worsening 
F events and death from CV causes. While the secondary out- 
omes included total worsening HF events, change from baseline 
n the total symptom score on the Kansas City Cardiomyopathy 
uestionnaire ( KCCQ) , improvement in the New York Heart As- 
ociation ( NYHA) functional class, a kidney composite outcome,
eath from cardiovascular causes, and death from any cause.
he study showed that finerenone was associated with a signif- 
cantly lower rate of the primary outcome compared to placebo 
 rate ratio ( RR) = 0.84, 95% CI, 0.74–0.95, P = .007) as well as 
he secondary outcome, namely worsening HF events or death 
rom cardiovascular causes ( RR 0.82, 95% CI, 0.71–0.94, P = .006) .
t also led to a moderate benefit in patient-reported health sta- 
us ( KCCQ total symptom score) ( Difference 1.6, 95% CI, 0.8–2.3,
 < .001) but did not significantly improve the NYHA functional 
lass or the risk of the kidney composite outcome ( OR = 1.01,
5%CI, 0.88–1.15, HR, 1.33, 95%CI, 0.94–1.89, respectively) . How- 
ver, one should keep in mind that the > 50% of the patients
ad an eGFR > 60 ml/min/1.73 m2 with a median UACR < 20 mg/g
aking this population not the ideal target to detect a benefit in
idney composite outcomes. Moreover, all the prespecified sub- 
roups were underpowered, so the results of the subgroup anal- 
sis should be interpreted with caution [79 ]. 

Moreover, the FINE-ONE clinical trial80 ( NCT05901831) , a 
hase III randomized and placebo-controlled study that is on- 
oing and actively recruiting, aims to evaluate the efficacy and 
afety of finerenone in patients with type 1 diabetes and CKD.
he primary outcome is the relative change in UACR from base- 
ine over 6 months. Secondary outcomes include the incidences 
f treatment-emergent adverse events, treatment-emergent 
erious adverse events, and hyperkalemia. The study aims to 
nroll ∼220 adults with type 1 diabetes, UACR between 200 
nd 5000 mg/g, and eGFR between 25 and 90 ml/min/1.73 m2 .
articipants will be randomized to receive either finerenone or 
 placebo in addition to standard care ( ACE inhibitors or An- 
iotensin II receptor blockers) . The primary efficacy analysis will 
ssess the geometric mean ratio of the change in log UACR from 

aseline over 6 months between the finerenone and placebo 
roups. Safety will be evaluated by monitoring the number of 
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articipants experiencing treatment-emergent and treatment- 
mergent serious adverse events, and hyperkalemia [80 ]. 

Similarly, the FIND-CKD trial, an ongoing and actively recruit- 
ng Phase III randomized controlled trial, aims to investigate the
fficacy and safety of finerenone compared to placebo in slowing
he progression of kidney disease in patients with CKD but with-
ut diabetes. The primary outcome is the mean annual rate of
hange in the eGFR from baseline to month 32. The secondary
utcomes include a combined cardiorenal composite outcome 
omprising time to kidney failure, a sustained ≥57% decrease 
n eGFR, hospitalization for HF, or cardiovascular death; a kid-
ey composite outcome comprising the onset of kidney failure 
r a sustained ≥57% decrease in eGFR from baseline; a cardio-
ascular composite endpoint comprising hospitalization for HF 
r death from cardiovascular-related causes. The trial will also 
ssess the safety and tolerability of finerenone, with a particular
ocus on hyperkalemia as an adverse event of special interest. 

Finerenone received FDA approval on 9 July 2021, for reducing
he risk of sustained eGFR decline, ESKD, cardiovascular death,
onfatal MI, and hospitalization for HF in CKD patients associ-
ted with T2D [80 ]. Notably, available sMRAs are not indicated
or this purpose. 

LINICAL IMPLICATIONS 

yperkalemia 

yperkalemia remains a significant challenge, particularly with 
RA use. In the FINE-HEART pooled analysis, comparing 
nerenone with a placebo, it was found that 12.8% of patients
aking finerenone experienced hyperkalemia, in contrast to 6.2% 

f those on the placebo, highlighting the importance of vigilant
onitoring [81 ]. 
When finerenone was compared with spironolactone and 

plerenone regarding the occurrence of serious hyperkalemia,
istinct differences were observed. Within the FINE-HEART 
ooled analysis, the rate of finerenone discontinuation due to 
yperkalemia was 1.3%. This is in comparison to spironolac- 
one, which had a slightly higher discontinuation rate of 2% in
he RALES study [46 ], and eplerenone, which had a lower rate of
.1% in the EMPHASIS-HF study [48 ]. Additionally, the frequency 
f hospitalization due to hyperkalemia was 0.8% for those on
nerenone. On the other hand, eplerenone showed a smaller 
ercentage of 0.3%, and the rate for spironolactone was not pro-
ided [81 , 46 , 48 ]. 

Interestingly, patients on finerenone had a lower risk of 
ypokalemia compared to placebo in the FINE-HEART study 
 4.8% vs 10.1%, respectively) [81 ]. 

rescription of MRAs 

ealthcare providers can enhance the prescription rates of 
RAs, by integrating these strategies into clinical practice, ul- 

imately leading to better management of conditions associated 
ith MR overactivation: 

ducation and awareness: providers maybe unfamiliar with this 
novel class of medications ( nsMRA) , its appropriate clinical 
use and adverse side effects making it difficult for them to
assess the benefit-risk profile and thus prescribing the medi- 
cation. Thus, educating physicians through continuing med- 
ical education programs, workshops, and seminars about the 
benefits and guidelines for MRA use is crucial.

lectronic health records: implementing electronic health 
record-embedded clinical decision support tools can prompt 
physicians to consider MRAs during patient encounters.
These tools have been shown to increase MRA prescriptions
by providing timely alerts and reminders about guideline-
directed medical therapies.

ultidisciplinary team approaches: involving a team of health-
care professionals, including pharmacists and nurses, can 
improve the initiation and maintenance of MRA therapy.
These teams can help monitor patients for side effects such
as hyperkalemia and adjust dosages as needed, thus ad-
dressing one of the main barriers to MRA use. In clinical
practice, physicians often reduce the dose of RAS inhibitors
when serum [K+ ] rises above 5.0 mmol/l, which makes it
harder for them to prescribe another medication that carries
a risk of hyperkalemia, such as spironolactone or finerenone.
Thus, providing clinicians with a serum potassium monitor-
ing schedule and a potassium management algorithm while
on several hyperkalemia-inducing medications can help pro- 
mote MRA usage. An algorithm similar to the one suggested
by FIDELIO-DKD can be used as a reference point to develop
a more extensive and intricate algorithm applicable to all the
pillars of DKD ( Fig. 2 ) . 

atient education: educating patients about the importance of
MRAs in managing their condition can improve adherence to
prescribed therapies. Patients who understand the benefits 
and potential side effects are more likely to continue with
their treatment plans.

edication cost: the cost of the medications might be an issue
for some patients on the basis of their insurance status mak-
ing providers wary of prescribing the medications if the costs
are high or unclear on the basis of the payer. Thus, advocacy
with policymakers, payers, and pharmaceutical companies is 
needed to lower costs.

UTURE PERSPECTIVES 

urther education is warranted concerning the significance 
f MRA utilization in individuals with CKD and HF, despite
he potential risk of hyperkalemia. Combining nsMRAs with
otassium-binding agents may offer a pathway for high-dose
RA therapy with reduced hyperkalemia risk, a concept already
nder investigation with sMRAs and patiromer [78 ]. Results from
he DIAMOND trial suggest that co-administration of patiromer
s associated with a smaller increase in serum potassium, lower
yperkalemia rates, and less frequent reduction in MRA dose be-
ow target [82 ]. 

Ongoing trials and new data regarding the efficacy of SGLT2is
nd nsMRAs and their role in slowing down CKD progression and
educing CV risk seem to provide the optimal opportunity to use
illars of therapy in managing CKD after several years of ther-
peutic scarcity in this field. By combining RAS blockade with
GLT2i, MRA, and possibly Glucagon-like peptide-1 agonists,
linicians have the opportunity to target several key factors im-
licated in DKD progression, improving prognosis and slowing
isease progression. Preclinical studies involving mouse mod- 
ls have demonstrated synergistic effects between finerenone 
nd empagliflozin, particularly in reducing proteinuria and car-
iac and renal fibrosis [83 , 84 ]. Ongoing trials, such as the
ONFIDENCE trial assessing finerenone in combination with 
mpagliflozin, will provide further insights into potential syner-
ies and therapeutic benefits in the context of HF and CKD [85 ]. 

In summary, physicians must receive education and apply
vidence-based use of MRAs to maximize their benefits and
inimize the side effects. As the clinical evidence evolves,
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Fig.2 Proposed algorithm for finerenone dose adjustment based on serum potassium levels. 
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sMRAs may emerge as a pivotal therapy across various car-
iorenal disease scenarios. 
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