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Abstract: Sorghum is an important cereal with diverse phenolic compounds that have potential
health promoting benefits. The current study comparatively characterized the phenolic contents of
two novel black-seeded sorghum lines (SC84 and PI570481) using different extraction systems (water,
ethanol and their acidified counterparts) and evaluated their antioxidant and anti-inflammatory
activities. Phenolic compositions were determined by spectrophotometric assays and HPLC
analysis. Antioxidant activities were assessed by radical scavenging effects on nitric oxide (NO) and
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals, and the oxygen radical absorbance capacity
(ORAC). Anti-inflammatory capacity was estimated by measuring levels of pro-inflammatory markers
produced by lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Results showed that effects
of solvent types and HCl on extraction efficiency differed among phenolic compounds and sorghum
samples. Tannins were the most dominant polyphenols in the studied extracts (11.11–136.11 mg
epicatechin equivalent/g sorghum). Sorghum extracts exerted more potent scavenging activity on
DPPH than NO radicals. In LPS-activated RAW 264.7 cells, sorghum extracts dose-dependently
inhibited the production of NO, interleukin-6 (IL-6), and intracellular reactive oxygen species (ROS),
with ethanolic extracts showing greater anti-inflammatory activity. Positive correlations were noted
between tannin content and DPPH radical scavenging activity, and anti-inflammatory capacity.
These results suggest the potential role of tannin-rich sorghum extracts against inflammation and
associated diseases.
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1. Introduction

Sorghum, a member of the Poaceae grass family, is one of the leading dryland crops in the world,
appearing to be the fifth most produced cereal next to rice, wheat, barley, and corn [1,2]. It has been
widely cultivated worldwide, serving as food, feed, and fuel [3]. The main components of sorghum
are polysaccharides (starch and non-starch), proteins, and lipids [1,2]. More importantly, sorghum is
an excellent source of bioactive phenolic compounds that are more abundant in both content and
diversity compared to other major cereal crops [1,2]. Almost all classes of phenolic compounds have
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been identified in sorghum, with simple phenolic acids, flavonoids, and tannins being the dominant
groups [1,2]. Sorghum anthocyanins are unique due to the absence of a hydroxyl group at position C-3,
thus the name 3-deoxyanthocyanidins, which comprise a rare subclass of anthocyanins [4]. It has been
reported that sorghum 3-deoxyanthocyanidins, composed mainly of luteolinidin and apigeninidin,
are more stable in slightly acidic conditions in the presence of sulfites [5] and are more resistant
to the photo-bleaching effects of ascorbic acid than the corresponding 3-oxygenated anthocyanin
counterparts [6], thus supporting the role of 3-deoxyanthocyanidin as a source of natural pigment.
In addition, sorghum tannins, composed of oligomers or polymers of mainly catechins (flavan-3-ol
or flavan-3,4-diol) with high molecular weight and a high degree of polymerization (DP), are rarely
found among other major cereals [7].

The unique phenolic composition of sorghum makes it a promising food source with a number
of potential health promoting benefits. Dia et al. reported the capability of sorghum phenolic
extract to suppress interleukin (IL)-1β and IL-18 secretion in lipopolysaccharide (LPS)-primed and
adenosine triphosphate (ATP)-activated THP-1 human macrophages, associated with a reduction in
caspase-1 [8]. Previous studies have shown a wide range of potential biological activities of sorghum
3-deoxyanthocyanidins, including anti-proliferative and pro-apoptotic effects against colon cancer
cells [9] and reducing oxidative stress via increasing the NADH:quinone oxyreductase (NQO) ratio [10].
Smolensky et al. demonstrated the versatile biological roles of phenolic extracts of PI570481, a novel
high polyphenol sorghum type, including anti-cancer and anti-microbial effects [11–14]. In addition
to their powerful antioxidant ability [15], sorghum-condensed tannins have shown great inhibitory
activities against digestive enzymes, which may partially contribute to the anti-diabetic capacity of
sorghum [16]. Given the high health potential, sorghum has attracted great attention for decades.

Oxidative stress, referring to the imbalance of the excessive production of free radicals and
antioxidants, is highly implicated in various non-communicable diseases such as inflammation, cancer and
cardiovascular disease [17,18]. Inflammation is a defensive response of the immune system against
external and internal stimuli that can cause infection and injury [19]. However, uncontrolled and chronic
inflammation has been associated with the development of several diseases including obesity [20], type 2
diabetes [21], and several cancers [22]. As innate cells, macrophages are recruited to inflammatory
sites, activated, and release cascades of inflammatory molecules, including nitric oxide (NO) and IL-6
under the stimulation of LPS, a well-known endotoxin from Gram-negative bacteria [23]. NO is a
gaseous free radical regulated by inducible nitric oxide synthase (iNOS). Excessive NO can cause DNA
damage, mutagenesis and lead to cancer progression [24]. IL-6 is an important pro-inflammatory cytokine,
with the ability to induce the expression of iNOS, which increases NO production [25]. In addition,
the overproduction of reactive oxygen species (ROS) during inflammation can damage vital cellular
components and cause oxidative stress [26]. Therefore, finding compounds that can suppress the aberrant
production of inflammatory markers could potentially alleviate chronic inflammation and thereby prevent
associated chronic diseases.

The current study aimed to extract sorghum bioactives from two novel sorghum genotypes using
different extraction systems, including water or ethanol with or without HCl, and comparatively
studied the phenolic contents and profiles, and measured the downstream biological activities
(including the in vitro antioxidant properties and the anti-inflammatory capacities) in LPS-stimulated
RAW 264.7 macrophages.

2. Materials and Methods

2.1. Materials

Novel sorghum black-seeded germplasms SC84 and PI570481 were used in this study.
SC84 (converted line from PI 534144; origin: Uganda) is a high phenolic, photo-insensitive sorghum
which readily grows in both Mexico and Kansas. SC84MX was grown in the Kansas State University
(KSU) winter nursery in Mexico, while SC84KS was grown at the KSU Agricultural Research Center,
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Hays, Kansas. PI570481 (origin: Sudan), a photosensitive and non-producing grain in most areas of the
United States, was grown at the KSU winter nursery in Mexico. The murine macrophage RAW 264.7 cell
line was obtained from the American Type Culture Collection (Manassas, VA, USA). Growth media
Dulbecco’s Modified Eagle Media (DMEM) 1X was purchased from Corning Inc. (Corning, NY, USA)
and fetal bovine serum (FBS) was from Life Technologies (Carlsbad, CA, USA). The IL-6 ELISA kit
was purchased from BioLegend (San Diego, CA, USA). All chemicals were purchased from either
Sigma-Aldrich (St Louis, MO, USA) or Fisher Scientific (Atlanta, GA, USA) unless otherwise specified.

2.2. Sorghum Phenolics Extraction

Sorghum phenolics were extracted by four solvent systems: deionized (DI) water and ethanol,
with or without 0.1% v/v HCl, using a 1:10 solid-to-liquid ratio (w/v). Briefly, whole grains of sorghum
were ground and passed through a 30-mesh sieve. Approximately 30 g of each grain flour was
suspended into 300 mL of extracting solvent and stirred continuously for 16 h at room temperature
(21 ◦C) in the dark. The mixture was then centrifuged at 8000× g for 20 min at 4 ◦C and the supernatant
was decanted. A 10 mL aliquot of each extract was stored at 4 ◦C in the dark until the phenolics
were quantified. Ethanol extracts were concentrated by rotary evaporation under vacuum at 40 ◦C.
The remaining liquid from the ethanol extracts and water extracts was freeze dried. Extraction was
carried out for two independent replicates for each sorghum sample.

2.3. Quantification of Phenolic Extracts

2.3.1. Measurement of Total Soluble Polyphenols

Total soluble polyphenols were quantified following a previous protocol with modifications [27].
Briefly, 10 µL of different phenolic extracts and gallic acid standards varying from 0 to 1 mg/mL
were plated in triplicate in a 96-well plate. Samples and standards were mixed with 25 µL of
1 N Folin–Ciocalteu reagent and 25 µL of 20% sodium bicarbonate, followed by 150 µL DI water.
The mixture was incubated for 30 min at room temperature before recording the absorbance at 630 nm
using a Cambrex ELX 808 microplate reader (Biotek Instruments, Winooski, VT, USA). Total soluble
polyphenols were calculated according to the gallic acid standard curve and expressed as mg gallic
acid per gram sorghum. All measurements were performed as independent triplicates.

2.3.2. Measurement of Total Flavonoids

Determination of total flavonoids was performed by the aluminum conjugation method as
previously reported [28]. In a 96-well plate, 20 µL of phenolic extracts and quercetin standards were
plated in triplicate, followed by the addition of 80 µL methanol and 100 µL 2% AlCl3·6H2O in methanol.
The mixture was incubated for 30 min at room temperature and the absorbance was read at 405 nm
using a Cambrex ELX 808 microplate reader. Total flavonoids were quantified using the quercetin
standard curve and expressed as mg quercetin equivalent per gram sorghum. All experiments were
performed as independent triplicates.

2.3.3. Measurement of Total Tannins

Total tannins were analyzed using the modified HCl–vanillin assay as reported previously [29].
Twenty microliters of sorghum extract and epicatechin standards were loaded in triplicate into a
96-well plate, followed by 30 µL methanol and 150 µL of vanillin working reagent, which was prepared
by mixing equal volumes of 1% vanillin solution and 8% v/v HCl in methanol. The plate was incubated
for 10 min at room temperature and read at 490 nm using a Cambrex ELX 808 microplate reader.
Total tannins were determined using the epicatechin standard curve, expressed as mg epicatechin per
gram sorghum. All measurements were performed as independent triplicates.
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2.3.4. Measurement of Total Anthocyanins and 3-Deoxyanthocyanidins

Total 3-deoxyanthocyanidins and anthocyanins were measured using the spectrophotometric
method reported previously with modifications [28]. The absorbance of 200 µL extracts plated in
triplicate in a 96-well plate were read at 490, 520 and 700 nm, respectively, using a Synergy HT
microplate reader (Biotek Instruments, Winooski, VT, USA). Total 3-deoxyanthocyanidins (T-3DA)
were quantitatively determined using Equation (1) and expressed as µg luteolinidin per gram sorghum:

T− 3DA (µg luteolinidin/g sorghum) =
(Abs490−Abs700)×271.24×1,000,000×(vol o f extract, L)

35,000×0.45×(wt o f sorghum, g) (1)

Total anthocyanins (TA), reported asµg cyanidin-3-glucoside (C3G) per gram sorghum, were calculated
using Equation (2):

TA (µg C3G/g sorghum) =
(Abs520 −Abs700) × 449.38× 1, 000, 000× (vol o f extract, L)

26, 900× 0.45× (wt o f sorghum, g)
(2)

where Abs490, Abs520, and Abs700 are absorbance at 490, 520 and 700 nm, respectively; 271.24 and 449.38
are the respective molecular weights of luteolinidin and C3G; 35,000 and 26,900 are the molar extinction
coefficients of luteolinidin and C3G, respectively; 0.45 is a conversion factor from a conventional 1-cm
pathlength method; vol, L is the volume of the extracting solvent in liters and wt, g is the weight of
sorghum in grams.

2.4. HPLC Analysis of Phenolic Compounds

The identification of sorghum phenolic compounds was conducted according to a reported
protocol with slight modifications [30], using an Agilent 1200 HPLC system (Agilent Technologies,
Santa Clara, CA) equipped with a G1329A auto-sampler, a G1311A quaternary pump, a G1315D diode
array detector, a G1322A degasser, and a G1316A column thermostat. Briefly, 20 mg lyophilized
powder of sorghum extracts were suspended in 1 mL of DI water and sonicated for 15 min, followed by
continuous vortexing for 60 min at room temperature. After centrifugation at 20,000 × g for 30 min at
4 ◦C, supernatants were filtered through 0.45 µm polyvinylidene (PVDF) membranes and 20 µL was
injected to a Zorbax Eclipse C-18 column (4.6 × 150 mm, 5.0 µm; Agilent Technologies) to separate
sorghum phenolics using the following conditions: the mobile phase was composed of 4% formic
acid in water (solvent A) and acetonitrile (solvent B); the flow rate was 1.0 mL/min with a gradient
system as follows: 0–20 min, 12–20% B; 20–40 min, 20–50% B; 40–50 min, 50% B; 50–52 min, 50–12%;
and 52–55 min, 12% B. Column temperature was maintained at 35 ◦C. Commercial phenolic standards
were dissolved in dimethyl sulfoxide and diluted in acetonitrile to a final concentration of 100 ppm,
and were optimally detected either at 280 or 340 nm. The identification of phenolic compounds was
determined based on the retention times of the standards.

2.5. Measurement of Antioxidant Activity

Freeze-dried sorghum extracts were dissolved in DI water (1:10 w/v), sonicated, vortexed and
centrifuged as described in Section 2.4. The collected supernatants were sterile filtered using a 0.22 µm
PVDF filter. The sterile-filtered supernatant was used for the evaluation of in vitro antioxidant and
anti-inflammatory properties in the following assays.

The antioxidant activities of sorghum phenolic extracts were assessed by radical scavenging
effects on nitric oxide (NO) radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radicals, and the
evaluation of the oxygen radical absorbance capacity (ORAC). These methods were adapted from a
previous paper [31].
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2.5.1. NO Scavenging Assay

In a 96-well plate, 50µL of sample supernatants at concentrations of 50 and 100 µg gallic acid eq/mL
and a control (DI water) were plated in triplicate, followed by adding 50 µL of DI water and 25 µL of
100 mM sodium nitroprusside. In a duplicate plate, 25 µL of DI water instead of sodium nitroprusside
was mixed with samples and the control. Plates were incubated for 2 h at room temperature and
100 µL of Griess reagent containing an equal volume of 1% sulfanilic acid in 5% phosphoric acid and
0.1% N-(1-napthyl)-ethylenediamine dihydrochloride was subsequently added. After incubation for
another 15 min at room temperature, absorbance was read at 550 nm using a Synergy HT microplate
reader (Biotek Instruments). Results were presented as % nitric oxide with respective to the control
after subtracting the absorbance of samples mixed with DI water. All experiments were performed as
independent triplicates.

2.5.2. DPPH Radical Scavenging Assay

One hundred microliters of sample supernatants (50 or 100 µg gallic acid eq/mL) and blank
(DI water) were plated in triplicate in a 96-well plate, followed by adding 100 µL of 100 µM DPPH
solution that was freshly prepared in methanol. The plate was incubated for 30 min in the dark at
room temperature. In order to eliminate the color interference, a mixture of sample and methanol
instead of DPPH solution were tested as reference at the same time. The absorbance was read at
517 nm using a Synergy HT microplate reader (Biotek Instruments), and the production of DPPH
radicals was calculated as follows after subtracting the absorbance of the samples mixed with methanol.
All measurements were performed as independent triplicates.

%DPPH Production =

(
∆Absorbance o f sample
∆Absorbance o f blank

)
× 100 (3)

2.5.3. ORAC Assay

Twenty-five microliters of Trolox standards (ranging from 3.125 to 100 µM), blank and sample
supernatants (at 100 µg gallic acid eq/mL that were further diluted 10 times with phosphate buffer
(pH 7.4)) were added in triplicate in a black 96-well plate, followed by mixing with 150 µL of fluorescein
working solution (75 mM in phosphate buffer). The plate was incubated for 30 min in the dark at 37 ◦C
before the addition of 25 µL 2,2’-azobis(2-amidonpropane) dihydrochloride (41.5 mg/mL in phosphate
buffer). The fluorescence was read at 485 nm/20 nm excitation and 528 nm/ 20 nm emission every
minute for 2 h at 37 ◦C using a Synergy microplate reader (BioTek, Winooski, VT, USA). The ORAC
value was expressed as µmol Trolox equivalent per milligram sample calculated from the generated
Trolox standard curve.

2.6. Anti-Inflammatory Activity in LPS-Induced RAW 264.7 Macrophages

2.6.1. Cell Culture and Cell Proliferation

Murine RAW 264.7 macrophages were grown and maintained in DMEM (Corning Inc., Corning,
NY, USA) supplemented with 10% heat-inactivated FBS (Life Tech, Carlsbad, CA, USA) and 1% v/v
penicillin/streptomycin (Life Tech, Carlsbad, CA, USA) at 37 ◦C in a humidified incubator containing
5% CO2, and were sub-cultured every 2 days. Cells were seeded at 2.5 × 104 cells/well in 96-well plates
in 200 µL media and allowed to attach overnight. Cells were then treated with different sterile-filtered
supernatants of sorghum extracts as prepared in Section 2.5 that were diluted with growth media to
50 or 100 µg gallic acid eq/mL for 24 h in the presence of 1 µg/mL LPS. The untreated cells and LPS only
treated cells served as negative and positive controls, respectively. After treatment, the culture media
was collected from each well for further analysis, and cells were studied with the CellTiter 96® Aqueous
One Solution Cell Proliferation Assay (Promega, Madison, WI, USA) to test viability by incubating
with 100 µL plain DMEM containing 10% v/v MTS for 3 h, and reading the absorbance at 490 nm
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(Cambrex ELX 808 microplate reader, Biotek Instruments, Winooski, VT, USA). Cell proliferation was
presented as the percentage relative to the absorbance of negative control cells using the following
formula. All experiments were performed in at least three trials, with four replicates per trial.

Cell viability (%) =
Abstreated

Absuntreated
× 100 (4)

where Abstreated is the absorbance of wells with cells treated with LPS or sorghum samples,
while Absuntreated is the absorbance of negative control cells.

2.6.2. Measurement of Pro-Inflammatory Markers

The collected culture media were used to examine the production of NO and the pro-inflammatory
cytokine IL-6. NO was detected using the Griess reagent assay. Briefly, 100 µL of cell conditioned media
and sodium nitrite (0–100 µM) as standards were plated in triplicate in a 96-well plate, followed by
adding 100 µL of Griess reagent. After 5 min incubation at room temperature, the absorbance was
recorded at 550 nm (Synergy H1 Hybrid Multi-Mode Reader, BioTek Instruments, Inc., Winooski, VT,
USA). The calculated nitrite using the sodium nitrite standard curve was used for NO production.

The secreted IL-6 in the cell-conditioned media was determined by enzyme-linked immunosorbent
assay (ELISA) using a commercial ELISA MaxTM Deluxe kit following the manufacturer’s protocol
(BioLegend, San Diego, CA, USA). Absorbance was read at 450 nm and concentrations of IL-6 were
quantified via the generated standard curve.

2.6.3. Measurement of Intracellular Reactive Oxygen Species

Intracellular reactive oxygen species (ROS) amounts were determined by fluorescence microscopy
and spectrophotometry as previously reported with some modifications [32], such as using
2′,7′-dichlorofluorescein diacetate (DCFDA) which is oxidized to a fluorescent dichlorofluorescein by
hydroxyl and peroxyl radicals [33].

Fluorescent microscopy. RAW 264.7 macrophages were seeded in a 48-well plates at 5× 104 cells/well
in 500 µL growth DMEM overnight before being treated with different sterile-filtered supernatants of
sorghum extracts at 100 µg gallic acid eq/mL for 24 h. Cells were stimulated with 1 µg/mL LPS for the
last 18 h. After treatment, the spent media was removed, and cells were washed with 500 µL ice-cold
PBS. After washing, cells were incubated with 200 µL PBS containing 10 µM DCFDA for 30 min in the
dark at 37 ◦C in a 5% CO2 incubator. The dye solution was then removed, and cells were washed with
ice-cold PBS twice. The cellular ROS was detected by observing fluorescence images using the green
fluorescent protein channel of the EVOS microscope (Thermo Fisher Scientific, Waltham, MA, USA)
with 10×magnification.

Fluorescence spectrophotometry. Cells were seeded as described in the cell proliferation section but in
a black 96-well plate. After overnight attachment, cells were treated the same way as depicted in the
fluorescent microscopy sections with sorghum extracts at 50 and 100 µg gallic acid eq/mL. Afterwards,
cells were washed with 200 µL ice-cold PBS followed by incubation with 200 µL of 10 µM DCFDA solution
in PBS for 30 min at 37 ◦C in an incubator with 5% CO2. The ROS levels in cells were quantified by recording
the fluorescence intensity at excitation and emission wavelengths of 485 nm and 528 nm, respectively,
using a Synergy H1 Hybrid Multi-Mode Reader (BioTek Instruments, Inc., Winooski, VT, USA).

2.7. Statistical Analysis

All experiments were performed in three independent trials and results were shown as
mean ± standard deviation. Data were analyzed using one-way ANOVA by the IBM SPSS Statistics
version 25.0 software (SPSS Inc., Chicago, IL, USA). Tukey’s test was used for mean comparisons and
p < 0.05 was considered significantly different. The Pearson correlation coefficient was determined
using the Bivariate process of SPSS.
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3. Results

3.1. Sorghum Phenolic Contents in Different Extracting Systems

The concentrations of biologically active compounds from the studied three novel sorghum
samples in different extracting solvents are shown in Table 1. As shown, the content of sorghum
phenolics varied among different extraction systems and sorghum samples. All ethanol extracts
contained higher concentrations of bioactives than their aqueous counterparts, except for the total
3-deoxyanthocyanidins and anthocyanins showing the opposite tendency in SC84MX and SC84KS in
the absence of HCl.

Table 1. Different contents of phenolic compounds as measured by spectroscopy in novel sorghum
samples using different extraction systems.

Sorghum Sample
Extract without HCl Extract with 0.1% v/v HCl

Water Extraction Ethanol Extraction Water Extraction Ethanol Extraction

Total Polyphenols, mg gallic acid eq/g

SC84MX 8.55 ± 0.07 f 9.58 ± 0.52 de 9.00 ± 0.2 ef 18.26 ± 0.79 b

SC84KS 8.23 ± 0.44 f 10.24 ± 0.25 d 8.50 ± 0.11 f 19.60 ± 0.88 a

PI570481 1.42 ± 0.05 i 6.02 ± 0.33 g 3.24 ± 0.13 h 12.61 ± 1.07 c

Total Flavonoids, mg quercetin eq/g

SC84MX 1.13 ± 0.02 cd 1.29 ± 0.32 bc 0.79 ± 0.06 e 1.74 ± 0.01 a

SC84KS 0.89 ± 0.04 de 1.18 ± 0.20 cd 0.72 ± 0.02 e 1.65 ± 0.03 a

PI570481 0.57 ± 0.08 e 0.64 ± 0.08 e 0.59 ± 0.08 e 1.55 ± 0.01 ab

Total Tannins, mg epicatechin/g

SC84MX 21.96 ± 0.64 d 131.11 ± 8.39 a 5.28 ± 0.24 e 66.06 ± 3.78 c

SC84KS 21.22 ± 1.11 d 136.11 ± 12.06 a 6.17 ± 0.08 e 58.82 ± 0.37 c

PI570481 11.11 ± 1.92 e 99.44 ± 10.72 b 6.03 ± 1.16 e 62.80 ± 3.59 c

Total 3-deoxyanthocyanidins, µg luteolinidin eq/g

SC84MX 127.40 ± 2.04 b 29.72 ± 0.92 g 28.40 ± 3.25 g 92.54 ± 1.07 d

SC84KS 97.93 ± 1.08 d 35.82 ± 0.40 f 35.64 ± 6.51 f 112.63 ± 1.55 c

PI570481 18.31 ± 0.89 h 68.37 ± 0.15 e 16.86 ± 1.82 h 325.23 ± 4.76 a

Total Anthocyanins, µg cyanidin-3-glucoside eq/g

SC84MX 168.05 ± 1.66 b 48.14 ± 0.77 g 34.55 ± 3.60 h 104.66 ± 1.46 e

SC84KS 126.88 ± 1.41 d 64.49 ± 1.45 f 48.49 ± 8.15 g 126.27 ± 2.77 d

PI570481 38.86 ± 1.61 h 149.24 ± 0.45 c 26.80 ± 0.73 i 554.87 ± 7.38 a

Different letters within the same bioactive indicate significant differences (p < 0.05).

Total polyphenols both in water and ethanol extracts were enhanced by the addition of 0.1%
v/v HCl, with SC84MX and SC84KS sorghum samples being found to contain significantly higher
contents than PI570481. Similarly, the acidified ethanol extracts had the highest concentrations of total
flavonoids in contrast with other extraction systems. However, the acidified aqueous system received
the lowest flavonoid content, containing only 0.59–0.79 mg quercetin eq/g sorghum grain among the
different sorghum samples. On the other hand, the addition of HCl considerably lowered the levels
of total tannins in both water and ethanol extracts. A significantly higher content of tannins was
present for SC84MX and SC84KS in extracting solvents in the absence of HCl, whereas no significant
differences in these three sorghum samples were found in the acidified extraction systems.

Regarding 3-deoxyanthocyanidins, HCl played a positive role in ethanolic solvents but a
negative role in aqueous systems. For water extracts, compared to the other two sorghum samples,
SC84MX had statistically higher values of 3-deoxyanthocyanidins, while in the acidified aqueous system,
SC84KS possessed relatively higher concentration. However, in ethanolic systems, PI570481 had the
highest concentration of 3-deoxyanthocyanidin when compared to SC84MX and SC84KS, which was
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greatly enhanced in the presence of HCl. The total anthocyanin levels followed the same pattern as
3-deoxyanthocyanidins, with SC84MX showing the highest levels among water extracts and PI570481
having the most abundant content in ethanolic systems.

HPLC was used to further study the sorghum phenolic compositions among the different extracting
solvents and sorghum samples. Figure 1 shows HPLC profiles of sorghum phenolic extracts recorded
at 280 nm and 340 nm. In accordance with the retention time of commercially available phenolic
standards (Figure 1A,B), a variety of bioactive compounds were identified in different sorghum
extracts, most of which were more prominent under the detection wavelength of 280 nm (Figure 1C–F).
As shown in Table 2, SC84MX had a generally higher diversity of phenolic compounds than the
other two sorghum samples, while PI570481 contained the least diversity, which may be responsible
for the lower levels of total polyphenols, total flavonoids, and total tannins in PI570481 detected in
the above spectrophotometric assays. However, 3-deoxyanthocyanidin was not determined in the
HPLC analysis, which was largely quantified in PI570481, and may account for its potential biological
activities. The differences in these bioactive constituents between sorghum samples and extracting
solvents could possibly affect the potential bioactivities of these sorghum samples.
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Figure 1. HPLC analysis of phenolic compounds in sorghum extracts. HPLC chromatograms of 
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sorghum water extracts detected at 280 nm (C) and 340 nm (D); HPLC chromatograms of sorghum 
ethanol extracts detected at 280 nm (E) and 340 nm (F).

Figure 1. HPLC analysis of phenolic compounds in sorghum extracts. HPLC chromatograms of
different phenolic standards detected at 280 nm (A) and 340 nm (B); HPLC chromatograms of sorghum
water extracts detected at 280 nm (C) and 340 nm (D); HPLC chromatograms of sorghum ethanol
extracts detected at 280 nm (E) and 340 nm (F).
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Table 2. Identification of flavones and flavanones in extracts of novel sorghum samples.

Standards WL (nm) RT (min)

Sample Area

Water Extracts Ethanol Extracts Water Extracts Ethanol Extracts Water Extracts Ethanol Extracts

MX MX-HCl MX MX-HCl KS KS-HCl KS KS-HCl PI PI-HCl PI PI-HCl

Gallic acid 280 1.81 1346.4 1690.5 226.7 964.9 1527.7 1737.3 321.7 825.2 1517.4 1413.8 282.4 261.3
Catechin 280 3.17 2963.5 2143.5 5557.2 N/D 7842.0 N/D 6032.3 N/D N/D N/D N/D N/D

Vanillic acid 280 4.77 2816.0 1935.0 2157.0 726.0 4154.4 1451.3 3181.8 861.2 718.4 404.7 3846.2 N/D
Syringic acid 280 4.90 1101.0 986.0 N/D N/D N/D 540.9 N/D N/D N/D 131.6 N/D N/D

Coumaric acid 280 7.03 2507.0 N/D 3658.4 248.2 2701.9 1923.6 3994.5 322.8 497.4 179.2 1631.5 N/D
Ellagic acid 280 9.46 8201.7 8110.6 3200.5 1616.5 8974.0 3549.6 4303.9 2148.3 N/D N/D 386.6 128.1
Eriodictyol 280 21.75 139.5 290.3 N/D 423.0 116.4 N/D N/D 169.0 N/D N/D N/D N/D
Naringenin 280 28.08 1108.6 264.0 N/D 284.3 929.9 N/D N/D 271.0 N/D N/D N/D N/D

Chrysin 280 37.45 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
Caffeic acid 340 4.47 594.7 483.8 262.2 138.2 565.8 507.3 437.2 242.4 396.0 159.2 324.5 N/D
Ferulic acid 340 9.35 1239.1 1081.2 301.9 365.7 1448.4 506.9 468.6 458.8 N/D N/D N/D N/D
Sinapic acid 340 9.89 302.6 N/D 195.9 N/D N/D 177.4 182.7 N/D 358.2 115.6 N/D N/D
Quercetin 340 24.88 N/D 56.9 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
Luteolin 340 25.45 N/D N/D 106.0 N/D N/D N/D 128.5 N/D N/D N/D 91.2 N/D
Apigenin 340 29.65 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D

MX: SC84MX; KS: SC84KS; PI: PI570481; MX-HCl: extract solvent contains 0.1% v/v HCl; WL: wavelength; RT: retention time; N/D: not detected.
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3.2. Sorghum Extracts Exert Antioxidant Activity

The antioxidant properties of different sorghum extracts were evaluated by measuring their
ability to scavenge DPPH and NO radicals, and by ORAC assay. As shown in Figure 2A, for the
water extraction system, the absence of HCl favored the scavenging ability of sorghum extracts on NO
radicals. Aqueous extracts of SC84MX inhibited NO production from 16.49% to 24.08% at 50 and 100 µg
gallic acid eq/mL, respectively, while SC84KS inhibited it from 4.61% to 15.06%. PI570481 exerted
the strongest inhibition activity, ranging from 30.07% to 40.10% at the same respective concentration.
Meanwhile, the corresponding inhibitory activity declined to 8.93%, 7.82%, and 16.09% for SC84MX,
SC84KS, and PI570481, respectively, at 100 µg gallic acid eq/mL in the acidified aqueous system.
Ethanol extracts of PI570481 exerted a better NO scavenging ability as well; however, it was slightly
enhanced from 15.88% to 20.93% in the presence of HCl at 100 µg gallic acid eq/mL (Figure 2B),
which did not happen with the other two sorghum samples. In comparison, vitamin C and gallic acid
at 100 µg/mL inhibited NO radicals by 15.33% and 25.29%, respectively.
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Figure 2. Antioxidant properties of sorghum phenolics extracts. Nitric oxide (NO) scavenging activity
of (A) water extracts and (B) ethanol extracts; 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity
of (C) water extracts and (D) ethanol extracts; (E) oxygen radical absorbance capacity (ORAC) values of
water and ethanol extracts. The percentage production of NO and DPPH were calculated with respect
to the control. Error bars are standard deviations (n ≥ 3). Different letters a–i above columns indicate
significant differences (p < 0.05).

On the other hand, extracts were found to be more potent at DPPH radical scavenging than NO
radical scavenging. In general, all extracts inhibited more than 90% of DPPH radicals, except for the
50 µg gallic acid eq/mL acidified ethanol extract of PI570481 (Figure 2C,D). This is similar to vitamin C
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and gallic acid DPPH activity, which inhibited DPPH radical production by 96% and 95%, respectively.
In regard to the ORAC assay, the addition of HCl was recorded to slightly improve the ORAC value of
the aqueous extracts of SC84MX and SC84KS, from 11.08 to 11.75 µmol Trolox/mg gallic acid and 10.81
to 11.62 µmol Trolox/mg gallic acid, respectively. The lowest ORAC value was found in the ethanolic
extracts of PI570481, with a significant decrease from 9.35 to 8.64 µmol Trolox/mg gallic acid as affected
by the addition of HCl. Ethanol extracts of SC84MX and SC84KS were not significantly influenced by
HCl in terms of ORAC value.

3.3. Sorghum Extracts Alleviate LPS-Induced Inflammation in RAW 264.7 Macrophages

The potential anti-inflammatory properties of sorghum extracts were then evaluated using RAW
264.7 macrophages stimulated with LPS. Cell viability was initially investigated by the simultaneous
addition of LPS and different sorghum extracts at 50 and 100µg gallic acid eq/mL for 24 h; it was found to
be at least 80% in the LPS-treated cells and was not significantly affected by the sorghum extracts at up to
100 µg gallic acid eq/mL (data not shown here, p > 0.05), suggesting non-toxicity. The anti-inflammatory
activity of sorghum phenolic extracts was subsequently assessed by measuring their effects on the
production of various pro-inflammatory molecules including NO, IL-6, and intracellular ROS.

As shown in Figure 3A,B, LPS treatment led to a significant increase in the production of NO and
this was dose-dependently counteracted by sorghum phenolic extracts at 50 and 100 µg gallic acid
eq/mL treatments. For the aqueous extraction system, the NO inhibition ability of all sorghum extracts
was enhanced by the addition of HCl. At 100 µg gallic acid eq/mL, water extracts of SC84MX, SC84KS,
and PI570481 reduced the production of NO by 37.47%, 47.10%, and 59.80%, respectively, whereas in
acidified aqueous extracts, the corresponding reductions were increased to 49.55%, 64.74%, and 67.76%
(Figure 3A). Ethanol extracts generally exerted better capabilities in inhibiting NO production than
water extracts. As for the ethanolic extraction system, compared to the absolute ethanol extracts,
acidified ethanol extracts inhibited the production of NO to a much higher extent, enhanced from
27.45% to 72.45%, 37.02% to 68.32%, and 35.74% to 95.36% for SC84MX, SC84KS, and PI570481,
respectively, for the 50 µg gallic acid eq/mL treatment. However, the 100 µg gallic acid eq/mL treatment
of ethanolic extracts did not show such a significant difference, which could be attributed to low NO
concentrations (Figure 3B).
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Figure 3. Effects of sorghum phenolic extracts on NO and interleukin (IL)-6 production in LPS-induced
RAW 264.7 macrophages. NO production by macrophages as affected by LPS and sorghum (A) water
extracts and (B) ethanol extracts; IL-6 production as affected by LPS and sorghum (C) water and
(D) ethanol extracts. Percentage production of IL-6 was calculated with respect to the positive control.
Error bars are standard deviations (n≥ 3). Different letters above columns indicate significant differences
(p < 0.05).
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Figure 3C,D show the differential abilities of the tested extracts to modulate the secretion of
IL-6. As shown, LPS treatment led to a significant increase in the secretion of IL-6. The inhibition of
IL-6 production at 100 µg gallic acid eq/mL treatment did not show significant differences between
extracting solvents before and after the addition of HCl, but differentiate among sorghum samples,
(especially in water extracts), ranging from 85.45% to 97.69% with PI570481 exerting the best activity.
Meanwhile, ethanol extracts of sorghum samples exhibited a higher inhibitory ability of IL-6 than their
water extract counterparts at 100 µg gallic acid eq/mL (p < 0.001 between each counterparts), while this
observation was not found in PI570481 extracts with HCl (p = 0.222).

Intracellular ROS was also detected after the treatment with sorghum extracts and LPS using
fluorescence microscopy and spectrophotometry. As shown in Figure 4A, compared to the untreated
cells, significantly increased green fluorescence was observed after treatment with LPS, indicating the
production of ROS. However, the strong fluorescence signals were greatly suppressed in the presence
of different sorghum extracts at 100 µg gallic acid eq/mL. This observation was further validated by
quantitative fluorescence spectrophotometry. As shown in Figure 4B,C, ethanol extracts in general
exerted a better inhibition ability than water extracts. Moreover, absolute ethanol extracts of all
sorghum samples have a better suppressive effect compared with their acidified ethanol extracts,
enhanced from 71.14% to 88.72%, 73.60% to 91.05%, and 83.34% to 93.47% for SC84MX, SC84KS,
and PI570481, respectively, at 100 µg gallic acid eq/mL. The same enhancement was not observed in
the water extracts.
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Figure 4. (A) Fluorescence microscopy analysis of reactive oxygen species (ROS) production in
LPS-induced macrophages as affected by treatment with sorghum water and ethanol extracts (100 µg
gallic acid equivalent/mL), pictures were taken at 10× magnification with a scale bar of 275 µm.
Mean fluorescence values of ROS that were affected by sorghum (B) water and (C) ethanol extracts in
LPS-induced macrophages were quantified by fluorescence spectrophotometry and were expressed
with respect to the negative control. Error bars are standard deviations (n ≥ 3). Different letters above
columns indicate significant differences (p < 0.05).
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4. Discussion

As one of the most important leading crops in the world, sorghum has attracted increasing
attention recently, which is driven by the potential health benefits associated with its components,
especially the various phenolic compounds. Sorghum is a rich source of diverse phenolic compounds
such as phenolic acids, flavonoids, tannins, 3-deoxyanthocyanidins and anthocyanins [1,2]. A handful
of studies have demonstrated the health-promoting benefits of sorghum, including anti-inflammatory,
anti-proliferative, and antioxidant properties [8,10,11,15]. The current study investigated the phenolic
content and profiles of two novel sorghum genotypes and two separate growing environments for SC84
using different extraction systems, and subsequently evaluated the downstream biological activities
regarding the in vitro antioxidant properties and the anti-inflammatory activities in LPS-induced RAW
264.7 macrophages.

Based on the spectrophotometric assays, the obtained content of sorghum phenolic compounds
varied dramatically among sorghum samples and different extraction systems. Indeed, compositions of
extraction systems play an important role in the content and yield of phenolic extracts from plant
materials. Different solvent types with different polarities affect the extraction efficiency of phenolics.
Phenolic compounds are often extracted in higher amounts in more polar solvents [34]. However,
the solubility of phenolics is governed not only by the polarity of solvents, but also by the chemical
nature of the phenolic compounds [35]. Higher concentrations of phytochemicals were reported to be
present in ethanolic rather than methanolic extracts for 10 sorghum genotypes [28]. An effectiveness
order of solvent types (methanol > aqueous ≥ ethanol ≥ acetone) was constructed for phenolic extracts
from B. buceras and P. californicum [34]. In another study, the highest levels of phenolics were extracted
from florets of sunflowers using 90% aqueous methanol [36]. The current study showed higher yields
of total polyphenols, total flavonoids, and total tannins in ethanolic extracts than aqueous extracts
over the three sorghum samples. In particular, ethanol was significantly more effective than water
at extracting tannins, which was probably attributed to the polar-protic property of ethanol that
could provide OH ions and make it easier to interact with the polar functional groups on tannins [37].
In contrast, water extraction was found to be more effective in terms of total 3-deoxyanthocyanidins
and total anthocyanins. These differences could be due to the different physicochemical properties of
the phenolic components.

Apart from solvent types, interfering substances in the extracting solvent is another key contributor
to the final yield and content of phenolics in the extracts [38]. HCl was used in this study with the aim
of lowering the pH value of the extraction system, thus altering the extract profiles. It was found that
the addition of acid significantly enhanced the levels of total polyphenols in the ethanolic extracts for all
sorghum samples studied; meanwhile, the acidified aqueous system was also found to be more effective
than neutral water to extract total polyphenols from PI570481. Similar results were also reported by
Shelembe et al.; under acidic conditions of water (pH 2), total phenolic compounds were increased
from 5.8 to 6.7 mg catechin eq/g sorghum bran [39]. It is generally known that phenolic compounds in
sorghum frequently exist in bound forms, which are mostly bound to arabinoxylan chains or lignin via
covalent bonds [1]. Thus, the improved extractability was believed to be attributed to the breakage of the
covalent bonds under acidic conditions and the subsequent release of the bound phenolic compounds
which account for a significant proportion in cereals [39]. In addition, flavonoid glycosides are quite
unstable in acidic environments and are easily hydrolyzed to aglycones [40]. It was reported that
flavonoid aglycones have been identified and quantified by reversed-phase high-performance liquid
chromatography (RP-HPLC) by acidic hydrolysis of the glycosidic residues bound to the flavonoid
nuclei in 20 dry herbal samples [41]. Besides, acidified methanol and ethanol were commonly-used
solvents to extract anthocyanins. The acid in these solvent systems was able to denature and rupture
cell membranes and thus release anthocyanins [42]. Hence, it was not surprising to find considerably
higher levels of total flavonoids, total 3-deoxyanthocyanidins and total anthocyanins in the acidified
ethanolic extracts than their absolute ethanolic products in the current studied sorghum samples.
However, excess addition and harsh acids need to be avoided, which may break down the innate
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structures of phenolics. At the same time, polyphenols contain abundant hydroxyl groups, which are
highly susceptible to oxidation [1,2]. In this regard, the extraction efficiency is a conflicting consequence
of the release of bound phenolics and the degradation of free and released polyphenols by excessive
hydrolysis and oxidation. The effects of acid differ in diverse solvent types, and the different intrinsic
chemical properties of phenolic compounds may contribute to the inconsistent effects of HCl found
in water and ethanol systems in terms of the total flavonoids, total 3-deoxyanthocyanidins and total
anthocyanins, as well as the decreased levels of tannins in both acidified aqueous and ethanolic extracts.
Moreover, growth and environmental variations are believed to play important roles in different
phenolic contents among sorghum samples [43]. The concentrations of obtained phenolic compounds
among different extraction systems and sorghum types in this study were generally in accordance with
some previous reports [28,30,44]. However, different extraction times, temperatures, sample-to-solvent
ratios, different agitation methods and the number of replicate extractions can influence the extraction
efficiency [45]. Variations in the genotypes of the sorghum may also contribute to the difference in
phenolic contents among different studies.

In addition, a diverse range of phenolic compounds were identified by HPLC regarding the
designed extraction systems and the studied sorghum types. Acid treatment did not result in a
significant increase of diversity among different sorghum samples, but it did affect the phenolic
compositions. For instance, the acidified ethanol treatment of SC84MX and SC84KS samples enhanced
the extraction of flavanones such as eriodictyol and naringenin, but suppressed the extraction
of catechin, sinapic acid and luteolin compared to the ethanolic counterpart. Agbangnan et al.
reported different families of phenolic compounds extracted by 25% aqueous ethanol and water
under different pH [46]. The lower diversity of polyphenols in PI570481 extracts was possibly due to
unexpected loss during the redissolution when samples were prepared for HPLC analysis, as well as the
lack of 3-deoxyanthocyanidin detection, which presented significantly higher levels in ethanol extracts
of PI570481 as shown by the spectrophotometric assays. Additionally, genetic variations are important
factors that can also be responsible for different phenolic profiles among sorghum samples [43].

Given the various phenolic compounds in sorghum extracts, we investigated the antioxidant
activity of the obtained sorghum products. It is well believed that the potential role of phenolic
compounds in preventing human diseases is partially ascribed to their antiradical activity by donating
hydrogen atoms from the aromatic hydroxyl groups to free radicals [47]. Free radicals such as
superoxide radical (O2

-), hydroxyl radical (OH-), peroxyl radical (ROO) and nitric oxide radical (NO)
play a vital role in biological metabolism [48]. However, the imbalance of free radicals and antioxidants,
in terms of oxidative stress, is the leading cause of various chronic diseases [18]. Sorghum extracts have
been well documented for their significant antioxidant capacity due to their ample polyphenols [49].
In the current study, it was found that the NO scavenging activity of sorghum extracts varied greatly
from 4.83% to 40.10% in a concentration-dependent manner among the different extraction systems
and sorghum types. Meanwhile, the ability to inhibit DPPH production appeared to be significantly
more potent, as all sorghum extracts quenched more than 90% of DPPH radicals except the lower
concentration treatment of PI570481 extracts in acidified ethanol, which was comparable to another
study where an average of 90% antioxidant activity against DPPH was reported for three different
genotype sorghum flours [50]. The different extents of radical scavenging capacity based on different
radicals is probably due to variations in the phenolic profiles and different stabilities of these radicals
in solutions. Radicals in DPPH are stabilized by a single bond between two nitrogen atoms, while
in NO, they are stabilized by a double bond between nitrogen and oxygen atoms [31]. In this light,
sorghum extracts in this study are possibly better antioxidants against less stable radicals. On the other
hand, the ORAC assay is based on the delay of oxidation. It measures the ability of antioxidants to
protect proteins from damage by free radicals [51]. The ORAC values of different sorghum extracts
obtained in this study ranged from 8.64 to 11.75 µmol Trolox/mg sorghum grain, which were higher
than those previously found [52], suggesting the extraction systems used in this study were efficient at
extracting potent antioxidant compounds.
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It is worth mentioning that the DPPH radical activity of sorghum extracts obtained in this study
was found to be positively correlated to the content of total tannins (Table 3). Previous studies have
highlighted the high antioxidant activity of condensed tannins in sorghum, which are not common in
other major cereals. Dykes et al. attributed that the higher antioxidant activity of sorghum hybrids
with a pigmented testa compared to other sorghum types mainly came from condensed tannins [53].
In another study, in vitro antioxidant properties were found to be strongly correlated to the condensed
tannins detected in the investigated sorghums (r > 0.96, p < 0.01) [54]. Hagerman et al. reported that
tannins were 15–30 times more effective than simple phenolics at radical scavenging, which may be
largely attributed to their proximity to many aromatic rings and hydroxyl groups, as well as the fact
that tannins had little or no pro-oxidant activity [15]. In short, the studied sorghum extracts are better
antioxidants against less stable radicals, which is positively correlated to the total tannins, and these
extracts are strong antioxidants in delaying oxidation processes.

Inspired by the strong antioxidant capacity, the anti-inflammatory activity of the obtained sorghum
extracts was subsequently studied. As stated earlier, oxidative stress is implicated in various health
conditions such as chronic inflammation, which could consequently result in various chronic diseases
including carcinogenesis and cardiovascular diseases [18,22]. A number of pro-inflammatory molecules
are generated during inflammation, such as pro-inflammatory cytokines, chemokines, transcription
factors, enzymes and reactive oxygen or nitrogen species [19]. In this sense, the attenuation of
inflammation in terms of the reduction of pro-inflammatory markers is believed to be directly related
to disease prevention. Sorghum bioactives, acting individually or in complex extracts, have been well
recognized to have anti-inflammatory properties both in vitro and in vivo. For instance, isolated benzoic
and cinnamic acid derivatives from sorghum grains were reported to inhibit the production of NO
in LPS-induced RAW 264.7 macrophages with an associated reduction in the expression of iNOS
and cyclooxygenase-2 [55]. Burdette et al. demonstrated the dose-dependent inhibitory activity of
black sorghum bran (non-tannin) extracts on the secretion of tumor necrosis factor-α and IL-1β in
LPS-activated human mononuclear cells in vitro [56]. In addition, ethanolic extracts from both sumac
(tannin) and black (non-tannin) sorghum brans were capable of reducing inflammation induced by
12-O-tetradecanoylphorbol acetate in rats [56]. In contrast, neither wheat nor rice brans showed the
same anti-inflammatory properties in those two studies [56]. In another study, sorghum flour of
various genotypes differing in phenolic compositions were reported to reduce low-grade inflammation
and oxidative stress in adult Wistar rats when added as 21–26% of the diet without altering jejunum
morphology [50].

In the current study, the effectiveness of sorghum extracts against inflammation was confirmed
by the potent inhibitory activity of the production of NO, IL-6 and ROS by LPS-induced RAW
264.7 macrophages. The selected sorghum extracts were found to inhibit the production of these
pro-inflammatory molecules, with higher inhibition exhibited by ethanolic extracts. On the other
hand, the suppressive activity of sorghum extracts on the production of NO, IL-6 and ROS in this
study was found to positively correlate to the total tannins rather than other phenolic compounds,
which is consistent with the DPPH results (Table 3). Such positive associations can be attributed
to the most dominant presence of tannins compared to other phenolic compounds in the studied
sorghum extracts. It was reported that compared to other sorghum genotypes, sorghum extracts rich
in tannins had greater inhibitory activity against hyaluronidase, an important enzyme associated with
inflammation [57]. This superior inhibitory effect was believed to be attributed to the ability of the
tannins to complex the enzyme through competitive binding [57]. In another study, red rice extracts
rich in proanthocyanidin demonstrated anti-inflammatory activity via the suppression of activator
protein-1 and nuclear factor-κB pathways in LPS-activated RAW 264.7 macrophages [58].
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Table 3. Pearson correlation, r, among bioactive concentrations, antioxidant capacity and inhibition of pro-inflammatory markers of sorghum extracts.

Parameter
Parameter

TP TF TT T3DA TA NO DPPH ORAC RAW-NO IL-6 ROS

TP 1 0.911 ** (<0.0001) 0.313 (0.323) 0.420 (0.174) 0.289 (0.363) −0.496 (0.101) 0.227 (0.478) −0.123 (0.703) 0.430 (0.163) 0.128 (0.692) 0.337 (0.284)
TF 1 0.443 (0.149) 0.563 (0.057) 0.452 (0.140) −0.315 (0.318) 0.339 (0.281) −0.248 (0.437) 0.514 (0.087) 0.257 (0.420) 0.415 (0.180)
TT 1 0.059 (0.856) 0.114 (0.724) −0.341 (0.279) 0.631 * (0.028) −0.379 (0.224) 0.730 ** (0.007) 0.649 * (0.022) 0.890 ** (<0.0001)

T3DA 1 0.980 ** (<0.0001) 0.149 (0.643) 0.253 (0.428) −0.774 ** (0.003) 0.313 (0.322) −0.005 (0.987) 0.221 (0.491)
TA 1 0.188 (0.558) 0.353 (0.260) −0.855 ** (<0.0001) 0.378 (0.225) 0.080 (0.806) 0.298 (0.348)
NO 1 −0.163 (0.613) −0.126 (0.693) −0.289 (0.362) −0.066 (0.839) −0.342 (0.277)

DPPH 1 −0.518 (0.085) 0.937 ** (<0.0001) 0.896 ** (<0.0001) 0.724 ** (0.008)
ORAC 1 −0.541 (0.070) −0.301 (0.342) −0.539 (0.071)

RAW-NO 1 0.862 ** (<0.0001) 0.750 ** (0.005)
IL-6 1 0.630 * (0.028)
ROS 1

TP: total polyphenols; TF: total flavonoids; TT: total tannins; T3DA: total 3-deoxyanthocyanidins; TA: total anthocyanins; NO: nitric oxide scavenging activity; DPPH:
2,2-diphenyl-1-picrylhydrazyl scavenging activity; ORAC: oxygen radical absorbance capacity; RAW-NO: nitric oxide inhibition activity in RAW 264.7 macrophages; IL-6: interleukin-6;
ROS: intracellular reactive oxygen species. Number in parenthesis signifies p-value. * Correlation is significant at 0.05 level (2-tailed). ** Correlation is significant at 0.01 level (2-tailed).
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5. Conclusions

In summary, the current study comparatively investigated the phenolic contents of three novel
sorghum extracts, SC84MX, SC84KS and PI570481, that were obtained by aqueous and ethanolic
extraction systems in the absence or presence of 0.1% v/v HCl, and tested their downstream antioxidant
and anti-inflammatory activities. The results suggest that no single extraction system could effectively
extract all phenolic compounds. The extraction efficiency is a balancing consequence of solvent polarities
and the chemical nature of bioactive compounds, as well as the release of bound phenolics and the
degradation caused by excessive hydrolysis and oxidation under acidic conditions. The obtained
sorghum extracts exerted dose-dependent scavenging activity on NO and DPPH radicals, with a higher
inhibitory extent found in the DPPH assay. Under non-toxic concentrations, the selected sorghum
extracts possessed potent anti-inflammatory properties in LPS-induced RAW 264.7 macrophages,
associated with the inhibition of NO, IL-6 and ROS production. Such health-promoting capacities may
be attributed to the most dominant presence of tannins in the obtained sorghum extracts, since the
tannin content was found to be positively correlated to the DPPH scavenging activity, as well as the
inhibitory effects on pro-inflammatory markers. In conclusion, this study contributes to the growing
body of evidence that sorghum extracts, abundant in phenolic compounds, may benefit human health.
Follow-up studies that isolate and test individual constituents in the extracts and different combination
studies may help to determine the specific health protective effects of each constituent, and thus
provide clues for specialty breeding of sorghum for health promotion.
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