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Abstract

Mitochondrial function requires the coordinated expression of dozens of

gene products from the mitochondrial genome and hundreds from the

nuclear genomes. The systems that emerge from these interactions con-

vert the food we eat and the oxygen we breathe into energy for life, while

regulating a wide range of other cellular processes. These facts beg the

question of whether the gene-by-gene interactions (G x G) that enable

mitochondrial function are distinct from the gene-by-environment interac-

tions (G x E) that fuel mitochondrial activity. We examine this question

using a Drosophila model of mitonuclear interactions in which experimen-

tal combinations of mtDNA and nuclear chromosomes generate pairs of

mitonuclear genotypes to test for epistatic interactions (G x G). These

mitonuclear genotypes are then exposed to altered dietary or oxygen

environments to test for G x E interactions. We use development time to

assess dietary effects, and genome wide RNAseq analyses to assess

hypoxic effects on transcription, which can be partitioned in to mito,

nuclear, and environmental (G x G x E) contributions to these complex

traits. We find that mitonuclear epistasis is universal, and that dietary and

hypoxic treatments alter the epistatic interactions. We further show that

the transcriptional response to alternative mitonuclear interactions has sig-

nificant overlap with the transcriptional response to alternative oxygen

environments. Gene coexpression analyses suggest that these shared

genes are more central in networks of gene interactions, implying some

functional overlap between epistasis and genotype by environment inter-

actions. These results are discussed in the context of evolutionary fitness,

the genetic basis of complex traits, and the challenge of achieving preci-

sion in personalized medicine. © 2018 The Authors. IUBMB Life published

by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry

and Molecular Biology, 70(12):1275–1288, 2018
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INTRODUCTION
Mitochondria provide a fascinating link between macroevolu-
tion and microevolution, and between evolutionary and medical
genetics. Three billion years ago there were no eukaryotes, but
two billion years later virtually all eukaryotes had DNA-
carrying mitochondria fully integrated into their cellular func-
tions while being spatially separated from the DNA housed in
each cell’s nucleus. There is general agreement that mitochon-
dria evolved from free-living eubacterial cells that formed an
alliance with a distinct microbial lineage (1, 2). There is, how-
ever, a vigorous debate over the timing and patterns of gene
transfer from symbiont to host during the 1 to 2 billion-year
window of mitochondrial macroevolution (3, 4).

The ongoing evolution of mtDNA presents a rich set of micro-
evolutionary questions that are contingent on this macroevolution-
ary history (5). The genes retained in animal mtDNA encode core
subunits of the oxidative phosphorylation (OXPHOS) system and
ATP synthesis, which should be under strong selection to main-
tain proper functions that are central to organismal fitness. The
functions of mtDNA genes require coordinated expression of hun-
dreds of nuclear encoded gene products, a legacy of mitochon-
drial macroevolution. In animals, the high mutation and
substitution rate for mtDNA, coupled with maternal inheritance
and limited recombination, predispose it to mutational decay by
Muller’s ratchet (6, 7). Yet mitochondria still retain mtDNA (8).
Selection apparently has prevented the elimination of truly essen-
tial genes in mitochondria, through strict purifying selection, or
through a coevolutionary dynamic wherein deleterious mtDNA
mutations are rescued by compensatory mutations in the nuclear
genome, which enjoys the benefits of sex and recombination and
can more rapidly adapt to altered interacting gene products from
the mitochondria (9, 10). Through more than a billion years of
coevolution, these mitonuclear interactions that regulate the core
processes of energy transduction, signaling, nutrient sensing, and
apoptosis, are a compelling example of a coadapted gene com-
plex. Mitonuclear genomes must accommodate a wide distribu-
tion of fitness effects from positive and negative mutations,
different recombinational landscapes and modes of transmission,
and coordinate signaling pathways that allow organisms to adapt
to mutational and environmental stressors that challenge their
survival.

These fundamental biological processes are why mitochon-
dria also provide a fascinating link between evolutionary and
medical genetics (11). Most traits of biological and medical sig-
nificance exhibit continuous, quantitative variation in natural
and clinical populations. Understanding the genetic basis of
this phenotypic variation is one of the fundamental goals of
biology (12). The central challenge here is to determine mech-
anistic models of how nucleotide variation among individual
genomes generates the phenotypic variation that is pervasive
in all populations. With the development of genome-wide
approaches to scan for nucleotides associated with trait varia-
tion (genome-wide association studies or GWAS), there was
hope that the genotype–phenotype problem would be solved.

These studies have identified many gene variants that play sig-
nificant roles in human diseases and traits of interest to plant
and animal breeders. However, GWAS methods have produced
two unexpected results (13): the most significant genes in these
studies account for only a small fraction of the total genetic
variation for traits, and many of the GWAS hits are in non-
coding regions of the genome. The first result, known as the
“missing heritability” problem (14), implies that many genes of
small effect, or gene interactions, that contribute to trait varia-
tion remain undetected. The second result implies that muta-
tions affecting gene regulation, rather than amino acid
sequence in proteins, are a more important component of trait
variation. One implication from the missing heritability result
is to simply “look harder”: GWAS projects with larger and
larger sizes will eventually find all the genetic variation for
traits (15). This view follows Fisher’s (16) infinitesimal model
that most variation is “additive.” An alternative view is that
missing heritability is wrapped up in gene–gene (G x G, or epi-
static) and gene–environment (G x E) interactions. Boyle
et al. (13) proposed an “omnigenic” model in which “core”
genes at the hubs of regulatory networks are connected
through numerous “peripheral” genes that modify core, cellu-
lar functions. Since peripheral genes outnumber core genes
100-fold, the omnigenic model seeks to integrate the puzzle of
missing heritability with the phenotypic effects of noncoding
SNPs. While this view extends the infinitesimal “additive”
model to an extreme, it is our opinion that interactions
between core and peripheral genes are realized mechanisti-
cally by G x G and G x E interactions.

In this article, we examine the influence of epistasis and G
x E on complex traits using a mitonuclear system in Drosophila
that captures aspects of macro and microevolution, and evolu-
tionary and medical genetics (17–20). We note that virtually all
GWA analyses ignore mtDNA variation, and frequently X-linked
variation, in models linking genotype to phenotype (21). Mito-
chondrial function is by nature a problem in gene interaction:
there are 37 genes encoded in mtDNA and >1,000 nuclear
encoded proteins that are needed for mitochondrial biogenesis
(22). And mitochondrial function is by nature a problem in G x
E: the cellular processes governed by each individual’s unique
mitonuclear genotype have been selected to catabolize nutri-
ents acquired from the environment and pass their electrons to
oxygen supplied by the environment. There are dozens, if not
hundreds, of mitochondrial diseases that are associated with
mutations in either mtDNA or nuclear genes (23) (www.umdf.
org), many of which are exacerbated by environmental
stressors. Since G x G and G x E effects can limit the power to
detect individual gene effects in GWAS, we are curious to learn
the contribution of mitonuclear G x G and G x E effects on com-
plex traits.

Here we use a panel of mitonuclear genotypes in Drosoph-
ila to examine the joint effect of mtDNA and nuclear genomes
on development time and genome wide transcript abundance.
We ask how different environmental treatments (diet or hyp-
oxia, respectively) alter these traits in orthogonal designs.
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Development time is a key fitness trait and is a common marker
of disease when development is delayed. Transcript abundance,
as measured by genome wide RNAseq, is a very efficient means
of quantifying thousands of quantitative traits. The level of each
RNA transcript is a continuous trait influenced by dozens of
interacting cis- and trans-regulatory elements that are sensitive
to the internal genomic and external environmental context in
the production of mature RNAs (24). Since nuclear transcripts
are unlinked from mtDNA genes, the impact of alternative
mtDNA variants on RNA transcript levels serves as trans-
modifying factors that are a distinct class of gene interactions.
We present new analyses of data from two experiments (19, 20)
that explore the common features of mitonuclear G x G and G x
E by recognizing that the mtDNA genome is a cellular environ-
mental factor for the nucleus, and vice versa. Any external
environmental factors that trigger signaling pathways that initi-
ate cellular responses are likely to work through shared compo-
nents of complex mitonuclear signaling.

EXPERIMENTAL PROCEDURES
Genetic Stocks
We report data from two sets of Drosophila genotypes. The
“mito-DGRP” stocks were used to study mitonuclear epistasis
and genotype × environment effects of diet on development
time; the Oregon-Austria stocks were used to study mitonuclear
epistasis and genotype × environment effects of hypoxia on
transcriptional profiles. The mito-DGRP lines are a panel of
72 genotypes constructed from six different mtDNAs each
placed on 12 nuclear chromosomal backgrounds (19). The
mtDNAs are from three lines of Drosophila melanogaster (Ore-
gonR, Zimbabwe 53, and Austria W132) and three lines of
D. simulans (siI from Hawaii, siII (from stock C167.4 = “sm21”),
and siIII from Madagascar (= maI)). Each mtDNA was placed
on to the nuclear backgrounds of 12 D. melanogaster Drosoph-
ila Genetic Reference Panel lines (DGRP; (25, 26): (DGRP-304,
-313, -315, -358, -375, -517, -707, -712, -714, -765, -786, and -
820), as described previously (19). Each of these mtDNAs was
independently placed on the nuclear backgrounds of
D. melanogaster OregonR and Austria W132, as decried previ-
ously (17, 20). Genotype notation is as follows: mtDNA;nucle-
arDNA, so Zim53;315 is the Zimbabwe 53 mtDNA on DGRP-315
nuclear chromosomal background and siI;OreR is the siI
mtDNA from D. simulans on the OregonR nuclear chromosomal
background.

In each case, initial line construction used balancer chro-
mosome stocks to replace the nuclear chromosomes on to each
cytoplasm to prevent recombination and possible selection for
mitonuclear allelic combinations. Following mitonuclear con-
struction, several generations of backcrossing to male DGRP,
OregonR or Austria lines was done to homogenize nuclear
backgrounds across mtDNA genotypes. All lines were treated
with tetracycline to remove Wolbachia prior to construction,
and were confirmed to not carry Wolbachia after lines were

built. The choice of mtDNAs was intended to capture both
mtDNA polymorphism within species and divergence between
species to measure the impact of mtDNA nucleotide variation
on phenotypes. The three mtDNAs from D. melanogaster differ
by 18 nonsynonymous changes and 40 synonymous changes
across the coding regions of the molecule; those for D. simulans
differ by 24–45 nonsynonymous and ~247–298 synonymous
changes, and the divergence between D. melanogaster and
D. simulans is 90–103 nonsynonymous and 401–438 synony-
mous changes. Pairwise differences for other classes of nucleo-
tides are reported in (17, 27). The orthogonal pairing of each
mtDNA with a different nuclear background tests the hypothe-
sis that the phenotypic effects of mtDNA effects are dependent
on nuclear genetic background, which can be assessed using
ANOVAs for main and interaction effects.

Analysis of Development Time
Each of the 72 mito-DGRP lines was scored for development
time from egg to adult on four different culture media that var-
ied the yeast:sugar ratio. All stocks were cultured at controlled
density for two generations on standard laboratory food prior
to the assay. Thirty eggs from each stock were picked from
grape plates after a fixed period of egg laying, and placed into
each of 12 replicate vials. The eggs for these replicated culture
vials were collected over 3 days from two independent egg lay-
ing chambers containing ~50 females and 50 males, neither of
which proved significant is subsequent analyses, so data were
pooled across collection days. Some of the genotypes did not
produce enough eggs to establish 12 vials with 30 eggs per vial,
so 12 replicates were set up with fewer than 30. The effect of
egg density was modeled in the analyses and did not improve
the fit of the statistical models when the number of emerging
adults was analyzed as a covariate. Additional details of the
experimental set up are described in (19). All experimental
vials were housed in the same environmental chamber at 25 �C
and 12:12 light:dark cycle. Racks of vials were randomized
across the chamber, and moved during culture to avoid spatial
effects in the chamber. All vials were scored for emerging
adults twice each day (9 AM and 5 PM), with the time of day and
number of males and females in each vial recorded. The values
from each vial over the eclosion period provided estimates of
mean development time, mean egg-to-adult viability and the
coefficient of variation for these traits for males and females of
each of the 72 genotypes. Analyses of these phenotypes have
been reported (19); here we present new analyses of how differ-
ent dietary environments influence the phenotypes of these
72 mitonuclear genotypes.

Dietary Environments
All genotypes were quantified for development time in four
dietary environments that differed in the ratio of sugar and
yeast in the media. Three of the diets are approximately isoca-
loric, and the fourth diet is the standard laboratory food on
which the files are normally maintained. The three isocaloric
diets were reported previously (28). The High P:C, Equal P:C,
and Low P:C diets have 32, 20, and 8 g of SAF yeast, and
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8, 20, 32, g of sucrose, respectively, for varying ratios of Pro-
tein:Carboydrate. All remaining ingredients are the same in
each diet (1 g agar, 9 g yellow cornmeal, 0.45 g tegosept in
4.5 ml of 95% ethanol, cooked in 200 ml of distilled water).
The standard lab food contains 1.8 g agar, 5 g SAF yeast,
10.4 g yellow cornmeal, 22 g sucrose, 0.9 g tegosept in 4.5 ml
95% ethanol, cooked in 200 ml of distilled water. The Matzkin
et al. recipe uses methyl paraben as an antifungal agent, but
we substituted tegosept as that is used in our standard food
recipe. The food was prepared on a stovetop, with the agar
dissolved first followed by the remaining ingredients, and the
tegosept solution added only after the cooked food had cooled
to 55 �C. Glass vials were filled with 10 ml of cooked food, and
no additional dry yeast added on top. Eggs from each genotype
were collected from grape plates, as described above, and
placed in to replicate vials of each diet. Thus egg hatching, lar-
val development, pupariation and adult eclosion took place in
these different nutritional environments.

Hypoxia Exposure
Transcriptional profiles were determined for four mitonuclear
genotypes exposed to normoxic or hypoxic environments, in a
fully factorial design of two different mtDNAs (OreR and siI),
two different nuclear backgrounds (OreR and Austria), and
three oxygen environments (room air, or 6% oxygen for 30 or
120 min). The mitonuclear genotypes were OreR;OreR, siI;OreR,
OreR;Austria and siI;Austria. All flies were cultured at con-
trolled density for two generations on normal laboratory food
prior to the experiment. Adult flies were allowed to eclose,
mature, and mate for 3–5 days, and then were separated in to
single sex vials of 30 flies. Replicate vials were placed in a Bio-
spherix Animal chamber (Biospherix, Lacon, NY) equilibrated
at 6% O2 by streaming N2 gas into the chamber using a Bio-
Spherix ProOx Model 110 gas oxygen controller (BioSpherix,
Lacona, NY). Replicate control vials remained at room air (21%
O2) in a duplicate chamber with the door wide open, and all
experimental vials had screen mesh covering the vial opening
to allow free exchange of air. Vials were introduced into and
removed from the hypoxia chamber through a sleeve attached
to a port in the side of the chamber so O2 levels remained stable
during the exposure process. Air pressure was ambient, so this
system creates physiological hypoxia by reducing the partial
pressure of O2 to ~5.8 kPa, from the normal level of ~20.3 kPa
in room air at sea level. After 30 and 120 min of exposure to
6% O2, replicate vials were removed from the hypoxia chamber
and the flies in each vial were immediately flash frozen in liquid
N2 for later RNA extraction. The room air control samples are
referred to as time point t = 0.

RNA Extraction and Sequencing
RNA extraction, Illumina sequencing and downstream data
analyses were performed as described previously (20, 29). RNA
was extracted from each sample of 30 adult flies. There were
three replicate samples for each 4-genotype × 3-hypoxia x
2-sex treatment conditions, with the exception of only two repli-
cates from the female siI;Austria genotype at time point t = 0,

resulting in a total of 71 RNA libraries. Analyses reported here
are for 35 libraries from female samples. RNA extraction fol-
lowed procedures described in (30) for mRNA purification, frag-
mentation, first and second strand cDNA synthesis, adapter
ligation, and PCR enrichment. Nucleic acid quantification at
each stage was performed using a Qubit fluorimeter using Qubit
reagents. Libraries for RNAseq were prepared from amplified
cDNA fragments ranging from 334–500 bp using a Caliper Lab
Chip XT apparatus with DNA 750 chips (Caliper Life Sciences,
Hopkinton, MA). Quantification of transcript levels was per-
formed using 50 bp single end sequence reads on an Illumina
HiSeq 2000 instrument at the Brown University Genomics Core
Facility.

RNAseq Data Analyses
Raw sequence reads from the Illumina instrument were pro-
cessed for quality control and adaptor removal using fastq qual-
ity filter tools in the FASTX-Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/commandline.html#fastq_quality_filter_usage, and
http://hannonlab.cshl.edu/fastx_toolkit/commandline.
html#fastx_clipper_usage) which removed reads in which 80%
of the base calls have a quality score <20. Reads passing these
filters were mapped to the dm3 D. melanogaster reference
sequence using Tophat v.2.0.12 (31): https://ccb.jhu.edu/
software/tophat/index.shtml) and Bowtie2 v2.2.3 (http://bowtie-
bio.sourceforge.net/index.shtml). The BAM files generated from
Tophat were converted to. SAM files with Samtools (32) (http://
samtools.sourceforge.net/), and reads mapping to specific genes
in the dm3 annotation were counted using HTseq-count (33)
(accessed in November 2016 at http://www-huber.embl.de/
users/anders/HTSeq/doc/count.html, using version 0.6.1; but
now moved to http://htseq.readthedocs.io/en/release_0.10.0/).
The read count table from HTseq was used for downstream
analyses in edgeR (34). Initial results from these data have been
reported (20) and details are provided there. Briefly, for differ-
ential expression (DE) analyses in edgeR with multi factor ana-
lyses such as those used in our design, sequential estimations of
dispersion are recommended (34, 35). Thus we estimated a
common dispersion, followed by trended dispersion, followed
by a tagwise dispersion of the expression counts. These steps,
coupled with the exclusion of genes whose read count fell below
one count per million in at least three libraries, should restrict
the analyses to genes with comparable patterns of variation
among our experimental treatments (see Supporting Informa-
tion Fig. S1). For main effects of mtDNA, nuclear DNA or hyp-
oxic condition on expression levels, we fit negative binomial
generalized linear models (glmFit) in edgeR where the model
matrix included the intercept and the term against the model
(e.g., mtDNA, nuclear DNA or hypoxia time point). We then con-
ducted likelihood ratio tests using the glmLRT function, with
the contrast between the baseline (e.g., nDNA OreR), against
the nDNA coefficient (e.g., nDNA AutW132).

Statistical Tests for Shared G x G and G x E Effects
Here we present analyses using edgeR that draw on specific
models of mitonuclear epistasis (G x G interactions) and
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genotype x environment interactions (G x E) using the hypoxia
data set. We want to test the null model that genes that are sen-
sitive to mitonuclear epistasis are independent of genes that
are sensitive mitonuclear G x E. To identify transcripts that
show significant G x G or G x E effects, we fit generalized linear
models as described above, but include interaction terms in the
design matrix. The likelihood ratio tests were performed on the
interaction effect against the model intercept. So, to identify
transcripts that show significant mitonuclear G x G effects we
fit the following model:

Expression¼ μ+M +N +M xN + ε Model1ð Þ

where M the term for mtDNA genotype (OreR or siI), N is the
term for nuclear genotypes (OreR or Austria) and μ and ε are
model mean and error. Using likelihood ratio tests, we seek the
significance of the interaction term (M x N) against the intercept
(using mtDNA = OreR, nuclear DNA = OreR, and hypoxia time = 0
as baseline). We tested this model using combined data from
two hypoxic conditions (t = 0 and t = 30 min), and thus the hyp-
oxic environmental treatments are collapsed in each genotype
term (M, N, or M x N, each with 1 degree of freedom). This
design may have reduced power to identify significant tran-
scripts because of this pooled data set, but produced a list of
significantly differentially expressed genes.

Likewise, to identify transcripts that exhibit a significant
mitonuclear G x E, we fit the following model:

Expression¼ μ+G+H +GxH + ε Model2ð Þ,

where G is the term for the mitonuclear genotype (which has
four levels: OreR;OreR, siI;OreR, OreR;Austria, siI;Austria), H is
the term for hypoxia (time = 0 or 30, with 0 being the room
air control). As before, using likelihood ratio tests, we seek the
significance of the interaction term (G x H) against the inter-
cept (using mtDNA = OreR, nuclear DNA = OreR, and hypoxia
time = 0 as baseline). We tested this model with the same data
set described above (t = 0 and 30 min), and note that the
degrees of freedom for G are df = 3 while that for H is df = 1,
and there is no pooled data in any factor in this design. These
analyses produced a list of genes with significant G × E terms
from the model. To test the hypothesis that gene lists derived
from these two models are independent (have a 5% overlap of
gene names), we used a G-test of heterogeneity with a 5%
overlap as the null expectation and the observed overlap as
the alternative.

Recognizing that the above models are not fully compara-
ble, we performed a more complete test using one full, three-
way model that allows for comparisons of genes responding to
the mitonuclear epistatic interaction (G × G) and genes
responding to the combine mitonuclear genotype × environ-
ment interaction (G x G x E). The data consisted of all libraries
from the three hypoxia time points (t = 0, 30, and 120) and the
four mitonuclear genotypes. We fit the following model in
edgeR by including all interaction terms in the design matrix:

Expression¼ μ+M +N +H + MxNð Þ+ MxHð Þ+ NxHð Þ
+ MxNxHð Þ+ ε Model3ð Þ

where M, N, and H are as defined above. The significance of
each interaction term was inferred using likelihood ratio tests
against the model intercept with mtDNA = OreR, nuclear
DNA = OreR, and hypoxia time = 0 as the baseline. The num-
bers of genes that were significant under these two tests dif-
fered, with very different FDR cutoff values. We compared the
top 500 and 800 genes based on raw P values from each list. As
before, we tested the null hypothesis that the lists were inde-
pendent using a G-test of heterogeneity with a 5% overlap of
gene names as the null and the observed as the alternative.

To capture the time course component of the transcrip-
tional responses, we performed analyses using Weighted Gene
Coexpression Network Analysis, WGCNA (36, 37). This
approach identifies modules of coexpressed transcripts with
common patterns across treatments, and can be used to assign
significance to individual factors (e.g., mtDNA, nuclear DNA or
hypoxia time point) that are associated with specific modules.
Initial module discovery is unsupervised, other than specifying
the minimum number of transcripts to be assigned to any mod-
ule. The results of these analyses provide a means of assessing
the shared functions among genes with similar temporal
responses to hypoxia in our experimental design. It is likely that
a transcript that goes up and then down over the time course
will not be detected as significant by simple edgeR analyses, but
may have common or conflicting responses over time in differ-
ent mitonuclear genotypes that reflects underlying functional
responses to the experimental manipulations.

RESULTS
Mitonuclear Coevolution and Epistasis for
Development Time
A primary question we sought to test using the panel of
72 mitonuclear genotypes concerned mitonuclear coevolution
or coadaptation. If mtDNAs are coadapted to their respective
nuclear backgrounds we predicted that the genotypes carrying
one of the three mtDNAs from D. melanogaster (“home team”

mitonuclear combinations) would be more “fit” than those car-
rying one of the three mtDNAs from D. simulans (“away team”

mitonuclear combinations). With ~100 amino acid substitutions
between D. melanogaster and D. simulans in the mtDNA-
encoded proteins, the “away team” mitonuclear genotypes
were expected to have delayed development time. The evi-
dence for this is weak at best. Figure 1 shows that in only 2 of
the 12 DGRP nuclear backgrounds do the D. simulans mtDNAs
have delayed development time compared to the home team
D. melanogaster mtDNAs. In the DGRP-714 and -765 nuclear
backgrounds, the D. simulans mtDNAs are significantly
delayed compared to the D. melanogaster mtDNAs (in Fig. 1
green box plots = D. simulans mtDNA, yellow box
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plots = D. melanogaster mtDNA). But in 10 of the 12 nuclear
backgrounds there is no significant “species” effect of mtDNA
divergence.

In contrast, one of the more common results was the
appearance of “permissive” nuclear backgrounds that showed
somewhat random differences in the development times for
different mtDNA across nuclear genotypes (315, 358,
375, 707, 712, 820 in Fig. 1). There were two nuclear back-
grounds that appeared to suppress or “canalize” the effects
of mtDNA variation (517 and 786). Collectively, these data
provide clear evidence that mitonuclear epistasis is a more
general result than mitonuclear coadaptation for the evolution

of mtDNA in the D. melanogaster subcomplex, at least for the
fitness trait of egg-to-adult development time (see also Mon-
tooth et al., 2010). The same conclusion holds for egg-to-
adult survival (19).

Relationship between Mitonuclear Epistasis and G x E
for Development Time
Next we ask if mitonuclear epistasis is robust to dietary envi-
ronment? Each of the 72 genotypes described in Figure 1 were
cultured on three additional dietary environments with isocalo-
ric combinations of protein and carbohydrate (P:C ratio from
yeast and sucrose in the food medium; see Materials and

FIG 1 Mitonuclear variation for development time in Drosophila. Each panel represents a different nuclear genetic background of the

DGRP collection. Each box plot inside each panel represents the distribution of development time scores for flies carrying a dif-

ferent mtDNA in the given DGRP background. The green box plots represent three mtDNAs from D. simulans (maI = siIII, siI,

siII = sm21) and the yellow boxplots represents three mtDNAs from D. melanogaster (Zim53, Austria, OreR). The y-axis is devel-

opment time in hours. The colored rectangles overlapping various genotypes (red, purple, blue) refer to three broad patterns of

mtDNA effects across different nuclear genetic backgrounds.
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Methods). The High P:C diet results in the fastest egg-to-adult
development time, the Medium P:C diet is intermediate, the
Low P:C diet slower, with the standard laboratory food, with
the lowest protein concentration, resulting in the slowest devel-
opment time (19). A three-way ANOVA with main effects of
nuclear genotype, mtDNA, and diet, reveals that all main
effects and interaction terms were highly significant (see
Table 2 in ref. 19). Diet contributed the most to variation in
development time, but there were a number of mitonuclear
genotypes that showed faster development time on a lower-
protein diet than other genotypes on the higher protein diets.
These represent the G x G and G x E interaction terms, and
are visualized as crossing reaction norms for development
time of mitonuclear genotypes on all diets (19) (Figs. 1 and 2).
These results imply that the genetic interaction defined by a
mitonuclear genotype is sensitive to the environment in which
development proceeds.

Figure 2 presents a new analysis of these results, plotting
“reaction norms” of dietary environments across mtDNA back-
grounds within several nuclear DGRP backgrounds. Tradi-
tional norm of reaction plots display the phenotype for a
genotype across a range of environment; this plots inverts that
relationship and treats the mtDNA genotype as an “environ-
ment” for each nuclear genome, with the diets serving as the
conditions that reveal sensitivity to mtDNA. A notable feature
of each plot is that the increasing protein concentration alters
the position and the shape of each line: the yellow line in
Figure 2A (high P:C diet), is always lower than the black line

(lab food), but generally flatter across mtDNAs in each nuclear
background. The impact of the diet on the genetic basis of the
variation in development time is quantified in Figure 2B, which
shows the proportion variance explained by the main effects of
Nuclear genotype, mtDNA, and the interaction terms Nuclear x
mtDNA (i.e., the importance of mitonuclear epistasis). There is
a striking difference in the variance explained by the mitonuc-
lear epistatic (G x G) term in P:C diets compared to the lab
food with the lowest protein concentration. It is evident that
the increase in the contribution of mitonuclear epistasis
reduces the residual variance explained by the model. This
demonstrates that mitonuclear epistasis is sensitive to environ-
mental condition. The patterns suggest that higher P:C diets
are suppressing the epistatic relationship between mtDNA and
nuclear background.

Relationship between Mitonuclear Epistasis and G x E
for Gene Expression under Hypoxia
The important impacts of mitonuclear G x G and G x E for one
complex trait (development time) raises the question of how
general these patterns are for other complex traits. Here we
consider gene expression, as defined by transcript abundance,
as one source of information on thousands of complex traits
that are integrative features of functioning genomes. The level
of any transcript depends on a very large number of interacting
cis- and trans-factors ranging from nucleotide specific variation
at transcription factor binding sites, to concentrations of tran-
scriptional activators and repressors, to chromatin availability,

FIG 2 Mitonuclear epistasis for development time is modified by diet. a, Modified reaction norm plots for development time across

six different mtDNA environments (x-axes), in each of four nuclear backgrounds (each panel), with diet as the line displayed in

each interaction plot. The black line is the lab food diet, and the yellow, blue and red lines are the different protein:carbohydrate

diets. The among mtDNA variance in each nuclear background is highest for the lab food and lowest for the High P:C diet. b, Var-

iance partitions for a nuclear x mtDNA ANOVA on development time in each diet. The nuclear x mtDNA component is highest in

the lab food diet, as reflected in the panels in A.
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all of which are sensitive to tissue specific factors, developmen-
tal stage, and external environmental cues (24). We test the null
hypothesis that the genes whose expression is altered by differ-
ences in mitonuclear genotype are independent of the genes
whose expression is altered by changes in environment. We use
a set of four mitonuclear genotypes with two mtDNAs each
placed on two nuclear chromosomal backgrounds: OreR;OreR,
siI;OreR, OreR;Austria, siI;Austria. Adult flies of each genotype
were placed in a hypoxic environment (6% O2) for 30 or
120 min, and transcriptional profiles were quantified by Illu-
mina RNAseq (see Methods).

Details of the patterns of gene expression variation in this
Drosophila system have been reported previously (20, 29). Here
we report the results of new statistical analyses that test the
null hypothesis of independence of G x G and G x E effects.
Figure 3 provides a summary of the results for females; the
effects for males were similar but slightly less pronounced.
Figure 3A is a multidimensional scaling (MDS) plot that displays
the distinct patterns of nuclear, mtDNA and hypoxic effects on
expression for the top 100 genes in an analysis of differential
expression (DE) among 35 RNAseq libraries, using edgeR (one
library from siI;Austria was removed from the analysis). The
nuclear genetic effect is the largest source of variation in
expression (log(fold change), on dimension 1), with mtDNA vari-
ation the second largest source of variation and the different
time points contributing significant, but minor components of
variation. Figure 3B,C demonstrate that each mitonuclear
genotype has a unique set of genes that are either up- or down-
regulated (Fig. 3B,C, respectively) due to hypoxic exposure.
Each Venn diagram displays a larger number in the unique

regions that are restricted to individual mitonuclear genotypes,
and smaller number of genes in the intersecting regions that
are shared across genotypes. This is evidence for “private” or
“personalized” mitonuclear responses to hypoxia (20).

To test for the independence of mitonuclear G x G effects
and G x E effects of hypoxia we compared the results of interac-
tion effect models using edgeR. Results from two sets of models
are presented. In the first set we identify G x G genes by fitting
Model 1 (see Methods) that identifies transcripts with significant
mtDNA x Nuclear interaction terms in the model comparing all
2 mtDNA × 2 Nuclear genome = 4 mitonuclear genotypes across
pooled data for normoxia and 30 min of hypoxia. This analysis,
with one degree of freedom in each level, identified 2,040 genes
with DE transcripts at the P = 0.05 level. We compare the Model
1 gene list to a gene list resulting from Model 2 (see Methods)
that identified transcripts with significant genotype × hypoxia
interaction terms in the model. The same data set is used in
Model 1 and 2, but in Model 2 “genotype” refers to one factor
with four levels of the joint mitonuclear genotype (see above).
Expression levels of these four genotypes (3 degrees of freedom)
are compared between normoxia and 30 min of hypoxia (one
degree of freedom). Model 2 identified 1,167 genes with DE
transcripts at the P = 0.05 level. There are 285 genes shared
between Model 1 and 2. This represents 13.9% of the G x G
(Model 1) genes and 24.4% of the G x E (Model 2) genes (see
Fig. 4A). If we assume a strict null of independence, 5% of the
genes on each list should overlap (102/2,040 for G x G and
58/1,167 for G x E), but the overlap is 2.8–4.9 times higher than
expected, respectively. Using a G-tests of heterogeneity, with
the observed values of 285 out of 2,040 compared to 102/2,040

FIG 3 Personalized expression profiles of Drosophila mitonuclear genotypes in a time course of hypoxia exposure. a, a multidimen-

sional scaling plot of the top 100 genes in a differential expression analysis among 35 RNAseq libraries. The four mitonuclear

genotypes are listed in distinct colors below the plot, and the shape of the symbol identifies the time in 6% oxygen. Each mito-

nuclear genotype falls in a distinct region of the plot, reflecting the unique contribution of nuclear (dimension 1) mtDNA (dimen-

sion 2) to expression variation. b and c, Each mitonuclear genotype has a unique set of up-regulated (b) or down-regulated

(c) genes. Few genes are shared among mitonuclear genotypes in their response to hypoxia.
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for G x G, or 285 out of 1,167 for G x E compared to 58/1,167,
the observed values are highly significantly different from the
expected by chance for either comparison (G = 82.6, P < < 2.2e-
16, G = 144.5, P < 2.2e-16).

One problem with this test is the different models have dif-
ferent degrees of freedom, and Model 1 pools the libraries from
different hypoxic environment (t = 0 and t = 30) into each
mtDNA or nuclear genome factor in a 2 x 2 G x G test. No such
pooling is done in Model 2, where four genotypes are compared
between two environments. To test if these models are generat-
ing spuriously high (or low) patterns of shared gene lists, we
analyzed Model 3, which fits one full three-way model of
mtDNA x nuclear DNA x hypoxia, and uses all three hypoxia
time points (see Methods). The respective G x G and G x G x E
terms in this model are each tested against the intercept to gen-
erate gene lists that have significant mitonuclear epistasis (G x
G) or significant mitonuclear G x E, respectively. The advantage
of this approach is that there is one model shared for the com-
parison and we are testing for significance against the same
intercept, which should standardize the comparisons. Using this
approach, the G x G test identified 2,291 genes with P < 0.05
and 794 that survived a FDR cutoff of 5% (Supporting Informa-
tion Table S1). The G x G x E test identified 494 genes with
P < 0.05 but none survived the FDR cutoff, due to the very dif-
ferent distribution of P-values from this term in the model
(Supporting Information Table S2). We use the unadjusted P-
values to select gene lists for comparison. Using the top
500 genes from each list, there are 169 genes shared between
G x G and G x G x E (34% shared, see Fig. 4B). Using the top
800 genes there are 303 shared between G x G and G x G x E

(38% shared). Both of these estimates far exceed the null expec-
tation of 5% shared genes (G = 102.5, P < 2.2e-16 for the top
500 genes, and G = 192.7, P < 2.2e-16 for the top 800 genes).

To examine if this approach is biased towards enrichment
of overlapping genes, we simulated shared lists by randomizing
the rankings of the genes derived from the two contrasts of
Model 3, and examined the number of shared genes on pairs of
such random lists. With increasing sample size of genes in the
sample, this comparison will always converge to 100% overlap
when all genes from both lists are considered. If there is no sig-
nal of shared expression effects for G x G and G x G x E in our
data, the proportion of overlapping genes should increase line-
arly with increasing shared list size. In clear contrast to this
null expectation, the proportion of overlapping genes on the
two lists accumulates much faster than by random chance (see
Fig. 5A). These analyses indicate some common features of
gene expression variation due to mitonuclear genetic interac-
tions, and the interaction of genotypes with hypoxic
environments.

As a third approach to examine the shared nature of
mtDNA-mediated and hypoxia-mediated effects on gene expres-
sion, four genotype-specific tests were conducted in edgeR. For
each mitonuclear genotype, genes were identified that were sig-
nificantly differentially expressed by “swapping” the mtDNA in
the same nuclear background under normoxic conditions
(a ΔmtDNA effect comparing, e.g., OreR;OreR with siI;OreR at
t = 0). This is essentially a one-way model like Model 1, with no
nuclear term. For comparison, genes were identified that were
significantly differentially expressed by the hypoxia treatments
to OreR;OreR (a ΔO2 effect, e.g., OreR;OreR across t = 0, 30 and

FIG 4 Venn diagrams showing the number of genes with differential expression due to mitonuclear (G x G) or G x E manipulations,

and their overlap. a, Results of a comparison of four mitonuclear genotypes in normoxia or 30 min of 6% hypoxia, using edgR

and Model 1 and 2 in the text. b, Results of a comparison of four mitonuclear genotypes in normoxia, 30, and 120 min of 6% hyp-

oxia, using edgR and Model 3 in the text. c, Results of a comparison of the effects of an mtDNA “swap” and a hypoxia treatment

for each focal genotype. The overlaps are significantly greater than expected by chance, based on Fisher’s exact test (see text).
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120 min in 6% oxygen). This is essentially a one-way model like
Model 2, with no genotype term. These comparisons are conser-
vative as they seek to identify differentially expressed genes that
are shared between different data sets. Figure 4C shows the
results, which support shared features of gene expression regula-
tion by hypoxia and by mtDNA-mediated trans-effects, with a
clear asymmetry of the effects. For genes differentially expressed
by mtDNA, 7.7, 12.1, 9.8, and 27% were shared when compared
to the genes differentially expressed by hypoxia. But the reverse
comparison shows that genes differential expressed by hypoxia
are strongly shared with genes differentially expressed by mtDNA
(between 15% and 45%). The genes differentially expressed by
mtDNA are a larger set of genes, and those differentially
expressed by hypoxia are strongly enriched for genes relating to
mitonuclear genetic interactions. The randomization tests show
that this overlap is greater than expected by chance (Fig. 5B).

Gene Coexpression Analyses
The patterns of shared gene lists suggest that some underlying
transcriptional mechanisms are shared for genomic integration
between mtDNA and nuclear factors, and those processes that
sense oxygen. To examine the underlying patterns of shared
gene expression we performed weighted gene coexpression net-
work analysis (WGCNA) (36, 37). These analyses revealed a
large number of modules of genes with common profiles of
expression across the four mitonuclear genotypes and the three
hypoxia time points. One such example is illustrated in
Figure 6. The heat map shows a module of genes that demon-
strate the patterns of G x G x E effects for expression. The rows
are individual genes, the columns are the individual RNAseq
libraries, partitioned from left to right by mitonuclear genotype
and hypoxic time point. The left half of the figure shows that
the Austria nuclear background has lower expression than the
OreR nuclear background (green vs. red). In the Austria

background the OreR mtDNA (first nine columns) exhibits a
clear temporal response to hypoxia as revealed by the eigen-
gene plots below the heat map. The siI mtDNA in the Austria
nuclear background is somewhat unresponsive to hypoxia. In
contrast, these two mtDNAs in the OreR nuclear background
appear to have opposite effects on this module of genes: the
OreR mtDNA has a modest response to hypoxia, but the siI
mtDNA show a clear linear response.

When this module of genes is assembled in to a network
using Cytoscape, we can compare the positions of the genes that
are differentially expressed by mtDNA (G x G genes; Fig. 6B, top
right), and those differentially expressed by hypoxia (G x E genes,
Fig. 6C, bottom right). Several of these genes overlap, and in each
case they seem to be more common in “core” positions, rather
than “peripheral” positions in the network. The WGCNA analysis
uncovered a number of other gene expression modules with com-
parable G x G x E patterns that differ in direction and degree.
While there is not space to illustrate all of these heat maps and
networks, the cluster shown in Figure 6 is representative of the
overall picture of mitonuclear G x G and G x E integration.

DISCUSSION
The biology of mitochondria demands a joint macroevolution-
ary and microevolutionary perspective to appreciate the role
they play in phenotypic variation. The functional integration of
two genomes from distinct domains of life is tremendously com-
plex due to at least three sources of variation. First, proper
mitochondrial function requires the coordinated expression of
37 genes encoded in mtDNA inside mitochondria and over
1,000 nuclear-encoded genes (22). This intracellular, interge-
nomic communication problem is compounded by variation
among sexes, tissues, and age groups (38). Second, all genes
exhibit variation in natural populations such that every

FIG 5 Plots of simulated and observed data sets displaying the proportion of shared genes between two lists. The straight black lines

represent four simulations where the P-value rank of genes is randomized, and increasing sample sizes are chosen to compare

shared genes. The colored lines show similar accumulation curves, using observed G x G and G x E gene lists, ranked by P-

value. There are more genes than expected at the list sizes observed in our analyses. By definition, sharing will be 100% when

both samples include all genes in the genome (upper right corner).
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individual has a unique mitonuclear genotype. The high muta-
tion rate for mtDNA (7, 39), and the large mutational target of
nuclear genes introduces additional complexity to the fitness
effects of nuclear-mitochondrial genetic interactions in natural
populations. Third, it is well known that environmental condi-
tions alter how a genotype is expressed as a phenotype (40, 41),
and this is true for nuclear-mitochondrial interactions as well
(18, 19, 42). Not surprisingly, the genetic bases of complex
mitochondrial disease, and more generally the genetic variation
for mitochondrial performance in natural populations, are very
poorly understood. There are a growing number of examples
that mitonuclear coevolution can drive adaptive evolution (10,
43). With the advent of mitochondrial replacement therapies
that place an F1 nucleus from the biological parents into a cyto-
plasm with nondisease mtDNAs from a third, healthy parent,
the fitness consequences of mitonuclear interactions are of
increasing medical relevance (44, 45).

In this article, we report new analyses of a Drosophila
model that seeks to dissect the properties of mitonuclear gene x

gene (G x G) interactions and genotype x environment (G x E)
interactions. These analyses ask a more general question: do
epistatic G x G interactions have anything in common with G x
E interactions? We present two different tests of this idea: mito-
nuclear effects on development time on different diets, and
mitonuclear effects on transcriptional profiles under hypoxia.
These experiments are directly relevant to mitochondrial biol-
ogy, but we feel that they bear more generally on the question
of the genetic architecture of complex traits, the debates over
the missing heritability (13, 46), and the challenges of develop-
ing meaningful ways of advancing personalized genomic, or
precision, medicine.

Our earlier studies documented the details of a mitonuclear
epistasis for development time in Drosophila, and its modifica-
tion by dietary environments (19). We have reanalyzed these
data in an “inverted” form of norm of reaction plots, and shown
that the variation among mtDNAs in different nuclear genetic
backgrounds (itself a G x G effect), is altered by high versus low
protein:carbohydrate diets. The patterns of mitonuclear genetic

FIG 6 Heat maps and gene expression network for a module of differentially expressed genes reveled by WGCNA analyses. a, Gene

expression levels for each gene in the module (rows) and replicate library and experimental treatments in the experiment (col-

umns). The bar plot below the heat map displays the value of the eigengene from WGCNA, reflecting overall expression of the

genes in that treatment. Note that the effects of hypoxia and mtDNA genotype in each nuclear background are unique to the par-

ticular combination of variable, reflecting G x G x E effects. b, Network of coexpressed genes in the module from a, with gene

showing significant mitonuclear epistatic effects (G X G) highlighted in red. More of these genes are central than peripheral in

the network. c, The same network in b with genes showing significant G x G x E effects on gene expression. The overlap of these

significant genes is in the proportions represented in Figure 4. The module network layout was informed by edge weights using

the prefuse force directed algorithm implemented in Cytoscape. The network topology is therefore identical in both figures.
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variation across normal laboratory food is more pronounced,
and with increasing protein concentrations in the food, develop-
ment time decreases. The genotypes with the more striking epi-
static interactions appear to be suppressed by high P:C diets (see
Fig. 2). This is indirect evidence that the mechanisms that are
altered by mismatched mtDNAs and nuclear genomes are fur-
ther modified by changing nutrient levels during development.

The literature is mixed on the effects of stress on the relative
importance of direct selection or epistatic contributions to varia-
tion (47). An implication of our results is the complex signaling
pathways that maintain proper mitonuclear function are part of
the same mechanisms that allow organisms to respond to envi-
ronmental stress. It is intuitive that dietary environments should
have a special connection with mitonuclear epistasis as these
provide different fuels that ultimately find their way to the
OXPHOS and β-oxidation pathways and contribute to energy
transduction. A metabolomics study of alternative mtDNAs in a
common nuclear background showed shifts in a number of
metabolites in the same direction as dietary rapamycin that
should suppress TOR signaling, implying parallel effects of com-
mon pathways from genetic or environmental manipulations
(48). Further transcriptional, biochemical and metabolic analyses
of the mito-DGRP lines described here are needed to determine
the generality of these links between dietary and mtDNA effects.

Just as dietary environments should have a close biochemi-
cal link with mitonuclear genetic variation, so should altered
oxygen environments. Oxygen gas (O2) is the terminal acceptor
of the electrons that are derived from dietary input, and cyto-
chrome oxidase (complex IV of the OXPHOS chain) catalyzes
this reaction. These facts motivated the experiments and ana-
lyses we report here, using a different set of mitonuclear geno-
types. Under physiological conditions, mitochondria consume
oxygen faster than it is delivered, so some level of hypoxia is
pervasive, and is caused by mitochondrial activity. It follows
that mitonuclear interactions might be central to the hypoxia
transcriptional response, and thus provide a promising context
to ask the question of overlap between mitonuclear G x G and G
x E. Our earlier studies showed that each different mitonuclear
genotype has a unique transcriptional response to hypoxia (20,
29), which is summarized in Figure 3. A surprising result is that
our data fail to identify a “canonical” hypoxia response. If such
a core system exists, it should have emerged as shared
responses across all of the genotypes, but there are remarkably
few shared genes that respond to hypoxia in different geno-
types. Our analyses do uncover the hairy gene as an important
differentially expressed gene in most genotypes, so we have
confidence that our experiments are working through this tran-
scriptional repressor that has been linked to hypoxia (49). But
the identification of a number of other genes or pathways that
are sensitive to hypoxia is not unique to our specific Drosophila
mitonuclear system. In yeast, the transcriptional response to
hypoxia is highly varied across genes and involves multiple reg-
ulatory pathways (50). This underscores the need to advance
our understanding of how networks of interacting genes and
environmental factors mediate phenotypic changes.

The transcriptional data provide a rich resource of pheno-
types (transcript abundance) to address the question of common
features of the mitonuclear epistasis and G x E responses. Using
edgeR to analyze RNAseq data from four mitonuclear genotypes
exposed to different hypoxic conditions, we have generated lists
of differentially expressed genes that are sensitive to mitonuclear
G x G or G x E effects. We find a repeatable and highly significant
overlap for genes that respond to mitonuclear epistatic variation,
and genes that are responsive to hypoxic exposure. The degree
of overlap varies somewhat with the different forms of analysis.
If nonoverlapping subsets of the data are used for the G x G and
the G x E effects, the overlap is somewhat lower (7%–25%, Fig. 4),
but if the different interaction effects (G x G or G x G x E) are
extracted from a single full, three-way model, there is consider-
ably more overlap (>30%, Fig. 4).

We examined the data for possible sources of bias that
might inflate the observed overlap above that assuming inde-
pendence of G x G and G x G x E. All genes were subject to
the same tagwise adjustment for dispersion of expression
(Supporting Information Fig. S2A) and identical gene lists
were present in both (G x G and G x G x E) analyses. The two
lists have very similar ranges of total expression, and the dis-
tribution of significant genes in the G x G and G x G x E lists
both showed similar proportions of significant genes across
the range of total expression (see Supporting Information
Fig. S2B,C). The G x G genes show a positive relationship
between the proportion of significant genes and total expres-
sion level, that is not evident in the G x G x E genes, but these
distributions are broadly overlapping (Supporting Information
Fig. S2D). While it is possible that a 5% null is not the appro-
priate expected overlap value, the observed overlaps reported
in Figure 4 appear not to be due to inherent biases in the data.
If we were to relax this to a 10% null overlap, all of the tests
presented in Figure 4A–C would still be highly significant, and
at a 20% null overlap the tests in Figure 4B,C are still highly
significant. We suggest that these overlaps are sufficiently high
that they point to the existence of shared pathways that govern
mitonuclear communication, and those that allow different
genotypes to respond to altered environmental conditions.

We explored the patterns of gene co-expression among
these data sets and uncovered a number of distinct modules of
co-expressed genes. The opposing directions of transcriptional
response of four different mitonuclear genotypes and different
hypoxic time points reveal the challenge of defining a simple
direction and core pathway of hypoxic response (Fig. 6). Ana-
lyses of the network structure of these modules, and the place-
ment of differentially expressed G x G genes or G x E genes on
these networks, shows that these genes are more represented
in the center of the network, than at the edges (Fig. 6B,C). We
propose that the common functional basis of G x G and G x E
genes is that they represent “core” genes that integrate signals
from other genes. Figure 6 shows quite visually why a linear
pathway approach to the connection between genotype and
phenotype is likely to be difficult to interpret at best, and simply
wrong at worst. The overlapping and somewhat central nature
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of G x G and G x E genes provides a clearer picture of how a
whole organism might integrate these linear pathways when
genotypes and environments vary. These patterns further illus-
trate that the mitonuclear genetic interactions fit well with the
“omnigenic” model proposed by Boyle et al., involving core and
peripheral genes (13). The primary modification we suggest to
this model is that G x G and G x E interaction terms are critical
links connecting core and peripheral genes, and that interac-
tion effects are central to the additive, infinitesimal model.

Figure 7 presents a simple model of how to integrate the
different processes implied by G x G and G x E interaction. A G
x E “gene” is one that is altered by the external environment
(e.g., diet or oxygen or temperature). A G x G “gene” is one that
alters the cellular environment for another gene. The union of
these two processes is that stimuli coming from “outside” must
transduce a signal through cellular processes, and the genes
that are shared in these pathways can be both kinds of gene.
Conceptually, different mtDNAs provide different cellular envi-
ronments for the nucleus, and vice versa. This is very much the
same as a different diet being a different environment for the
mitonuclear genotype. As such, plots of crossing reaction norms
can look very similar in each case.

While additional transgenic studies are needed to validate
the mechanisms implied by our results, the complexity of the
relatively simple system we have developed suggests that this
complexity needs to be understood to advance personalized
genomic medicine or its offspring, precision medicine. It
remains to be determined how much of human phenotypic and

clinical variation fits the additive or G x G and G x E models for
complex traits. Likewise, it remains to be determined how
much of the “omnigenic” model (13) is strictly additive or a mix-
ture of additive and interaction effects. Technology can help us
be precise, but biology makes it challenging to be accurate.
Medical treatments that work precisely for one genotype may
not be accurate for other genotypes. Genetic and environmental
variation present a special challenge for precise, personalized
medicine, but insights from evolutionary genetic approaches
can help address this challenge, with hypoxia therapy being a
promising example (51). Our data suggest that there are more
linkages between macro and microevolution, and between evo-
lutionary and medical genetics, and the mitochondria lie at the
hub of this complex problem in systems biology.
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