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Background: Diffuse large B cell lymphoma (DLBCL) is the most common

lymphoma in adults. Tumour microenvironment is closely related to tumour

prognosis and immune checkpoint blocking therapy (ICBT). This study aimed to

investigate the immunological and prognostic characteristics of the tumour

microenvironment (TME), as well as the regulatory mechanisms.

Methods: Gene expression profiles and clinical data of patients with DLBCL

were obtained from GEO database. ESTIMATE, CIBERSORT, and ssGSEA

analyses were used to explore microenvironment characteristics and

regulatory mechanism of the immune subtypes, which were identified by

consistent clustering. The differences in enriched pathways were showed by

GSEA. Hub genes associated with CD8+ T cells, which were identified by

WCGNA, were exhibited biological functions through GO and KEGG.

Immune-related gene scores (IRGSs) based on hub genes were used to

evaluate the prediction of immune subtypes and ICBT, and retrospective

analysis was used for validation. Finally, prognostic genes were screened to

construct risk models.

Results: Consensus clustering divided patients with DLBCL into two subtypes

with significant heterogeneities in prognosis and immune microenvironment.

Low immune infiltration was associated with poor prognosis. Subtype C1 with

high immune infiltration was enriched in multiple immune pathways. We

observed that two common mutated genes (B2M and EZH2) in DLBCL were

closely related to MHC-I and microenvironment. Our further analysis

manifested that MYD88L265P may be the main cause of TLR signalling

pathway activation in subtype C1. Hub genes (SH2D1A, CD8A, GBP2, ITK,

CD3D, RORA, IL1R2, CD28, CD247, CD3G, PRKCQ, CXCR6, and CD3E) in

relation with CD8+ T cells were used to establish IRGS, which was proved an

accurate predictor of immune subtypes, and patients in high-IRGS group were

more likely to benefit from ICBT. Retrospective analysis showed that absolute

lymphocyte count (ALC) was higher in the group that responded to the PD-1
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inhibitor. Finally, the risk model was constructed based on two genes (CD3G

and CD3D), and the low-risk group showed better prognosis.

Conclusion: DLBCL immune classifications with highly heterogeneity are a

powerful predictor of prognosis and ICBT. The IRGS is proved to be a reliable

tool to distinguish immune subtypes as a substitute for gene expression profile.

KEYWORDS

diffuse large B cell lymphoma, immune subtype, immune microenvironment, immune
checkpoint blocking therapy, gene set-based identification

Introduction

Diffuse large B cell lymphoma (DLBCL) accounts for

30–58% of all diagnosed cases of non-Hodgkin lymphoma,

with an annual incidence of 1–5/10,000 (Li and Young, 2018).

Further, DLBCL is a complex aggressive cancer with

heterogeneous phenotypic, clinical, and molecular

manifestations (Wright et al., 2003; Abramson and Shipp,

2005; Pan et al., 2015). Currently, R-CHOP (rituximab,

cyclophosphamide, doxorubicin, vincristine, and

prednisone) is the standard first-line treatment (Coiffier

et al., 2002), and although cure rates have improved to

60–70%, nearly 40% of patients still present with refractory

or relapsed disease (Younes, 2015). Reliable prognostic

stratification and first-line/salvage treatment strategies still

fail to meet clinical requirements, and the search for novel

prognostic and treatment predictors has become an urgent

issue.

Studies have confirmed that the tumour

microenvironment (TME) in DLBCL affects patient

prognosis (Nicholas et al., 2016; Ciavarella et al., 2018).

Tumour-infiltrating lymphocytes (TILs) were first reported

in 1986 by Rosenberg et al. (1986), and they are an important

player in the immunomodulatory function of the TME. CD8+

T cells are the principal constituents of TILs, and CD8+ T cell

dysfunction is the primary cause of tumour immune tolerance

and escape (Jiang et al., 2021). Studies of the immune

microenvironment of solid tumours suggested that tumours

can be broadly classified into T cell-inflamed and non-T cell-

inflamed phenotypes (Sharma and Allison, 2015; Gajewski

et al., 2017; Thorsson et al., 2019). T cell-inflamed tumours are

characterised by upregulation of the expression of T cell

activation-associated genes and downstream genes of the

interferon-γ signalling pathway (Tumeh et al., 2014; Ayers

et al., 2017), greater T cell infiltration, and a stronger response

to immune checkpoint blocking therapy (ICBT) (Zhang et al.,

2020). In contrast, non-T cell-inflamed tumours are largely

devoid of infiltrating immune cells and usually respond poorly

to ICBT (Tang et al., 2020).

Many lymphoma subtypes have been found to be sensitive

to ICBT, and all share increased T-cell infiltration as a

common feature. Classic Hodgkin’s lymphoma (cHL) is a

typical inflamed lymphoma with upregulated programmed

cell death protein 1 (PD-1) expression in the TME, which

binds to programmed cell death ligand 1 (PD-L1) on tumour

cells to inhibit the effector function of CD8+ T cells (Liu and

Shipp, 2017). Studies on PD-1 monoclonal antibody treatment

for refractory or relapsed (r/r) cHL have shown that the

effector functions of dysfunctional T cells are restored

when the dominant immune checkpoints are blocked

(Armand et al., 2015; Younes et al., 2016; Chen et al., 2017).

Unlike cHL, DLBCL is usually considered a non-inflamed

lymphoma (Kline et al., 2020). First, germinal centre B-cell

derived high grade B cell lymphoma is associated with MYC,

BCL-2, and/or BCL6 rearrangements and the expression of

double-hit genes, exhibiting sustained tumour cell

proliferation, suppressing immune cell infiltration, and

promoting immune “exclusion” (Ennishi et al., 2019).

Second, DLBCL is enriched in EZH2-activating mutations,

leading to the downregulation of HLA expression and

promoting immunological “ignorance” (Ennishi et al.,

2019). Similar phenomena have been observed in other

cancers (Burr et al., 2019; Ennishi, Takata, et al., 2019).

Therefore, ICBT is usually ineffective against DLBCL,

though some studies have reported its successful use in r/

rDLBCL (Xu-Monette et al., 2018; Zhang et al., 2020; Wang

et al., 2021; Mu et al., 2022). It is thus speculated that an

inflammatory environment favourable to ICBT might exist in

some cases of DLBCL. Therefore, distinguishing between

inflamed and non-inflamed phenotypes and understanding

the mechanisms underlying the development of non-inflamed

lymphoma will facilitate the design of treatment strategies that

target phenotype switching to improve the efficacy of ICBT.

In this study, we analysed the immunological and prognostic

characteristics of the DLBCL TME using ESTIMATE,

CIBERSORT, and single-sample gene set enrichment analysis

(ssGSEA) and investigated the regulatory mechanisms of the

immune microenvironment. We aimed to find the hub genes

associated with CD8+ T cells using weighted gene co-expression

network analysis (WGCNA) and constructed immune-related

gene scores (IRGSs) to assess the prognostic value and predict the

efficacy of ICBT. The results showed that the IRGS is a good

prognostic indicator and a useful tool for differentiating

inflammatory phenotypes and predicting the efficacy of ICBT.
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Materials and methods

Data collection

Gene expression data and corresponding clinical

information were obtained from the Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)

database. The datasets were GSE10846 (DLBCL = 414),

GSE32918 (DLBCL = 172), GSE56315 (DLBCL = 55,

normal = 33), and GSE12195 (DLBCL = 73, normal = 20).

GSE10846 and GSE32918 were used as independent training

and validation sets, where clinical feature parameters were

obtained from GSE10846. Gene expression data from

GSE56315 and GSE12195 were obtained from patients

with DLBCL and normal subjects for differential gene

analysis. Expression values were normalised by the data

submitter. Immune-associated gene sets were downloaded

from the ImmPort (https://www.immport.org/Shared/

home) database.

Identification of DLBCL subtypes based on
immune gene sets

A literature search was performed to identify 29 immune-

associated gene sets representing tumour immunity (He et al.,

2018). ssGSEA was performed on the 29 immune gene sets

using the R package “GSVA” (Hänzelmann et al., 2013) to

obtain the ssGSEA score for each sample. The R package

“ConensusClusterPlus” (Wilkerson and Hayes, 2010) was

used for consistent clustering based on ssGSEA scores and

immunosubtype screening (50 iterations with an 80%

resampling rate). The optimal clustering number was

determined by the k value of the cumulative distribution

function (CDF) curve with the minimum descending slope.

Principal component analysis (PCA) was performed using the

R package “PCA” to verify the reliability of consistent

clustering.

Evaluation of immune cell infiltration,
tumour purity, and matrix content in
DLBCL

ESTIMATE is an algorithm used to determine the ratio of

stromal cells to immune cells based on gene expression

characteristics in tumour samples. The stromal score (stromal

content), immune score (degree of immune cell infiltration),

ESTIMATE score (combined stromal and immune scores), and

tumour purity data were obtained for each sample using the R

package “ESTIMATE” to compare the differences between

immune subtypes.

Heatmap

The ssGSEA score, ESTIMATE algorithm results, and

immune subtypes of each sample were combined into a

heatmap to visualise the TME differences among different

immune subtypes. Heatmap visualisation was performed using

the R package “heatmap”.

Comparison of immune cell subgroups
and GSEA

CIBERSORT (Newman et al., 2015) is a linear support vector

regression-based deconvolution analysis method for unknown

mixed cell populations and expression matrices containing

similar cell types, which can be used to assess immune cell

contents (Gentles et al., 2015). The infiltration levels of

22 types of immune cells in DLBCL were assessed using the R

package “CIBERSORT” to compare differences between different

immune subtypes. GSEA was performed on immune subtypes

using GSEA version 4.0 with c2.cp.kegg.v7.5.1.symbols.gmt as

the reference gene set. A normalised enrichment score (|NES| >
1) and FDR < 0.05 indicated significant pathway enrichment.

Determination of CD8+ T cell-related hub
genes

The differentially expressed genes (DEGs) between DLBCL

and normal lymphocytes in the GSE56315 and

GSE12195 datasets were analysed using the R package

“limma” with the threshold values set to |log2 fold-change | >
2 and 1, respectively, and the adjusted p-value to < 0.05.WGCNA

was performed on DEGs from both datasets using the R package

“WCGNA” (Langfelder and Horvath, 2008). To obtain CD8+ T

cell-related hub genes in DLBCL, we used the T cell content

obtained from the CIBERSORT algorithm as phenotypic data.

Soft threshold values of 6 and 5 were set for the GSE56315 and

GSE12195 datasets, respectively, with a hub gene correlation

threshold of 0.7, a threshold for module merging of 0.5, and a

minimum module size of 20. In the end, the obtained modules

were correlated with the phenotypic data to obtain the key

modules associated with CD8+ T cells.

The two key module genes obtained from WCGNA were

intersected with 1,793 immune genes from the IMMPORT

(https://www.immport.org/) database to obtain immune genes

associated with CD8+ T cells. These were imported into STRING

(https://cn.string-db.org/) to construct a protein–protein

interaction (PPI) network with the PPI threshold set to 0.7 to

obtain hub genes highly associated with CD8+ T cells. Finally,

Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) enrichment analyses of the hub genes were
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performed using the R package “ClusterProfiler” (Yu et al., 2012),

with FDR < 0.05 as the screening threshold.

Dimension reduction and generation of
IRGSs

SPSS 25.0 software was used to obtain standardised processed

hub gene expression data via the Z-score method. The suitability

of factor analysis was tested using the Kaiser–Meyer–Olkin

(KMO) test and Bartlett’s sphericity test (IBM Knowledge

Center, 2012). If the KMO value was close to 1 and Bartlett’s

sphericity test had a p-value < 0.05, then the results of factor

analysis were considered reliable. Dimensional reduction was

performed on the hub genes, and the composite score of each

sample was obtained based on the principal component

coefficients and the principal component variance

contribution of each gene; this was defined as the IRGS of

each sample. The formulae are as follows:

Y � ∑
n

i�1
(Xi × ui)

Z � ∑
p

j�1
(Yj × bj)

where n is the number of hub genes, ui is the principal

component coefficient of gene i, Xi is the standardised data of

gene i, p is the number of principal components, bj is the variance

contribution of principal component j, Yj is the score of principal

component j, and Z is the composite score.

Immunotherapeutic response prediction

The training and validation set gene expression data were

imported into the Tumour Immune Dysfunction and

Exclusion (TIDE) web tool (http://tide.dfci.harvard.edu/)

using the TIDE algorithm (Jiang et al., 2018) and subclass

mapping (Hoshida et al., 2007) to compare gene expression

data from subgroups differentiated based on their IRGS, with

a dataset of 47 melanoma patients responding to immune

checkpoint inhibitors (CTLA-4 and PD-1) (Roh et al., 2017),

and to predict the response of different subgroups of patients

to ICBT.

We retrospectively analysed 30 patients with r/rDLBCL who

received second-line therapy combined with PD-1 inhibitors

(camrelizumab and tislelizumab) between 2020 and 2022. Age,

sex, stage, cell of origin, absolute lymphocyte count (ALC), and

treatment protocol were collected. Treatment response was

evaluated according to the Lugano 2014 assessment criteria

(Cheson et al., 2014). The retrospective study was approved

by the Ethics Committee of Guangxi Medical University

Cancer Hospital.

Verification of the prognostic value of hub
genes

To verify the prognostic value of the hub genes, univariate

Cox regression analysis was performed on the hub genes, and

genes significantly associated with prognosis (p < 0.05) were

screened. Least absolute shrinkage and selection operator

(LASSO) regression analysis was performed using the R

package “glmnet” to screen for genes highly associated with

prognosis based on the best lambda value to establish a risk

model, and the risk score for each patient was calculated using the

coefficients obtained from the LASSO algorithm, as follows:

Risk score � ∑
n

i�1
(Expi × Coefi)

where n is the number of prognostic genes, Expi is the expression

of gene i, and Coefi is the regression coefficient of gene i in the

LASSO algorithm (Tibshirani, 1997). The patients were divided

into high- and low-risk groups using the best cut-off value, and

the difference in survival periods between the two groups was

assessed using the R package “survival”. Finally, the R package

“survivalROC” was used to calculate the area under the curve

(AUC) of receiver operator characteristic (ROC) curves to assess

the accuracy of the prognostic determination (Blanche et al.,

2013).

Statistical analysis

All statistical analyses were performed using R software

(v3.5.2). Kaplan–Meier curves and log-rank tests were used to

compare the overall survival (OS) of patients with DLBCL

between different groups. For data conforming to a normal

distribution, a t-test was used for comparisons of two

independent samples, and the Pearson test was used for

correlation analysis. Otherwise, the Wilcoxon test and

Spearman test were used. All statistical tests were two-sided,

and differences with p < 0.05 were considered statistically

significant.

Results

Identification of DLBCL subtypes based on
immune gene sets

To score the 29 immune gene sets for each sample in the

training set, ssGSEA was used (Supplementary Table S1). The R

package “ConsensusClusterPlus” was used to classify all samples

into k subtypes (k = 2–10). Based on the CDF curve and

clustering heat map, k = 2 is optimal (i.e., all samples can be

divided into two clusters). To verify the reliability of consistent

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2022.1000460

http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1000460


clustering, PCA showed that patients with DLBCL could be

classified into two subtypes based on the ssGSEA score

(designated C1 and C2, Figures 1A–C, Supplementary Table

S2); the same results were obtained with the validation set

(Figures 1D–F, Supplementary Tables S3, S4).

Immune characteristics of the two
immune subtypes

The ssGSEA score heatmaps for the 29 immune gene sets

showed that the degree of immune infiltration was greater in

subtype C1 than in subtype C2 (Figures 2A, 3A). Here, the

ssGSEA scores for CD8+ T cells, immune checkpoints, the

class I major histocompatibility complex (MHC-I), cytolytic

activity, macrophages, Th1 cells, and other immune

components were significantly higher in subtype C1,

whereas the scores for B cells were higher in subtype C2

(Supplementary Figures S1, S2). ESTIMATE results showed

higher stromal scores, immune scores, and ESTIMATE scores

in subtype C1 and conversely, higher tumour purity in subtype

C2 (Figures 2B–D, 3B–D, Supplementary Tables S5, S6).

Finally, we examined the expression of six immune

checkpoint genes associated with immune escape (PDCD1,

CD274, PDCD1LG2, CTLA4, HAVCR2, and LAG3), and the

results showed higher expression levels in subtype C1 (Figures

2E–J, 3E–J). In summary, the content of immune cells in

subtype C1 was greater than that in subtype C2, and

conversely, the content of tumour cells in subtype C2 was

greater than that in subtype C1.

Comparison of 22 immune cell types
between the two subtypes and GSEA

To compare the differences in the distribution of immune

cells between immune subtypes, the CIBERSORT algorithm was

used to calculate the contents of 22 immune cell types

FIGURE 1
Consensus clustering of DLBCL patients. (A–D) Consensus matrix heatmaps indicating that the optimal value for consensus clustering is K =
2 both in the training and validation sets. (B,E)Cumulative distribution function (CDF) (K = 2–10). (C–F) Principal component analysis (PCA) based on
ssGSEA scores of the training and validation sets. Each point represents a sample, and different colors distinguish immune subtypes.
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(Supplementary Figures S3, S4, Supplementary Tables S7, S8). In

the training and validation sets, CD8+ T cells, CD4+ resting

memory T cells, CD4+ activated memory T cells, and follicular

helper T cells were more prevalent in subtype C1, whereas naive

B cells, memory B cells, and plasma cells were more abundant in

subtype C2 (Figures 4A,B). This was consistent with ssGSEA and

ESTIMATE results.

Next, the enriched pathways associated with the immune

subtypes were analysed to explore the biological function of

immune subtypes. Using an FDR <0.05 as the screening

criterion, the top 10 GSEA-enriched pathways in the training

and validation sets were identified, of which eight enriched

pathways were shared between the two subtypes (lysosome,

T cell receptor, chemokine, cytokine_cytokine, natural killer

FIGURE 2
Identification of the two subtypes in the training set. (A)Heatmap of the two subtypes based on ssGSEA scores for 29 immune gene sets. (B–D)
Evaluation of stromal scores, immune scores, ESTIMATE scores and tumor purity for the two subtypes. (E–J) The expression differences of immune
checkpoint genes between the two subtypes; Bars indicate medians. Wilcoxon test was used to compare gene expression levels between the two
subtypes. ***p < 0.001, ****p < 0.0001.
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cell-mediated cytotoxicity, hematopoietic cell lineage,

Leishmania infection, and Toll-like receptor (TLR) signal

pathways; Figures 4C,D, Supplementary Tables S9, S10). The

co-enriched pathways in subtype C2 were DNA replication and

mismatch repair pathways, but the enrichment was not

significant (FDR >0.05).

Prognostic significance of the two
immune subtypes

To assess the effect of immune infiltration on prognosis, we

analysed the relationship between immune subtypes and

prognosis based on the clustering results of immune gene sets.

FIGURE 3
Identification of the two subtypes in the validation set. (A) Heatmap of the two subtypes based on ssGSEA scores for 29 immune gene sets.
(B–D) Evaluation of stromal scores, immune scores, ESTIMATE scores and tumor purity for the two subtypes. (E–J) The expression differences of
immune checkpoint genes between the two subtypes; Bars indicate medians. Wilcoxon test was used to compare gene expression levels between
the two subtypes. ***p < 0.001, ****p < 0.0001.
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In the training set, Kaplan–Meier curve analysis showed that

better OS was associated with subtype C1 (HR: 1.52, 95% CI:

1.11–2.08, p = 0.007; Figure 5A). CD8+ T cells are the principal

component of the TME and participate in anti-tumour immunity

through cytotoxic T cell actions, and thus, increased CD8+ T cells

were determined to be a favourable prognostic factor (HR: 0.73,

95% CI: 0.54–0.99, p = 0.048; Figure 5C). The same results were

obtained in the validation set (Figures 5B,D). Age, cell-of-origin,

stage, and lactic dehydrogenase have been consistently associated

with DLBCL prognosis, and the combination of

immunophenotyping and an analysis of these four clinical

parameters allowed for more accurate prognostic stratification

(Figures 5E–H, Supplementary Table S11). In conclusion, high

immune cell infiltration favours patient survival.

Gene mutations contribute to loss of
MHC-I expression in DLBCL

The presentation of bound antigenic peptides by MHC-I to

CD8+ T cells is a key step in the cytotoxic effects of CD8+ T cells.

In addition, the antitumour effects of ICBT are dependent on

CD8+ T cells, and specifically, the MHC-I-dependent immune

response. Therefore, tumour cells with the deletion or

downregulated expression of MHC-I evade T-cell recognition,

which is one of the principal causes of ICBT resistance (Gu et al.,

2021). Among B-cell lymphomas, MHC-I deletion is most

common in DLBCL (46.2%) (Fangazio et al., 2021), which

could be the primary reason for the associated poor efficacy

of immunotherapy for DLBCL.

B2M is known as an important subunit of the MHC

molecule, and mutations in B2M lead to reduced MHC

synthesis (Fangazio et al., 2021). EZH2 (a histone

methyltransferase) has been shown to promote immune

escape by inhibiting MHC-I-mediated antigen presentation in

a variety of tumours (Hogg et al., 2020). In addition, mutations in

B2M and EZH2 are common in DLBCL (Catalogue Of Somatic

Mutations In Cancer, 2020). Upon investigating the regulatory

mechanism of MHC-I in DLBCL, we found that B2M expression

in the training set was significantly higher in subtype C1 than in

subtype C2 (p < 0.001), and EZH2 expression was even more

highly expressed in subtype C2 (p < 0.001; Figures 6A,B). Further

FIGURE 4
Distribution of immune cells and gene sets enrichment analysis (GSEA). (A-B) The distribution differences of immune cells between the
subtypes based on CIBERSORT algorithm. (C-D) C1 vs. C2 GSEA. Wilcoxon test was used to compare immune cells of the two subtypes. *p < 0.05,
**p < 0.01, ***p < 0.001.
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correlation analysis showed that B2M and EZH2 expression

levels were significantly positively (r = 0.14, p < 0.01) and

negatively (r = −0.30, p < 0.001) correlated with MHC-I,

respectively (Figures 6F,I). We also found that gene expression

levels correlated with the degree of immune infiltration (Figures

6E,H). Specifically, B2M and EZH2 expression levels were

significantly positively (r = 0.22, p < 0.001) and negatively

(r = −0.32, p < 0.001) correlated with CD8+ T cells,

respectively (Figures 6G,J). The same results were obtained in

the validation set (Figures 6C,D,K–P). Thus, we speculate that

B2M and EZH2 mutations are the primary cause of MHC-I

downregulation in DLBCL and are also involved in the regulation

of immune infiltration.

Determination of CD8+ T cell-related hub
genes

CD8+ T cells are the main component of TILs in the TME

and are closely related to anti-tumour immunity and immune

escape (Jiang et al., 2021). To obtain CD8+ T cell-related hub

genes, we first assessed the level of immune infiltration in patients

with DLBCL and normal subjects based on the GSE56315 and

GSE12195 datasets using the CIBERSORT algorithm

(Supplementary Figures S5, S6). CD8+ T cell levels were

significantly elevated in patients with DLBCL (Figures 7A,B).

We then performed WCGNA on the DEGs obtained using the

“limma” package (Supplementary Tables S12, S13). Because the

proportion of CD4+ naive T cells was nearly zero in each sample,

we extracted data on the proportions of CD8+ T cells, CD4+

resting memory T cells, CD4+ activated memory T cells, follicular

helper T cells, regulatory T cells, and γδ T cells as phenotypic data

and performed association analysis with the modules obtained

from WCGNA (Supplementary Tables S14, S15). The “purple”

module genes of GSE56315 (152 genes, Supplementary Table

S16) and the “red” module genes of GSE12195 (266 genes,

Supplementary Table S17) had the highest correlation with

CD8+ T cells and a consistent positive correlation (Figures 7C–F).

The genes in these two key modules were cross-referenced

with 1,793 immune genes downloaded from the IMMPORT

database to obtain 13 hub genes associated with CD8+ T cells

(SH2D1A, CD8A, GBP2, ITK, CD3D, RORA, IL1R2, CD28,

CD247, CD3G, PRKCQ, CXCR6, and CD3E). These 13 hub

genes were imported into the STRING database to build a PPI

network, and the interaction threshold was set to 0.7. Three genes

(RORA, GBP2, and IL1R2) were removed, and in the end, a

network of 10 hub genes was constructed with CD3A, CD3D, and

CD3E as the core (Figures 8A–C).

To understand the biological processes and pathways

associated with the effects of the hub genes in DLBCL, GO

FIGURE 5
Survival analysis for DLBCL patients. (A,B) Kaplan-Meier survival curves for the two subtypes. (C,D) Kaplan-Meier survival curves for high/low
CD8+ T cells groups. Kaplan-Meier survival curves for DLBCL patients both by the two subtypes and (E) Age, (F)COO, (G) Stage, (H) LDH, respectively.
P < 0.05 was considered significant.
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FIGURE 6
The correlations between the expression levels of two genes (B2M and EZH2) and DLBCL immune microenvironment. (A–D) The expression
differences of two genes between the two subtypes. (E,K) The correlations between B2M and immune cell contents. (H,N) The correlations between
EZH2 and immune cell contents. (F,G) (L,M) The correlations between B2M and MHC-I, CD8+ T cells, respectively. (I,J) (O,P) The correlations
between EZH2 and MHC-I, CD8+ T cells, respectively. Wilcoxon test was used to compare gene expression levels between the two subtypes.
Spearman test for correlational analyses. **p < 0.01, ***p < 0.001.
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and KEGG enrichment analyses were performed. GO analysis

showed that the hub genes were primarily involved in the

immune response and T cell regulation. KEGG analysis

showed that the hub genes act primarily on the T cell

receptor, PD-1/PD-L1 immune checkpoint, and Th cell

differentiation signalling pathways (Figures 8D,E).

Correlation between the hub genes and
immune microenvironment

To further confirm the correlation between the hub genes and the

immunemicroenvironment, correlation analysis between the training

and validation sets was performed. The results showed that the hub

genes were significantly and positively correlated with the ssGSEA

scores of most immune gene sets, and the highest correlation was

foundwithT cells (Figures 9A,C). The expression of all hub geneswas

significantly elevated in subtype C1 (Figures 9B,D).

To obtain the IRGS for each sample, dimensional reduction of

the hub genes was performed. First, suitability tests showed good

reliability of the results for factor analysis (KMO = 0.942 for the

training set, KMO = 0.823 for the validation set, Bartlett’s sphericity

test p < 0.001 for both). Then, factor analysis was performed to

obtain the IRGS for each sample to represent the degree of immune

infiltration (Supplementary Tables S18, S19). IRGSs showed a

significant positive correlation with most immune components

and the highest correlation with TILs (Figures 9E,F). Finally,

ROC curve analysis showed that IRGSs could be used to

accurately distinguish between different immune subtypes

(AUC = 0.963 for the training set, 0.913 for the validation set;

Figures 9G,H). In summary, the hub genes might positively regulate

the inflammatory microenvironment, and the IRGS can reflect the

degree of immune infiltration well and is a simple and useful tool to

differentiate between immune subtypes.

Immunotherapeutic response prediction

ICBT has been approved as a routine treatment for a variety

of tumours. Although some patients with DLBCL exhibit a

FIGURE 7
Weighted gene coexpression network analysis (WGCNA). (A,B) The distribution differences of CD8+ T cells between DLBCL and normal
patients. (C,D) Topological network analysis of the optimal soft threshold. (E,F) Identification of weighted gene co-expression network modules
associated with CD8+ T cells. Wilcoxon test for comparison of CD8+ T cells distribution between DLBCL and normal patients. ***p < 0.001.
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response to ICBT, most studies have shown discouraging results

(Hatic et al., 2021). Therefore, accurate predictors of the ICBT

response would be beneficial for dosage guidance. We classified

the samples into high- and low-IRGS groups based on the

median IRGS and used the TIDE algorithm and subclass

mapping to compare the expression profiles of the DLBCL

subgroups with a dataset containing 47 melanoma patients

responding to immune checkpoint inhibitors published by

Roh et al. (2017). The high-IRGS group was more sensitive to

ICBT and PD-1 monoclonal antibodies, which was statistically

significant (Bonferroni correction p = 0.008). Further analysis of

T cell functions and infiltration levels in the high/low-IRGS

groups showed a higher “dysfunction” score in the high-IRGS

group, suggesting that T cells were generally dysfunctional.

However, the “exclusion” score was higher in the low-IRGS

group, suggesting that T-cell rejection led to reduced

infiltration (Figure 10).

We retrospectively analysed 30 patients with r/rDLBCL.

The clinical data and treatment responses are shown in Table

1. The overall response rate was 36.7%, and the complete

response rate was 10%. Patients who responded to treatment

(complete response and partial response) had a significantly

higher ALC than those who did not respond to treatment

(stable disease and progressive disease) (p = 0.019)

(Figure 11).

Verification of the prognostic value of hub
genes

To verify the relationship between the hub genes and

prognosis, one-way Cox regression analysis of the 10 hub

genes in the training set was performed, which showed that

high expression of eight genes (SH2D1A, ITK, CD3D, CD28,

CD247, CD3G, PRKCQ, and CXCR6) was significantly

associated with elevated OS (Figure 12A). To avoid

overfitting, LASSO regression was performed, which

identified CD3G and CD3D as highly correlated with

prognosis (Figures 12B,C). These two genes were used to

construct risk models based on the minimum criteria, and

risk scores were calculated based on LASSO regression

coefficients using the following functions:

FIGURE 8
Interaction network and enrichment analysis of hub genes. (A) Venn diagram of GES56315, GSE12195 and IMMPORT database. (B) Protein-
protein interaction (PPI) network of 10 hub genes. (C) The histogram for number of gene-gene interactions. (D,E)GO and KEGG enrichment analysis
of 10 hub genes.
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FIGURE 9
The correlations of hub genes and DLBCL immune microenvironment. (A–C) The correlations of hub genes and immune cell contents. (B–D)
The expression differences of hub genes between the two subtypes. (E,F) The correlations of IRGSs and immune cell contents. (G,H) Receiver
operator characteristic (ROC) curves for IRGS to predict immune subtypes. Wilcoxon test for comparison of gene expression levels between the two
subtypes. Spearman test for correlational analyses. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 10
Predicting response to immune checkpoint blockade therapy (ICBT) and characteristics of T cells. (A–D) IRGS for predicting response to ICBT
between high/low IRGS groups. (B,C) (E,F) The characteristic of T cells in high/low IRGS groups. Wilcoxon test for comparison of two independent
samples. Spearman test for correlational analyses. **p < 0.01, ***p < 0.001.

FIGURE 11
Treatment evaluation of 30 r/rDLBCL patients. (A) Waterfall plot for treatment evaluation. (B) Absolute lymphocyte count (ALC) in different
treatment response groups. Wilcoxon test for comparison of ALC between the two groups.
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Risk score � −0.127 × CD3G − 0.033 × CD3D

The patients were then classified into high- and low-

risk groups based on the risk score. Survival analysis

showed that OS was significantly lower in the high-risk

group than in the low-risk group (p < 0.001; Figures

12D,E). The ROC curve was also plotted to assess the

predictive effect of the risk score on prognosis, and the

AUC for the 3-year OS was 0.600 (Figure 12F). The risk

model yielded the same results with the validation set,

with worse OS in the high-risk group (p < 0.001; Figures

12G,H) and an AUC for the 3-year OS of 0.647

(Figure 12I). In summary, a higher level of hub gene

expression was indicative of better prognosis, and the

risk model constructed based on the training set has

moderate accuracy for prognostic assessment.

Discussion

DLBCL is a highly aggressive and heterogeneous tumour, and

although rituximab-based therapy has led to a significantly

improved prognosis for patients, a breakthrough therapeutic

approach is needed for recurrent or refractory patients.

Tumours can be classified as ‘hot’ or ‘cold’ tumours based on

the distribution of CD8+ T cells in TME. Solid tumour studies

have shown that hot tumours respond well to immunotherapy,

and ICBT has become a routine therapy for a variety of tumours

TABLE 1 Clinical characteristics of 30 r/rDLBCL patients with second-line treatments with PD-1 inhibitor.

ID Age Sex Stage COO ALC(109/L) Treatment Response

1 55 F IV GC 0.78 R-DHAP+PD-1 PD

2 60 M III NGC 1.75 R-GemoX+PD-1 PD

3 65 F II NGC 1.33 R-GemoX+PD-1 PR

4 68 F IV GC 1.45 R-ICE+PD-1 PD

5 71 M IV GC 0.75 R+PD-1 PD

6 63 F IV NGC 0.67 R-GemoX+PD-1 PD

7 78 M III GC 1.42 R+PD-1 SD

8 62 M II GC 1.12 R-GemoX+PD-1 SD

9 48 M IV NGC 1.23 R-ICE+PD-1 PR

10 61 F II NGC 1.02 R-GemoX+PD-1 PD

11 62 M II NGC 1.26 R-DHAP+PD-1 PD

12 67 F III NGC 0.95 RB+PD-1 SD

13 33 F III GC 2.19 R-DHAP+PD-1 CR

14 76 M II NGC 1.12 R-GemoX+PD-1 PD

15 51 F IV NGC 1.12 R-DHAP+PD-1 SD

16 55 M II GC 2.76 RB+PD-1 PR

17 62 M III NGC 2.54 R-GemoX+PD-1 PR

18 34 M II GC 1.45 R-GemoX+PD-1 CR

19 30 F IV NGC 0.89 R-ICE+PD-1 PD

20 69 M III GC 2.87 R-ICE+PD-1 SD

21 72 M III NGC 1.16 R+PD-1 SD

22 62 M II GC 1.05 R-DHAP+PD-1 PR

23 65 M III NGC 2.19 R-GemoX+PD-1 PR

24 62 F II GC 2.06 R-GemoX+PD-1 PR

25 62 M III NGC 2.05 R-GemoX+PD-1 PR

26 68 F III NGC 1.13 R-GemoX+PD-1 PR

27 44 M III NGC 2.45 R-GemoX+PD-1 PD

28 66 F II GC 1.12 R-ICE+PD-1 PD

29 36 F II NGC 2.05 R-DHAP+PD-1 CR

30 68 F IV GC 0.92 R-GemoX+PD-1 SD

COO, cell of origin; F, female; M, male; ALC, absolute lymphocyte count; PD, progressive disease; PR, partial response; SD, stable disease; CR, complete response; GC, germinal centre;

NGC, non-germinal centre; R, rituximab; B, bendamustine; DHAP, dexamethasone, High-dose cytarabine, cis-platinum; GemoX, gemcitabine, oxaliplatin; ICE, ifosfamide, carboplatin,

etoposide; PD-1, programmed cell death protein 1.
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(Mai et al., 2021; Paz-Ares et al., 2022; Qu et al., 2022). However,

most studies of DLBCL with respect to ICBT have yielded

disappointing results (Hatic et al., 2021), which could be

explained by the fact that most cases of DLBCL comprise cold

tumours. An analysis of GEO datasets by Wang et al. (2021)

showed that DLBCL can also be differentiated into high- and

low-immune infiltrative subtypes. However, this study was

deficient in that 1) no external validation of the findings was

performed, and 2) it failed to test the predictive value of immune

subtypes in immunotherapy. In conclusion, studies on DLBCL

immune subtypes are still lacking. Our study aimed to type

DLBCL based on specific immune gene sets, analyse the immune

and prognostic characteristics of different subtypes, investigate

the regulatory mechanisms of immune subtypes, and assess the

predictive value of IRGSs constructed based on CD8+ T cell-

related hub genes for ICBT. In the end, the relationship between

hub genes and prognosis was also analysed.

We classified DLBCL cases into subtypes C1 and C2 through

consistent clustering, and immune profiling showed that subtype

C1 is highly immune infiltrative, whereas the C2 subtype is

poorly immune infiltrative. Subtypes C1 and C2 are associated

with upregulation and downregulation of the expression of many

immune-stimulating genes and the MHC, respectively. Aptsiauri

et al. (2018) indicated that the shift fromHLA-I-positive to HLA-

I-negative in primary tumours is one of the primary mechanisms

by which tumours evade recognition and destruction by T cells.

The MHC-I complex consists of B2M and one of the HLA-I

heavy-chain (hcHLA-I) molecules (Zinkernagel and Doherty,

1974a, 1974b; Townsend et al., 1985). The αβ receptors of

cytotoxic CD8+ T cells recognise antigenic peptides presented

FIGURE 12
Survival analysis of hub genes. (A) Univariate Cox regression. (B,C) Lasso regression. (D,E) (G,H) Risk heatmaps and Kaplan-Meier survival curves
of riskscores. (F–I) ROC curves for predicting 3-year OS based on riskscores.
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by the MHC-I complex, leading to the destruction of target cells

(Yewdell et al., 2003). Of note, 29% of DLBCL cases are

accompanied by loss-of-function (LOF) mutations in B2M,

one of the most common gene mutations (Chapuy et al.,

2018; Schmitz et al., 2018). The present study showed that the

expression levels of both B2M and MHC-I were downregulated

in subtype C2, and the two were significantly positively

correlated, and thus, we hypothesised that LOF mutations in

B2M were responsible for the downregulation of MHC-I in

subtype C2. Fangazio et al. (2021) identified 17 B2M double-

allele (n = 11) and single-allele (n = 6) mutations and losses in

genes in 42 MHC-I-negative DLBCL samples, accompanied by

the disruption of one or more double alleles of the major hcHLA-

I in four cases (9.4%). The present study demonstrates that both

B2M and/or HLA-I gene inactivation can lead to MHC-I

expression deficiency in DLBCL, consistent with our hypothesis.

MHC-I expression can be regulated by multiple factors.

MHC-I-negative cases among patients with DLBCL are

significantly more prevalent than negative cases owing to B2M

mutations (75% vs. 43%, respectively), suggesting the existence of

additional causes of the downregulation of MHC expression

(Ennishi, Takata, et al., 2019). Ennishi, Takata, et al. (2019)

found that gain-of-function (GOF) mutations in EZH2 are

significantly increased in MHC-I- and MHC-II-negative

patients with DLBCL. Through in vivo/ex vivo studies,

investigators have also observed reduced MHC expression and

T cell infiltration in a mouse lymphoma model expressing

mutant EZH2Y641. Moreover, an EZH2 inhibitor was found to

restore MHC expression in a human DLBCL cell line with an

EZH2 mutation. Dersh et al. (2021) used genome-wide CRISPR

technology in DLBCL cell lines to demonstrate that EZH2 is the

most critical regulator of MHC-I. The present study showed that

EZH2 expression was upregulated in subtype C2 and was

significantly negatively correlated with MHC-I, and thus, we

hypothesised that GOF mutations in EZH2 are another major

cause of MHC-I expression downregulation in subtype C2. Based

on this theory, drugs acting on EZH2 mutations have been

approved for use in a variety of malignancies. For example,

tazemetostat (an EZH2 inhibitor) has been used to treat r/r

follicular lymphoma patients with EZH2mutations, achieving an

objective response rate of 35% (19/54) (Morschhauser et al.,

2020).

Reduced immune infiltration in subtype C2 manifests

primarily as T cell exclusion. Both T cell reductions and

MHC-I downregulation attenuate CD8+ T cell-mediated

antitumour immune responses, which might be the primary

reason for the worse prognosis associated with subtype C2.

Low immune infiltration suggests a worse prognosis, which

has been previously demonstrated in most malignancies

(Bruni et al., 2020).

In our study, subtype C1 was enriched in immune pathways

such as T cell receptors, cytokines, chemokines, and lysosomes,

which is consistent with the immune profile of subtype C1.

Moreover, we found that the expression of immune

checkpoint genes was upregulated in subtype C1, which is

consistent with previous research (Autio et al., 2022). T cells

express immunosuppressive molecules (e.g., PD-1 and CTLA4)

on their surface, which is a sign of T cell “exhaustion”, presenting

as T cell dysfunction. This has been confirmed in chronic viral

infections and tumours (Wherry et al., 2007; Ahmadzadeh et al.,

2009). Therefore, we believe that the T cell activation and

exhaustion states are in a dynamic balance in subtype C1.

According to the “TIDE” model theory, the expression of co-

receptors and costimulatory receptors is strictly regulated by

different signals involved in T cell activation and differentiation,

and levels of inhibitory receptors are upregulated to counteract

co-stimulatory signals after peak stimulation (Zhu et al., 2011).

The immune microenvironment induces an inflammatory

response while limiting damage to surrounding tissues as an

intrinsic protective mechanism. However, patient T cells are

chronically stimulated by tumour-specific antigens, and their

surface expression levels of inhibitory molecules are continuously

increased, leading to impaired effector functions that promote

tumour growth (Philip and Schietinger, 2022), which could

contribute to the development of subtype C1 tumours. PD-1

antibodies restore the function of exhausted T cells by blocking

the inhibitory effect of PD-1/PD-L1 (van der Leun et al., 2020).

Tumour progression is not necessarily due to a single factor.

In the present study, subtype C1 was enriched in the TLR

signalling pathway, suggesting that this might be relevant to

the development of DLBCL. Myeloid differentiation primary

response protein 88 (MYD88) is a key adapter molecule in

the TLR signalling pathway, transmitting signals from the

TLR and interleukin receptor to downstream nuclear factor-

κB (NF-κB) and promoting B cell proliferation. MYD88L265P

(leucine changed to proline at position 265) is a GOF

mutation that results in TLR/AKT/NF-κB pathway activation,

and it is found in 29% of patients with activated B-cell DLBCL

(Ngo et al., 2011). Interestingly, we found that

MYD88 expression levels were significantly elevated in

subtype C1 (p < 0.05; Supplementary Figure S7), and thus, we

believe that MYD88L265P might contribute to the activation of the

TLR signalling pathway in subtype C1 and induce tumour

development. In addition, activated NF-κB could eventually

upregulate PD-L1 expression by activating the JAK/

STAT3 signalling pathway (Song et al., 2019). Fu et al. (2021)

found a PD-L1 positivity rate of 50% (7/14) in tumour cells of a

MYD88L265P group compared to 18.4% in a non-MYD88L265P

group of patients with DLBCL (9/49), which implies the

possibility that combination therapy can be used.

There are significantly different immunological and genetic

characteristics among different immune subtypes of DLBCL.

Distinguishing between immune subtypes has important

implications for assessing prognosis and developing treatment

plans. However, the commonly used methods for tumour

immune infiltration assessments are based primarily on gene
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expression profiles or sequencing data, which are difficult to use

widely in clinical practice. Therefore, we aimed to develop a

simple and effective assessment tool.

CD8+ T cells are the primary component of TILs and the

main cells exerting anti-tumour effects. The content of CD8+

T cells directly reflects the level of immune infiltration. We

obtained 10 hub genes that were highly correlated with CD8+

T cells. GO and KEGG enrichment analyses showed that they

were primarily involved in T cell activation and immune

regulation. Dimensionality reduction was also performed on

the 10 hub genes, and the IRGS was obtained for each patient

through factor analysis. Correlation analysis verified that both

hub genes and the IRGS were significantly correlated with the

immune microenvironment. The AUC also showed that the

IRGS could be used to accurately differentiate between

immune subtypes. Therefore, the IRGS generated based on

the 10 hub genes can be used as an alternative scheme to

differentiate between immune subtypes. We further

classified patients into high- and low-IRGS groups. There

was a large degree of immune infiltration, and

immunosuppressive molecules were upregulated in the

high-IRGS group, which was representative of subtype C1,

with T cells in a dysfunctional state. Whereas the low-IRGS

group was opposite to the high-IRGS group, which was

representative of subtype C2, with T cells showing

exclusion. The present study showed that the high-IRGS

group was more sensitive to PD-1 antibodies, which was

consistent with previous studies. Patients with PD-1highCD8+

T cells were found to have more efficacious ICBT (Macek

Jilkova et al., 2019). Patients with PD-L1+/TIL+ tumours

were more likely to benefit from ICBT (Zhang and Chen,

2016).

Recent studies have demonstrated that the quantification of

circulating immune cells, including ALC, can be used to predict

tumour outcome and may be considered as surrogate markers of

the immune TME (Laddaga et al., 2022). Our retrospective study

of 30 patients with r/rDLBCL showed that ALC was higher in

patients who responded to combination therapy with PD-1

inhibitors. This suggests that ALC is a good predictive marker

for ICBT treatment, which is also observed in other tumours

(Valero et al., 2021). Moreover, TME of DLBCL with PD-L1 up-

regulation is accompanied by substantial T-lymphocyte

infiltration, and such patients are more responsive to PD-1

inhibitors, as observed in patients with r/rDLBCL (Godfrey

et al., 2018). These previous studies further support the

hypothesis that DLBCL is a tumour with a different

inflammatory environment, and that differentiation of

subtypes is of great value in guiding ICBT.

Finally, we also analysed the relationship between hub genes

and prognosis. Except for that of CD8A and CD3E, high

expression of the remaining hub genes predicted a better

prognosis, which is consistent with the better prognosis

associated with subtype C1. Genes highly correlated with

prognosis were screened using LASSO regression to

construct risk models, and survival analysis showed better

prognosis for the low-risk group. The discovery of these

immune genes, in addition to adding new prognostic

assessment metrics, might play a larger role in

differentiating immune subtypes based on gene expression

levels and predicting the efficacy of immunotherapy. These

results also emphasise the importance of the hub genes in the

immune microenvironment.

Our study still has some limitations. First, non-immune

pathways associated with subtype C2 were not enriched in

GSEA, which limited our analysis of tumour-associated

pathways in subtype C2. In addition, the interactions

between immune gene sets were not included in this study.

Finally, we did not retrieve a dataset containing sufficient

samples with gene expression and mutation information to

validate the mechanisms underlying the regulatory effects of

gene mutations on the immune microenvironment, and the

interrelationship between the two should be the focus of

future studies.

In summary, immune gene set-based

immunophenotyping of DLBCL clearly suggests the

heterogeneity of different DLBCL immune

microenvironments, reflecting the sensitivity of

immunophenotyping. The present study also reveals that

the development of DLBCL is strongly influenced by the

immune microenvironment. An in-depth study of the

immune microenvironment could lead to improved

clinical decision-making strategies for DLBCL and other

tumours.
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