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Objectives. Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is expected to provide an
optional active rehabilitation training method for patients with walking dysfunction, which will affect their quality of life seriously.
Sparse representation classification (SRC) oxyhemoglobin (HbO) concentration was used to decode walking imagery and idle
state to construct fNIRS-BCI based on walking imagery. Methods. 15 subjects were recruited and fNIRS signals were collected
during walking imagery and idle state. Firstly, band-pass filtering and baseline drift correction for HbO signal were carried out,
and then the mean value, peak value, and root mean square (RMS) of HbO and their combinations were extracted as classification
features; SRC was used to identify the extracted features and the result of SRC was compared with those of support vector machine
(SVM), K-Nearest Neighbor (KNN), linear discriminant analysis (LDA), and logistic regression (LR). Results. )e experimental
results showed that the average classification accuracy for walking imagery and idle state by SRC using three features combination
was 91.55 ± 3.30%, which was significantly higher than those of SVM, KNN, LDA, and LR (86.37 ± 4.42%, 85.65 ± 5.01%,
86.43 ± 4.41%, and 76.14 ± 5.32%, respectively), and the classification accuracy of other combined features was higher than that of
single feature. Conclusions. )e study showed that introducing SRC into fNIRS-BCI can effectively identify walking imagery and
idle state. It also showed that different time windows for feature extraction have an impact on the classification results, and the
time window of 2–8 s achieved a better classification accuracy (94.33 ± 2.60%) than other time windows. Significance. )e study
was expected to provide a new and optional active rehabilitation training method for patients with walking dysfunction. In
addition, the experiment was also a rare study based on fNIRS-BCI using SRC to decode walking imagery and idle state.

1. Introduction

Walking is a basic activity in human daily life, and walking
dysfunction will seriously affect the quality of life of patients.
For example, stroke patients often have obstacles in walking
function. Compared with the traditional passive walking
rehabilitation training method, the active rehabilitation
training will be expected to improve their walking function.

Brain-computer interface (BCI) based on functional
near-infrared spectroscopy (fNIRS) has been widely used in

rehabilitation medicine. Research by Ghafoor et al. proved
that acupuncture therapy (AT) based on fNIRS had a
positive impact on improving the cognitive function of
patients with mild cognitive impairment (MCI) [1]. Hong
et al. used neurofeedback to induce neuroplasticity in se-
lected brain areas, which had the potential to improve
cognitive performance [2]. Hong and Yaqub illustrated the
usability of fNIRS for early detection of impairment and the
usefulness in monitoring the rehabilitation process. )ey
used fNIRS to study damage detection and the regions of

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 6614112, 10 pages
https://doi.org/10.1155/2021/6614112

mailto:fyf@ynu.edu.cn
https://orcid.org/0000-0001-6280-6227
https://orcid.org/0000-0002-2715-2296
https://orcid.org/0000-0003-2775-0031
https://orcid.org/0000-0001-6208-6426
https://orcid.org/0000-0003-4820-8049
https://orcid.org/0000-0002-4820-6337
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6614112


interest in eleven diseases such as stroke, MCI, and trau-
matic brain injury [3].

BCI based on fNIRS mainly extracted the mean, variance,
root mean square, slope, peak, etc. to identify different tasks.
Abdalmalak et al. extracted the oxyhemoglobin (HbO) mean
value to identify the two classes of mental tasks, and the clas-
sification accuracy achieved by support vector machines (SVM)
was 76% [4]. Sereshkeh et al. extracted the HbO mean value to
identify the three classes of mental tasks, and the classification
accuracy achieved by linear discriminant analysis (LDA) was
83.8% [5]. Zhang et al. extracted the variance value of HbO to
identify the two classes of motor imagery tasks, and the highest
classification accuracy achieved by LDA was 75.3% [6]. )e
above studies mainly extracted a single feature of HbO signal.
Although sometimes good classification accuracy can be
achieved, it was often necessary to make efforts in other aspects
(such as signal processing and classification methods) to further
improve the classification accuracy. In addition to extracting the
HbOmean value, peak value, and rootmean square features, the
study also combined the above three features to further improve
the classification accuracy based on fNIRS-BCI.

)e existing fNIRS-BCI mainly used SVM and LDA to
identify walking or gait [7–10], but the accuracy needed to be
improved. It was necessary to attempt to introduce new
methods to improve the classification accuracy. On the
premise of not losing most of the information, the sparse
signal after transformation can be classified by sparse rep-
resentation classification (SRC). SRC had been used in the
theory of compression sensing (CS), which showed that
many natural signals can be represented as sparse signals
after a certain transformation [11]. Some studies have ap-
plied SRC to electroencephalograph- (EEG-) BCI and
achieved good results. Sreeja et al. proposed a weighted
sparse representation to classify motor imagery and achieved
good classification accuracy [12]. Miao et al. used SRC to
classify the motor imagery of the right index finger and
achieved a classification accuracy of 81.32% [13]. Miao et al.
proposed the SRC based on spatial-frequency-temporal
optimization features for two public EEG datasets, and the
classification accuracy has been increased by more than 10%
on the original basis [14]. Shin et al. used SRC to classify
motor imagery and compared the classification results with
SVM [15]. )ey found that SRC can achieve better classi-
fication accuracy, less testing time, and better noise ro-
bustness than SVM and LDA. But so far, there has been
almost no study on the application of SRC in fNIRS-BCI. To
this end, the paper intended to use SRC for fNIRS-BCI to
identify the walking imagery and idle state.

)e study was based on fNIRS using SRC to decodewalking
imagery and idle state. )e possible contributions of the study
were as follows: (1) so far, almost no one has used SRC for
fNIRS-BCI. In the study, SRC was used to decode walking
imagery and idle state and achieved good classification accuracy.
(2) We found that the classification accuracy of combined
features was generally higher than that of a single feature for
walking imagery and idle state. (3) Different time windows
during the task had a significant impact on the classification
results, and the 2−8 s time windows had the highest classifi-
cation accuracy. (4) )e study can provide control commands

for rehabilitation devices such as wheelchairs and mechanical
prostheses and then provide an optional active rehabilitation
training method for patients with motor dysfunction.

2. Materials and Methods

2.1. Subjects. Fifteen subjects participated in the experi-
mental study, all of them were graduate students, aged
between 22 and 28, and all were right-handed and had no
history of mental illness. Each subject signed the informed
consent of the experiment, and the experimental study was
approved by the Medical Ethics Committee of Kunming
University of Science and Technology.

2.2. Experimental Paradigm. In the experiment, the subjects
performed walking imagery, requiring them to imagine
walking from the first-person perspective. )e step length
was 45∼80 cm, the step width was 82 cm, and the step
frequency was 90∼120 steps/min. )e lower limbs on both
sides swung alternately, and the same process was repeated
in the same periodicity or rhythmicity. )e joints and
muscles of the whole body participated in walking coordi-
nation. Figure 1 is a schematic diagram of the walking
imagery.

)e schematic diagram of the experimental paradigm is
shown in Figure 2. At the beginning, the voice cued “baseline
time, please stay awake and relaxed for 60 s.” In this process, the
subject was required not to perform specific mental tasks, so
that the HbO signal was at the baseline level. At the end of the
baseline time, the voice cued “experimental task officially
begins” and randomly cued one of the two tasks simultaneously
in the form of voice and picture: walking imagery and idle state,
the whole cuing process lasted 2 s. After the cue, the subject was
asked to perform or maintain the cued task or state, “+”
appeared in the center of the screen, and the whole task lasted
for 10 s (two stimulation tasks appeared randomly and lasted
10 s). At the end of the task, the voice and picture cued “please
take a rest”; the resting time was 30 s.)e above was a trial, and
then the next trial would start. After the last trial, the picture
cued “resting state,” which required the subject to stay awake,
close their eyes, and relax for 180 s.)e experimental paradigm
was implemented by Matlab (MathWorks, 2019a, USA) Psy-
chtoolbox-3. )ere were 2 sessions in the experiment and each
session included 40 trials for about 31 minutes
(60+ (2+10+30)∗40+180�1860 s). )ere were totally 80
trials for each subject. Each subject carried out 2 sessions with
40 trials for each task.

2.3. Subjects’Walking ImageryTraining. It was the key to the
experiment that subjects performed effective walking im-
agery to produce the best experimental results [16].
)erefore, it was necessary to train the subjects walking
imagery before the experiment.

Training of subjects before data acquisition: first, the
subjects walked to get the actual experience of walking. Next,
they recalled and felt their walking process, focused on
experiencing a mental rehearsal of an actual walking, and felt
a walking process but no actual walking occurred. Subjects
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trained until they reported that the walking imagery
achieved a lifelike and controllable effect and can be skillfully
completed [16].

Requirements for subjects during data acquisition: after
the cued task disappeared, the subjects were asked to no
longer have cues in their minds and focused on walking
imagery according to the training requirements; subjects
were asked to try to stay relaxed and avoid muscle activity,
except during the rest time.

2.4. Equipment and Data Acquisition. )e signal acquisition
equipment used in the experiment was a portable near-
infrared spectroscopy device NirSmart (16 channels (6 light
sources, 8 detectors), Danyang Huichuang Medical Equip-
ment Co., Ltd., China), and the sampling rate was 20Hz.
According to the 10–20 international standard system, the
near-infrared helmet was placed on the subject’s head, and
the probe covered the left and right motor areas of the brain,
and each of the left and right motor areas had 8 channels.
)e channel arrangement of the fNIRS light source and
detector is shown in Figure 3(a).

To reduce interference with the near-infrared signal, the
whole experiment was conducted in a large, quiet room with
all lights off. During the data acquisition process, the subject
sat on a chair about 90 cm away from the computer monitor
and adjusted the sitting posture to a comfortable state. )e
two arms were naturally placed on the armrests, and ex-
perimental data acquisition was completed according to the
experimental paradigm sequence and training requirements.
)e real experiment scene is shown in Figure 3(b).

2.5. Data Processing. Data processing mainly included
fNIRS signal preprocessing, feature extraction, and classi-
fication, which was the prerequisite for subsequent analysis
and processing.

2.5.1. Preprocessing for fNIRS Signal. First, a first-order
Butterworth band-pass filter was used and its frequency range
was 0.02Hz–0.1Hz. )e physiological noises caused by res-
piration (0.15∼0.3Hz), heartbeat (1.2∼1.6Hz), and Mayer
wave (about 0.1Hz) were removed by the band-pass filter.

Figure 1: Schematic diagram of the walking imagery.
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Figure 2: Schematic diagram of the experimental paradigm.
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)en, the correlation improvement algorithm of the reverse
changes of HbO and deoxyhemoglobin (HbR) signals was
used to reduce the motion artifacts caused by the subject’s
blinking and body shaking [17]. Finally, the baseline drift
correction was used to reduce the baseline drift caused by the
acquisition equipment and the subject’s own state changes.

)e fNIRS signals collected in the experiment were the
original light intensity signal, which needed to be converted
into the blood oxygen concentration signal through Mod-
ified Beer-Lambert law (MBLL), namely, the relative change
value of HbO and HbR concentrations. )e expressions are
(1) and (2), respectively [18, 19].
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ECHbR

λ1
ΔODλ2 − ECHbR

λ1
ΔODλ1

d ECHbR
λ1 ECHbO

λ2 − ECHbO
λ1 ECHbR

λ2􏼐 􏼑
, (1)

Δ Deoxy − Hb �
ECHbO

λ2
ΔODλ1 − ECHbR

λ2
ΔODλ2

d ECHbR
λ1 ECHbO

λ2 − ECHbO
λ1 ECHbR

λ2􏼐 􏼑
, (2)

where ΔODλ1 and ΔODλ2, respectively, represent the optical
density changes with the wavelength of λ1 andλ2; ECHbO

λ1
,

ECHbO
λ2

, ECHbR
λ1

, and ECHbR
λ2

represent the extinction coef-
ficients of HbO and HbR with wavelengths λ1 and λ2, re-
spectively; and d is the total corrected photon path length.
)e fNIRS device in the study was the dual wavelength
system (760 nm and 850 nm). When the wavelength was
760 nm, the extinction coefficients of HbO and HbR were
1486.5865 cm− 1/(mol·L−1) and 3843.707 cm− 1/(mol· L−1),
respectively; when the wavelength was 850 nm, the extinc-
tion coefficients of HbO and HbR were
2526.391 cm− 1/(mol· L−1) and 1798.643 cm− 1/(mol· L−1),
respectively. )e total corrected photon path length was
18 cm (6 for the differential path factor (DPF) and 3 for the
optical channel distance).

2.5.2. Calculating the Mean Value, Peak Value, and RMS of
HbO Signal. After data preprocessing, the mean value, peak
value, and RMS of the HbO signals were extracted, re-
spectively, as single features and their combined features to
identify walking imagery and idle state, to find the features
with the best classification effect. Mean values represented
the average activation degree of the corresponding brain
region during the task [20–23], the peak value represented
the maximum activation degree of the corresponding brain
region during the task, and the root mean square repre-
sented the effective activation degree of the corresponding
brain region during the task.

)e calculation expressions of mean value and RMS are
(3) and (4):
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1
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􏽳
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where Mean represents the mean, N represents the total
number of sampling points during the task, and di repre-
sents the HbO data of sampling points.

2.5.3. Sparse Representation Classification. Many natural
signals can be transformed into sparse signals through some
transformation, such as CS, and SRC can be used to classify
them. SRC actually puts many different categories of objects
into the training set. When classification is needed, a linear
combination of each sample in the training set can be used to
describe this unknown category of objects. )e SRC algo-
rithm generally first builds a dictionary and then solves the
optimization problem, reconstructs, and calculates the
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residual. When the residual is very small for a certain cat-
egory, and the other categories are very large, the unknown
category of the object belongs to that category [24, 25].

Traditional SRC ignored the correlation and Euclidean
distance relationship between samples sets [26]. To over-
come the shortcoming, class-dependent sparse representa-
tion classification (cdSRC) can be used, which used the
correlation and Euclidean distance relationship between the
test set and training set to achieve the maximum classifi-
cation accuracy. cdSRC was mainly composed of the class-
dependent orthogonal matching pursuit (cdOMP) algo-
rithm and the class-dependent KNN (cdKNN) algorithm
[27]. )e parameters of cdSRC were as follows: the sparsity
level of cdSRC was 10; the regularization parameter λ value
of cdSRC was 0.05.

CdOMP. cdOMP was an iterative greedy algorithm that
selected the column with the largest correlation with the
current residual in each step. )e cdOMP algorithm flow is
as follows [28]:

(i) x represents the current signal and initializes the
residual e0 � x.

(ii) Select the atom with the largest absolute value of the
inner product withe0, and expressed asφ1.

(iii) )e selected atoms are used as columns to form
matrix Φt, and the orthogonal projection operator
of Φt column space is defined as

P � Φt Φ
T
t Φt􏼐 􏼑

− 1
ΦT

t . (5)

)e residual e1 is obtained by e0 subtracting its
orthogonal projection onto the span of Φt:

e1 � e0 − Pe0 � (I − P)e0. (6)

(iv) Iteratively execute equations (5) and (6) on the
residuals:

em+1 � em − Pem � (I − P)em, (7)

where I is the identity matrix. )e algorithm ter-
minates when a specified stop rule is met.
cdKNN. )e algorithm flow of cdKNN is as follows
[29]:
For all i � 1, 2, . . . , c do.
For all j � 1, 2, . . . , ni do.
Calculate the Euclidean distance D between y

andxij.

dij � D y, xij􏼐 􏼑 (8)

End for
Calculate the mean of K minimum dij􏽮 􏽯

ni

j�1 as
distance di of classi.
End for

Since cdSRCwas not a deep networkmodel, to compare its
classification effect based on fNIRS-BCI, it was suitable to
choose machine learning algorithms. Machine learning

algorithms have been applied inmany fields and achieved good
results [30, 31]. )erefore, we used machine learning algo-
rithms to classify walking imagery and idle state by referring to
methods in other fields. Secondly, the testing time of cdSRC
and machine learning algorithms was short, while the testing
time of deep network will increase as the network deepens.

In addition to using cdSRC to classify walking imagery
and idle state, the study also chose SVM, K-Nearest
Neighbor (KNN), LDA, and logistic regression (LR) in
machine learning for classification. )e parameters of SVM
were as follows: kernel function was RBF and gamma was 1;
C was equal to 2; the weight was equal to 1.05.)e number of
nearest neighbors for KNNwas 5.)e parameters of LR were
as follows: the learning rate α was 0.01, and the number of
iterations was 300.

3. Results

3.1. Classification Results. )e study analyzed the experi-
mental data of 15 subjects; leave-one-out cross-validation
(LOOCV) was used to validate the fNIRS dataset for each
subject. Finally, the average classification accuracy was calcu-
lated. Table 1 shows the different features and their combi-
nations of HbO signals during walking imagery and idle state
(binary classification) of 15 subjects, and the average classifi-
cation accuracy obtained by cdSRC, SVM, KNN, LDA, and LR.
It can be seen from the table that, for the five classifiers of
cdSRC, SVM, KNN, LDA, and LR, the average classification
accuracy obtained by themean (M) valuewas higher than those
of the peak (P) value and RMS (R). )e average classification
accuracy obtained by the five classifiers under M was
86.98 ± 2.63%, 78.92 ± 6.21%, 74.96 ± 4.61%, 77.32 ± 4.93%,
and 71.44 ± 5.33%. Among the feature combinations, the five
classifiers under the combinations of M, P, and R all achieved
good classification accuracy, which were 91.55 ± 3.30%,
86.37 ± 4.42%, 85.65 ± 5.01%, 86.43 ± 4.41%, and
76.14 ± 5.32%, respectively.

Table 2 shows the average testing time required by the
five classifiers under the three feature combinations. )e
experiments were performed on a computer with an Intel
Core i5-8300H 2.30GHz processor, a GeForce GTX1060
graphics card, and 8GB RAM. It can be seen from the table
that LR and KNN required longer testing time than cdSRC,
but the accuracy was lower. Although the testing time re-
quired for SVM and LDA was shorter than that of cdSRC,
the classification accuracy of cdSRC was significantly better
than SVM and LDA when the testing time required for the
three classifiers was very short.

Table 3 shows the average classification accuracy ob-
tained by cdSRC under the three feature combinations and
several time windows. It can be seen from Table 3 that the
average classification accuracy of the 2∼8 s time window was
94.33 ± 2.60%, which was higher than the average classifi-
cation accuracy obtained by other time windows.

3.2. Brain Topographic Map. )e research of Nishiyori et al.
[32] pointed out that when performing or imagining a
unilateral limb movement, the contralateral brain motor
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area was activated. When both hands were moving or
walking at the same time, unilateral brain activation did
show the dominant hemisphere, but showed bilateral brain
activation. Figure 4 shows the brain topographic map of
HbO concentration during walking imagery and idle state.
In the resting state, the human body can carry out its own
metabolism, so that the relative concentrations of HbO and
HbR remain in balanced. When brain activity in a certain
area of the brain increases, the oxygen demand increases in
that area, which will make more HbR combined with oxygen
molecules become HbO to increase oxygen transport.
Conversely, when brain activity in that area decreases, the
amount of HbO decreases [33, 34]. )at is the HR. Since the
HbO signal was extracted in the study, the brain topographic
mapwas drawn based on the HbO concentration.Whether it
was walking imagery or an idle state, there was no significant
hemispherical advantage in left and right brain activation,
which was consistent with the above research. However,
there were differences in the activation intensity andmode of
HbO concentration during walking imagery and idle state.
At the same time, when the subject was performing walking
imagery, the brain activity increased and the left and right
motor areas were activated; when the subject was in an idle
state, there was no brain activity, and the left and right motor
areas were not activated. )is was also in line with HR.

3.3. Statistical Analysis. )e feature dimension of each
sample after and before SRC processing was 4000∗16 and
80∗16, respectively. )e classification results in Table 1 show

that the mean value was a good classification feature for
walking imagery and idle state in the study, and the feature
combinations of mean value, peak value, and RMS were
better separable for walking imagery and idle state than
other combinations and single features.

First, the data was tested for normality to determine
whether to use a parametric test or a non-parametric test.
After the normality test, the classification accuracy of dif-
ferent classifiers did not all satisfy the normality distribution.
)erefore, the non-parametric Friedman test was used in-
stead of the parametric test.

)e non-parametric Friedman test of the classification
accuracy of the five classifiers had a p value of
5.5 × 10− 5 < 0.05, which indicated that there were significant
differences in the classification accuracy of the five classifiers.
In addition, Wilcoxon signed-rank test was needed to verify
the significant difference between the two paired samples,
that is, to verify the significant difference between cdSRC
and the other four classifiers. )e p values of p1, p2, p3, and
p4 in Table 4 are the results of the Wilcoxon signed rank test
conducted on the classification accuracies of cdSRC com-
pared with those of SVM, KNN, LDA, and LR, respectively.
As can be seen from the results in Table 4, all p value were
less than 0.05. )erefore, the classification accuracy of
CDSRC was significantly different from that of SVM, KNN,
LDA, and LR. )is also showed that, compared with SVM,
KNN, LDA and LR, cdSRC can improve the classification
accuracy of walking imagery and idle state based on fNIRS.

)e whisker diagram of the classification accuracy of
different features of cdSRC, SVM, KNN, LDA, and LR is
shown in Figure 5. )e black lines in Figure 5 indicate the
median classification accuracy, and it can be observed that
the median of cdSRC outperformed those of the other four
classification methods. Figure 5 clearly shows that the av-
erage classification accuracy achieved by cdSRC was higher
than those achieved by SVM, KNN, LDA, and LR, which
indicated that cdSRC can effectively identify walking im-
agery and idle state, which may be due to cdSRC used
cdKNN and cdOMP algorithm to solve the sparse coding of
HbO signal features.

Research byNaseer et al. pointed out that the data quality of
the acquired fNIRS signal during the first 2 s of the task was
often not ideal, which would affect the classification effect to a

Table 1: Average classification accuracy (%) obtained by cdSRC, SVM, KNN, LDA, and LR under different features and their combinations
of HbO signals during walking imagery and idle state (binary classification) of 15 subjects.

Classifier Statistics type
Different features of HbO and their combinations

Mean Peak RMS M&P M&R P&R M&P&R

cdSRC Average accuracy 86.98 84.05 82.63 ± 90.32 88.21 87.51 91.55
±Std ± 2.63 ± 3.52 3.76 ± 3.58 ± 3.54 ± 3.69 ± 3.30

SVM Average accuracy 78.92 74.82 72.52 ± 84.62 77.11 76.63 86.37
±Std ± 6.21 ± 5.43 7.03 ± 5.23 ± 3.98 ± 3.74 ± 4.42

KNN Average accuracy 74.96 73.72 72.99 ± 83.76 76.72 76.24 85.65
±Std ± 4.61 ± 4.16 5.15 ± 5.01 ± 4.95 ± 3.48 ± 5.01

LDA Average accuracy 77.32 76.03 73.98 85.24 79.60 75.33 86.43
±Std ± 4.93 ± 4.61 ± 5.01 ± 4.35 ± 5.21 ± 5.81 ± 4.41

LR Average accuracy 71.44 70.29 69.52 74.31 73.60 73.05 76.14
±Std ± 5.33 ± 5.83 ± 5.61 ± 4.02 ± 4.54 ± 5.26 ± 5.32

Table 2: Average testing time required by the five classifiers under
the three feature combinations (ms).

Classifier cdSRC SVM KNN LDA LR
Avg. testing time 63.6 6.2 586.7 18.0 106.8

Table 3: Classification accuracy (%) obtained by cdSRC under
three feature combinations and several time windows.

Time window 0∼10 s 2∼8 s 3∼9 s 4∼10 s
Maximum accuracy 96.67 97.50 97.50 96.67
Minimum accuracy 85.00 87.50 86.67 83.33
Average accuracy 91.55 94.33 92.44 90.67
±Std ± 3.30 ± 2.60 ± 3.05 ± 3.80
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certain extent [35]. )e reason was that the hemodynamic
response (HR) lagged the neuronal event by about 2 s and took
about 5 s to reach its peak value [36]. )erefore, the study also
explored the classification performance of cdSRC when
extracting three feature combinations under four timewindows.
)e time window selected 0∼10 s, 2∼8 s, 3∼9 s, and 4∼10 s
during the task. It was found that the time window of 2∼8 s
achieved a good classification effect, which was also consistent
with the above research results.

4. Discussion

)e signals decoded in the study were HbO signals, which
were converted form fNIRS optical signal and characterized

the blood oxygen metabolic activity of brain tissue. )e
amplitude range of the signals was about
0.08 μmol/L∼−0.01 μmol/L. Not all signals in the range
contributed to pattern classification (such as classification of
walking imagery and idle state). )e linear combination of
less basic signals can be considered to represent most or all
original signals in HbO, that is, a sparse representation of
HbO signals. In this way, more concise representations of
HbO signals can be obtained, and the classifiable infor-
mation contained in the signals can be easily obtained. After
sparse representation, a stable, efficient, and approximately
optimal representation can be provided.

Table 5 shows the comparisons between the study and other
related studies. )ese studies mainly used LDA, SVM, and
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Figure 4: HbO concentration brain topographic map during walking imagery and idle state. (a) HbO concentration brain topographic map
of Sub7 (the highest cdSRC classification accuracy); (b) HbO concentration brain topographic map of Sub13 (the lowest cdSRC classification
accuracy); (c) brain topographic map of mean HbO concentration of all subjects.

Table 4: Results of the Wilcoxon signed rank test conducted on the classification accuracies of cdSRC compared with those of SVM, KNN,
LDA, and LR.

p1 p2 p3 p4

p − value 2.249 × 10− 2 1.796 × 10− 2 4.252 × 10− 2 1.208 × 10− 3
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convolutional neural networks (CNN) as classifiers and dif-
ferent classifiers will also affect the classification accuracy to
varying degrees. Li et al. extracted the correlation coefficient of
HbO to identify the two types of lower limb imagery, and the
average classification accuracy obtained by SVM was 89.33%
[37]. Khan et al. extracted the feature combinations of SS, SM,
and KR to identify walking intention and resting state, and the
classification accuracy achieved by SVM was 86.70% [8]. Rea
et al. extracted the HbOmean value to identify the left and right
leg motor imagery, and the average classification accuracy
obtained by LDA was 89.80% [38]. Yang et al. used fNIRS to
classify three different mental tasks performed byMCI patients,

and the classification accuracy achieved by CNN was 90.62%
[39]. )e results also indicated that early detection of MCI can
prevent progression to Alzheimer’s disease (AD). Compared
with these studies, cdSRC was used in fNIRS-BCI. Under the
designed experimental paradigm (walking imagery and idle
state), the combined features of mean value, peak value, and
RMS of HbO achieved an average classification accuracy of
91.55%.

Although SRC has been applied in BCI, it has been mainly
used in EEG-BCI. At present, SRC is rarely used in fNIRS-BCI.
)e fNIRS signal reflecting the changes of blood oxygen
concentration in brain tissue is different from EEG signal
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Figure 5: )e whisker diagram of the classification accuracy of different features of cdSRC, SVM, KNN, LDA, and LR.

Table 5: Comparisons between the study and other related studies.

Author Classification classes Classification features Classifier Accuracy
Li 2 Correlation coefficient of HbO SVM 89.33%
Khan 2 Combination of SS, SM and KR SVM 86.70%
Rea 2 HbO mean value LDA 89.80%
Yang 3 Digital biomarkers CNN 90.62%
)e study 2 Mean value, peak value, and root mean square combinations of HbO cdSRC 91.55%

8 Computational Intelligence and Neuroscience



directly reflecting the activity of neurons. )erefore, the ef-
fectiveness of SRC for fNIRS-BCI needs to be further experi-
mentally verified. In the study, using SRC to classify HbO
signals was fast (average test time is 63.6ms), the classification
accuracy was high (the classification accuracy in the study is
91.55%), and it can adapt to the changes of the signals.

5. Conclusions

In the study, fifteen subjects were recruited and their fNIRS
signals were collected during the tasks of walking imagery
and idle state. After signal preprocessing, the mean value,
peak value, root mean square, and their combined features of
the HbO signal were extracted, and SRC was used to decode
walking imagery and idle state. Experimental results showed
that SRC can effectively distinguish walking imagery and idle
state. )e results showed that the method has an average
classification accuracy of 91.55 ± 3.30% under the combined
features of mean value, peak value, and root mean square,
which was significantly higher than the classification ac-
curacy of SVM, KNN, LDA, and LR (86.37 ± 4.42%,
85.65 ± 5.01%, 86.43 ± 4.41%, and 76.14 ± 5.32%,
respectively).

)e possible contributions of the study are as follows: (1)
so far, almost no one had used SRC for fNIRS-BCI. Using
SRC to classify walking imagery and idle state, a good
classification accuracy was achieved; (2) we found that the
classification accuracy of combined features was generally
higher than that of a single feature for walking imagery and
idle state; (3) different time windows during the tasks had a
significant impact on the classification results, and the 2−8 s
time window had the highest classification accuracy; (4) the
BCI based on identification of walking imagery and idle state
may provide a potential active rehabilitation training
method for patients with lower limb walking dysfunction.

)e possible future jobs and current limitations of the
study are as follows: (1) the study was an offline research.
Our next step is to carry out online research and apply it to
rehabilitation training for patients with walking dysfunction;
(2) to further improve the classification performance, the
method of fNIRS combined with EEG by SRC can be
considered; (3) at present, the fNIRS signals of healthy
subjects were mainly collected in the study. Our next goal is
to cooperate with hospitals to recruit some patients such as
stroke and traumatic brain injury for experiments.
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