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Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem
owing to the high degree of absorption and scattering of light through tissue.We present a hybridmultilevel reconstruction scheme
by combining the ability of sparse regularization with the advantage of adaptive finite elementmethod. In view of the characteristics
of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding
ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate
that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and
computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.

1. Introduction

Bioluminescence imaging (BLI) is an in vivo imaging
modality that has been successfully used in preclinical
researches [1–3].This imaging strategy exploits the properties
of luciferase that can generate visible or near infrared light
through the oxidation of an enzyme-specific substrate in
the presence of oxygen and adenosine triphosphate [4]. As
the produced light intensity is directly proportional to the
concentration of luciferase-expressing cells, BLI can reveal
cellular and molecular features of biology and disease [5].
However, BLI fails to provide depth information of the
internal biological sources [6]. Collecting measurement data
from multiple views or combining multiple BLI acquisition
with geometrical structures acquired by micro-CT or MRI,
bioluminescence tomography (BLT) tries to reconstruct the
3D biological source distribution. In this way, BLT overcomes
the limitation of planar imaging in poor spatial resolution
and further facilitates our understanding of biomolecular
processes as they occur in living animals. Therefore, BLT has

substantial potential to be a powerful tool for noninvasively
monitoring and tracking a variety of biological processes [7].

Generally, BLT involves a forward and an inverse problem
(source reconstruction).Due to the diffusive nature of photon
propagation in tissue, BLT source reconstruction is known
to be a highly ill-posed problem [6, 8]. To overcome the
inherent ill-posedness of the tomographic problem in BLT,
different strategies have been proposed either by increasing
the amount of independent measurements with spectrally
resolved or multispectral approaches [9–13] or by reducing
the number of unknowns with permissible source region [6,
10, 13, 14]. Up to now, quantitative reconstruction for whole
domain BLT with monochromatic boundary measurements
has not been intensively investigated.

As in many other imaging modalities, the achievable
resolution for BLT is determined firstly by the signal to
noise ratio, and secondly by the level of discretization.
Image quality can be improved by uniformly refining mesh
throughout the reconstruction domain. Nevertheless, global
refinement tends to further aggravate the ill-posedness and
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incur insurmountable computational burden due to the
increased unknowns and problem size. Consequently, the use
of adaptive finite element method (AFEM) is an indispens-
able approach to improve image quality [15–21].

In this contribution, we present a whole domain BLT
method based on AFEM which provides fine resolution
around targets with coarser resolution in other regions.
Unlike the previous AFEM-based BLT that adopted identical
inversion strategy on different mesh levels [15, 18–21], we take
the variance on different discretization levels into account
and propose a novel hybridmultilevel reconstruction scheme
to maintain solution stability and computational economy.
Two different inversion algorithms, the stagewise fast LASSO
(SwF-LASSO) [22] and the incomplete variables truncated
conjugate gradient method (IVTCG) [23], are applied to the
first mesh level and the succeeding ones according to their
respective characteristics.

The following sections describe some of the implemen-
tation details of the hybrid AFEM algorithm, the evaluations
on a digital mouse model, and the validation with an in vivo
experiment. Short discussions and concluding remarks are
given at the end of this paper.

2. Methodology

2.1. Photon Propagation Model. In this work, we assume
that the structural and optical parameters regarding different
organs are given. Therefore, the BLT reconstruction comes
down to a linear inverse source problem. Based on the
diffusion approximationmodel of radiative transfer equation,
a linear relationship between the source distribution and
boundary measurements is then derived with the finite
element method [6]:

𝐴𝑆 = Φ
𝑚

, (1)

where 𝐴 ∈ 𝑅
𝑀×𝑁 (𝑀 < 𝑁) is the system matrix, 𝑆 ∈

𝑅
𝑁 denotes the internal source distribution, and Φ𝑚 ∈ 𝑅

𝑀

represents measurable boundary nodal photon density that
is usually calculated from the surface flux image captured by
a CCD camera.

In view of the limitation of using permissible source
region in BLT reconstruction, we consider a whole domain
reconstruction scheme without this kind of a priori informa-
tion. On the other hand, 𝑙

1
-norm based sparse regularization

methods have attracted considerable amount of attention
in BLT [10, 20–25], and the reconstructions’ results therein
demonstrate that 𝑙

1
-norm solution fits the sparsity nature of

bioluminescent source distribution in BLT practice. Using 𝑙
1

regularization, we formulate the BLT inverse problem to the
following optimization problem:

min
S

1

2

󵄩󵄩󵄩󵄩𝐴𝑆 − Φ
𝑚󵄩󵄩󵄩󵄩

2

2
+ 𝜏‖𝑆‖

1
, (2)

where ‖ ⋅ ‖
2
denotes the Euclidean norm, ‖ ⋅ ‖

1
is the 𝑙

1
norm,

and 𝜏 > 0 is a regularization parameter.

2.2. Hybrid Multilevel Reconstruction Based on AFEM. In
order to provide the resolution necessary for imaging at

acceptable computational cost, the domain Ω is dynamically
discretized into a nested sequence of tetrahedral meshes
{Θ
1
, . . . Θ

𝑘
, . . .}, rather than a fixed and uniformly fine mesh.

In the proposed hybridmultilevel AFEM reconstruction pro-
cess, reconstruction starts at the coarsest level and proceeds
to the finer ones by locally refining the particular region based
on a previous reconstruction procedure.

We note that the first reconstructed procedure on the
coarsest mesh is quite different from the subsequent ones
in the following three aspects. (i) It is based on a uniform
mesh while others are with a locally refined mesh. (ii)
The inversion on the first discretization level involves a
large-size underdetermined system. In contrast, all of the
subsequent reconstructions on locally finer region involve
overdetermined systems. (iii) It has no a priori information
of a promising region in whole domain case, whereas the
others can obtain a permissible source region to constrain
the solution space from a previous reconstruction procedure.
Consequently, the specific inversion should be different on
different meshes, and thus we propose a hybrid multilevel
reconstruction scheme.

On the first mesh Θ
1
, we employed the recently reported

greedy algorithm SwF-LASSO to solve the underdetermined
problem in (2). The SwF-LASSO algorithm converges very
fast and is able to find an approximate value close to the real
distribution in only a few iteration steps. A brief outline of
SwF-LASSO is given as follows [22].

Step 0. Initialization. 𝑛 = 0, index set𝑂 = {1, 2, . . . 𝑁},𝑃 = Φ.

Step 1. Selecting basis function.
For 𝑖 ∈ 𝑂, compute Δ𝐿𝑛+1

𝑖
= −(𝑞

𝑛

𝑖
)
2

/𝑎
𝑇

𝑖
𝑎
𝑖
, compute

the stagewise threshold 𝛾 = √∑
𝑖∈𝑂

(Δ𝐿
𝑛+1

𝑖
)
2

/|𝑂| and then
determine the index set of the basis functions to be selected
𝐾
𝑛+1

= {𝑖 : Δ
0
> |Δ𝐿

𝑛+1

𝑖
| > 𝑐 ⋅ 𝛾, 𝑖 ∈ 𝑂}.

Step 2. The algorithm will be terminated when the index set
𝑂 = Φ is empty, or |max

𝑖∈𝐾
𝑛+1Δ𝐿
𝑛+1

𝑖
| < 𝜀, or𝐾𝑛+1 = Φ.

Step 3. Update variables.

𝑄
𝑛+1

= (
𝑄
𝑛 0

0T 0
) + 𝜂(

𝜌

−1
) (𝜌
𝑇

−1) , (3)

where 𝜌 = 𝑄
𝑛

𝐴
𝑇

𝑃
𝐴
𝐾
, 𝜂 = (𝐴

𝑇

𝐾
𝐴
𝑃
− 𝐴
𝑇

𝐾
𝐴
𝑃
𝜌)
−1 and 𝐴

𝐾

consists of those column vectors of A relating to the selected
basis functions in𝐾𝑛+1. The updating formula of S is

(
𝑆
𝑛+1

𝑃

𝑆
𝑛+1

𝐾

) = (
𝑆
𝑛

𝑃

0 ) + (
𝜌𝜂Δ

−𝜂Δ
) , (4)

where Δ = 𝜌𝑇(𝐴𝑇
𝑃
Φ
𝑚

− 𝜆𝜈
𝑃
/2) − 𝐴

𝑇

𝐾
Φ
𝑚

+ 𝜆𝜈
𝐾
/2.

Step 4. 𝑂 = 𝑂 − 𝐾
𝑛+1, and 𝑃 = 𝑃 + 𝐾𝑛+1.

Step 5. 𝑛 = 𝑛 + 1, go to Step 1.

After the inversion on Θ
𝑖
(𝑖 = 1, 2, 3, . . .) completes,

adaptive mesh refinement is triggered. All of the elements
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Figure 1: Flow chat of the hybrid multilevel reconstructions method.
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Figure 2: (a) The torso of the mouse atlas model with a cylindrical source in the right kidney. (b) Initial mesh for reconstruction and the
simulated photon distribution on surface.
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Figure 3: Evolution of reconstruction results with the local refined mesh in the single-source case. The green mesh denotes the local region
that consists of nonzero nodes of the solution; the black mesh is the discretized source. (a) to (d) corresponds to four mesh levels, that is, Θ

1

to Θ
4
.

with nonzero reconstructed value are selected to be refined,
which can be regarded as a kind of mesh refinement strategy
based on posteriori error estimation. Using the longest-edge
bisectionmethod, a locally refinedmeshΘ

𝑖+1
is obtained [17].

Unlike other previous reports, we employ a different
reconstruction procedure on the succeeding mesh levels
Θ
𝑖
(𝑖 > 1). The IVTCG algorithm proposed in [23] has

been demonstrated as an effective reconstruction method
by reformulating (2) as a convex quadratic program with
nonnegative constrained conditions. It updates only partial
variables in working set per iteration and adopts a working
set splitting strategy to find the searching directionmore effi-
ciently, which leads to a small subproblem to be minimized
and greatly decreases the number of iterations. The model
transformation and the mechanism of IVTCG are detailed in
[23].

We note that it is the sparseness-related parameter 𝑁
𝑠

that controls the size of the subproblem, which is solved
by the truncated conjugate gradient method. Generally, for
a very sparse problem, IVTCG can obtain accurate results
with reasonable computational efficiency by setting 𝑁

𝑠
=

⌊𝑀/10⌋ and the maximum iterate number of the subproblem
itermax = 𝑁𝑠. However, in the reconstruction procedures after
local mesh refinement, the target is not a very sparse signal
and the computational cost will increase sharply. In view of
this feature, wemake amodification and adjust the parameter
𝑁
𝑠
= ⌊𝑀/4⌋, and itermax = 25 in our implementation.
Anew roundof localmesh refinement and reconstruction

will be performed until the number of refinement exceeds
the maximum number 𝑘max or the model misfit ‖𝐴𝑆 − Φ𝑚‖2

2

is reduced below a prespecified threshold 𝜀. For the results
reported in this work, we used 𝑘max = 4 and 𝜀 = 10

−5.
The procedure of the proposed hybrid multilevel recon-

structions method is illustrated in Figure 1.

3. Numerical Experiments and Results

We tested the proposed hybrid multilevel reconstruction
method with a digital mouse model employing synthetically
generated data. In the following simulations, we employed
a 3D mouse atlas of CT and cryosection data to provide
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Figure 4: From (a) to (d): transverse views at 𝑧 = 25mm of the reconstruction results on mesh Θ
1
to mesh Θ

4
in single source, respectively.

anatomical information [26].TheCT slices of themousewere
segmented into major anatomical components, including
lungs, a heart, a liver, a stomach, kidneys, and muscles.
The corresponding optical properties were the same as the
settings in [27], as shown in Table 1. The whole region
included the mouse torso with a height of 45mm.

In the following numerical experiments, the torso model
was discretized into a tetrahedral-element mesh, and syn-
thetic measurements were generated by solving the forward
model with FEM. To simulate the noise involved in real
BLT experiments, 15% Gaussian white noise was added to
the synthetic data. The qualities of the reconstruction are
quantitatively assessed in terms of location error (LE) and
relative error (RE) between the reconstructed power and the
actual value.

3.1. Single-Target Reconstruction. In the first set of experi-
ments, a cylindrical source with 0.4mm radius and 1mm
height was positioned in the right kidney with the center at
(11, 6, 25), as shown in Figure 2(a). The actual source power
was 0.2299 nW after discretization with FEM. Figure 2(b)
shows the initial mesh for reconstruction and the photon
distribution on the surface.

Following the proposed hybrid multilevel reconstruc-
tions method, the final result in single-source case was
obtained by four rounds of reconstructions. Figure 3 shows
the refinement of local mesh around targets and the solution

Table 1: Optical properties for the atlas organs region.

Material Muscle Lungs Heart Liver Kidney Stomach
𝜇
𝑎
[mm−1] 0.23 0.35 0.11 0.45 0.12 0.21

𝜇
󸀠

𝑠
[mm−1] 1.00 2.30 1.10 2.00 1.20 1.70

progress from mesh Θ
1
to mesh Θ

4
. According to the pro-

posed methods, fine resolution only presents around targets,
while coarser resolution retains in other regions, which
contributes to reaching the desirable resolution at acceptable
computational cost. Figures 4 and 5 are the transverse views
and 3D views of reconstruction results from mesh Θ

1
to

mesh Θ
4
, which illustrate the improvement of results during

adaptive mesh refinement.
To demonstrate the necessity and effectiveness of the

hybrid reconstruction scheme, we first compared the SwF-
LASSO and IVTCG method on the initial coarse mesh Θ

1
,

and then we compared the results of hybrid method, that is,
SwF-LASSO + IVTCG, with that of only using SwF-LASSO
on the succeeding mesh levels. The detailed reconstruction
results are presented in Table 2. Obviously, the reconstruction
results by IVTCG are inferior to that of SwF-LASSO on
Θ
1
, and hybrid AFEM scheme performs better than the

traditional AFEM that uses monoalgorithm of SwF-LASSO
on the subsequent mesh Θ

2
to mesh Θ

4
.

Owing to the hybrid multilevel reconstruction scheme,
the location error and the relative error of power distinctly
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Figure 5: 3D views of the reconstruction results on mesh Θ
1
to mesh Θ

4
in single source.

decrease with the adaptively local mesh refinement. Espe-
cially, significant improvement of reconstructed density and
power can be seen from the results in Table 2 and Figure 4.

3.2. Double-Source Reconstruction. We also investigated the
resolving ability of the proposed method with two closely
separated sources. Two cylindrical sources, same as that in the
above single-target setting, were located in the right kidney
with their centers at (9, 6.5, 25) and (12, 4, 25), respectively.
They were identical in size and density, but the initial powers
of them were 0.2120 nW and 0.2250 nW, mainly due to the
influence of the mesh. The source setting and the simulated
photon distribution are shown in Figure 6.

In double-source case, the multilevel reconstruction ter-
minated on the third mesh level Θ

3
. Figure 7 displays the

reconstruction results by the proposed method on mesh Θ
1

and mesh Θ
3
. The final result of the traditional AFEM, only

using SwF-LASSO as the inversion algorithm on each mesh
level, is also shown in Figures 7(c) and 7(f) for comparison.
More detailed quantitative results are summarized in Table 3.

Figure 7 witnesses an apparent advantage of using hybrid
scheme. Although the first-round result was biased towards a
node between the targets on mesh Θ

1
, the proposed method

successfully identified the two targets finally, which should
be attributed to both the AFEM and the hybrid strategy.
By contrasting Figure 7(d) with Figure 7(e), we can observe
that the improvement caused by multilevel reconstruction
with AFEM is evident. Nevertheless the final result of using
monoalgorithm of SwF-LASSO is obviously inferior to that
of using hybrid algorithm in terms of location accuracy and
the reconstructed power error. Take source 1 for instance,
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Figure 6: (a) Source setting in double-source case. (b) Initial mesh for reconstruction and the simulated photon distribution on surface.

Table 2: Reconstruction results in single-source case on different mesh levels.

Mesh Recon. method Recon. location (mm) LE (mm) Power (nW) RE (%)

Θ
1

SwF-LASSO 11.02, 5.45, 25.18 0.58 0.1409 38.71
IVTCG 10.60, 5.38, 27.00 2.13 0.0514 77.64

Θ
2

SwF-LASSO 11.02, 5.45, 25.18 0.58 0.1711 25.58
Hybrid method 11.02, 5.45, 25.18 0.58 0.1773 22.88

Θ
3

SwF-LASSO 11.02, 5.45, 25.18 0.58 0.1765 23.23
Hybrid method 11.02, 5.45, 25.18 0.58 0.1861 19.05

Θ
4

SwF-LASSO 11.00, 5.99, 25.01 0.01 0.1834 20.23
Hybrid method 11.00, 5.99, 25.01 0.01 0.2529 10.00

the LE of the hybrid scheme reduces by 0.19mm and the RE
of power falls down to 2.3%. As for source 2, the proposed
hybrid reconstructionmethod yields a 78% plunge in relative
error of power.

4. In Vivo Experiments

To further validate the proposed method, an in vivo exper-
iment was performed on an adult nude mouse. The animal
procedures were in accordance with the Fourth Military
Medical University that approved the animal protocol.

In the in vivo experiment, a capillary approximately
1.25mm in diameter and 4.08mm in length was inserted
into the abdomen of the nude mouse. The capillary filled
with 5𝜇L luminescent liquid served as the testing source
in this experiment. The luminescent solution was extracted
from a red luminescent light stick (Glow products, Victoria,
Canada), and the generated luminescent light had an emis-
sion peakwavelength of about 644 nm.The initial total power
was 300 nW (the total power = luminescent solution volume
× luminescent solution flux density = 5𝜇L × 60 nW/𝜇L).

This set of BLT experiments were conducted with a
dual-modality BLT/micro-CT system [23]. The anesthetized
mouse was first photographed, and luminescent images were
taken by a calibrated CCD camera from four directions at
90 degree intervals with different exposure times. The multi-
view superimposed photographs and luminescent images are
shown in Figures 8(a)–8(d).

After the optical data were acquired, the intactmouse was
scanned using the Micro-CT. Because of the limited field of
view, only the torso section was scanned. The volume data
were reconstructed using GPU-accelerated FDK algorithm
[28]. From the CT slices, we located the center coordinate
(21.44, 27.52, 9.76) of the actual luminescent source. The
mouse bodywas segmented into five anatomical components,
including muscle, heart, lungs, liver, and kidneys. The rel-
evant optical properties of the mouse are listed in Table 4
[29].

Based on the collectedmultiview luminescent images and
the volume data of CT, the 3D surface distribution is deter-
mined by the mapping algorithm described in [30], as shown
in Figure 8(e). After the mapping process, three rounds of
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Figure 7: Top row: transverse views of reconstruction results in double-source case at 𝑧 = 25mm. Bottom row: 3D views. (a) and (d) are the
first-round results on mesh Θ

1
, (b)and (e) are the final results of the proposed hybrid method, (c) and (f) are the final reconstruction results

by the monoalgorithm of SwF-LASSO.

Table 3: Reconstruction results on different mesh levels in double-source case.

Mesh Recon. method Source ID Recon. location (mm) LE (mm) Power (nW) RE (%)

Θ
1

SwF-LASSO 1 10.96, 7.63, 24.52 2.31 0.5231 147.5
2 10.96, 7.63, 24.52 3.81 0.5231 132.5

Θ
2

Only SwF-LASSO 1 9.98, 7.58, 25.33 1.50 0.3337 57.4
2 12.09, 4.66, 25.06 0.67 0.5805 158

Hybrid method 1 9.70, 6.14, 25.10 0.79 0.2208 4.2
2 12.09, 4.66, 25.06 0.67 0.2083 7.4

Θ
3

Only SwF-LASSO 1 9.70, 6.14, 25.10 0.79 0.2894 36.5
2 12.09, 4.66, 25.06 0.67 0.4393 95.2

Hybrid method 1 8.80, 5.94, 24.91 0.60 0.2168 2.3
2 12.09, 4.66, 25.06 0.67 0.2638 17.2

reconstructions on gradually refinedmeshes were performed
with the proposed hybrid method. The reconstruction result
on meshΘ

1
is presented in Figure 9, where the source center

is (20.39, 27.98, 9.78) with a deviation of 1.15mm to the actual
center. From mesh Θ

1
to mesh Θ

3
, the source locations are

identical, which means that the SwF-LASSO algorithm yields
relatively accurate location from the begging. However, the
preliminary reconstruction on the initial coarsemeshΘ

1
pos-

sesses relative bigger errors in source power. After two rounds
of local mesh refinement, the final results of hybrid method
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Figure 8: (a)–(d) are multiview superimposed images of photographs and luminescent images, and (e) is the surface mapping result before
reconstruction.

Table 4: Optical properties of the living nude mouse.

Material Muscle Lungs Heart Liver Kidney
𝜇
𝑎
[mm−1] 0.009 0.460 0.138 0.829 0.155

𝜇
󸀠

𝑠
[mm−1] 1.258 2.265 1.077 0.736 2.533

improved prominently. Specifically, the reconstructed power
increased from 149.01 nW to 214.60 nW, and the RE of power
decreased from 50.33% to 28.47%. The 3D views of the
corresponding results on mesh Θ

1
to mesh Θ

3
are presented

in Figure 10.

5. Discussion and Conclusion

We present a novel multilevel reconstruction method for
whole domain BLT, which combines the merit of sparse reg-
ularization with the advantage of adaptive FEM. Numerical
experiment results employing synthetic data with a digital
mouse model illustrate that the proposed hybrid multilevel
reconstruction scheme is able to accurately localize and

quantify source distribution without a priori information of
permissible source region and multispectral measurements.
The in vivo experiments conducted on a nude mouse with
a dual-modality BLT/micro-CT system further validate the
proposed method.

From the above experiments, we can find that the
inversion algorithm on the initial coarse mesh has more
important impact on the final result in the proposed hybrid
scheme. The SwF-LASSO algorithm is able to provide a
good initial localizationwith better numerical stability, which
guides the subsequent reconstruction on finer meshes to
obtain more accurate location and power. Furthermore,
the experimental results also demonstrate that the hybrid
strategy works. Compared with the multilevel reconstruction
using monoalgorithm, the hybrid scheme performs better
especially for multiple targets reconstruction. Therefore, it is
also possible to form another qualified hybrid scheme using
some other promising inversion algorithms.

For the sake of computational efficiency, the recon-
structions presented in this paper are based on the diffu-
sion equation. Therefore, the inadequately accurate forward
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Figure 9:The transverse view of the reconstruction result and the comparison with the corresponding CT slices. The cross of the green lines
denotes the actual source center, and the cross of the red lines denotes the reconstructed center.
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Figure 10: (a)–(c) are the reconstruction results for in vivo data on mesh Θ
1
to mesh Θ

3
.
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model also leads to some inevitable error.The reconstruction
performance might be further improved by using more
accurate models, which is also the direction of our further
work.

In addition to the many advantages of adaptive finite
element methods, such as providing fine resolution around
targets with coarser resolution in other region, the proposed
hybrid scheme has two remarkable features. (i) Recon-
struction result evolves adaptively with iterations, and the
reconstruction accuracy is easily controlled by users. (ii) The
inversion techniques employed on the initial coarse mesh
and the succeeding ones vary with the discretization level to
maintain solution stability and computational efficiency.
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