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Abstract: Hashimoto’s thyroiditis (HT) is the most prevalent autoimmune disorder of the thyroid
(AITD) and characterized by the presence of circulating autoantibodies evoked by a, to date, not
fully understood dysregulation of the immune system. Autoreactive lymphocytes and inflammatory
processes in the thyroid gland can impair or enhance thyroid hormone secretion. MicroRNAs
(miRNAs) are small noncoding RNAs, which can play a pivotal role in immune functions and the
development of autoimmunity. The aim of the present study was to evaluate whether the expression
of 9 selected miRNAs related to immunological functions differ in patients with HT compared to
healthy controls. MiRNA profiles were analysed using quantitative reverse transcription polymerase
chain reaction (qRT-PCR) in 24 patients with HT and 17 healthy controls. Systemic expressions of miR-
21-5p, miR-22-3p, miR-22-5p, miR-142-3p, miR-146a-5p, miR-301-3p and miR-451 were significantly
upregulated in patients with HT (p ≤ 0.01) and were suitable to discriminate between HT and healthy
controls in AUC analysis. Altered expressions of miR-22-5p and miR-142-3p were associated with
higher levels of thyroid antibodies, suggesting their contribution to the pathogenesis of HT.

Keywords: miRNA; autoimmune thyroid disease; AITD; Hashimoto’s thyroiditis

1. Introduction

Autoimmune thyroid diseases (AITDs) are the most common autoimmune diseases,
affecting 2–5% of the population in high-income countries [1]. Hashimoto’s thyroiditis
(HT), the most frequent AITD, is the leading cause of hypothyroidism in iodine-sufficient
areas of the world. Although exact mechanisms of aetiology and pathogenesis of HT
are not completely understood, a strong genetic susceptibility to the disease has been
confirmed by studies carried out within families and twins [2]. As in other autoimmune
disorders, humoral and cellular immune mechanisms are closely related and cross-linked
in AITDs. Disturbed self-tolerance accompanied by an increased antigen presentation is
a precondition for their manifestation, based also on the interaction of thyroid, antigen
presenting and T cells. Secreted cytokines provoke predominantly a T-helper type 1 (Th1)

Genes 2022, 13, 171. https://doi.org/10.3390/genes13020171 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13020171
https://doi.org/10.3390/genes13020171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-2437-1992
https://orcid.org/0000-0002-3872-5643
https://orcid.org/0000-0003-3554-0405
https://orcid.org/0000-0003-3543-1807
https://doi.org/10.3390/genes13020171
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13020171?type=check_update&version=2


Genes 2022, 13, 171 2 of 12

as well as a Th17 response, which has been described [3]. Impaired thyroxin production
and hypothyroidism as well as, more rarely, hyperthyroidism, are the consequences.

Early diagnosis and intervention may help to prevent the development of HT and
abnormal thyroid function. The final diagnosis of HT depends on lymphocytic infiltration
of the thyroid gland by fine-needle aspiration biopsy (FNAB) and further histopathological
examination which is invasive and sometimes unfeasible [4]. Serum thyroid antibodies and
ultrasonography are now used for diagnosis. At an early stage, HT is asymptomatic, easily
leading to misdiagnosis [5]. Therefore, more biological markers need to be discovered to
assist in early and accurate diagnosis of HT.

Micro RNAs (miRNAs) are small, noncoding, highly conserved ribonucleic acids
(RNAs) that regulate gene expression by binding to messenger RNA (mRNA), thus modi-
fying transcriptional processes. A single miRNA can regulate the expression of multiple
genes and their encoded proteins [6]. In total, over 30% of human mRNAs are regulated
by miRNAs [7]. Many miRNAs have been found to be important for the survival, de-
velopment, differentiation, and function of T cells, B cells, dendritic cells, macrophages
and other immune cell types [8,9]. Accordingly, differential miRNA expression profiles
have been reported in autoimmunological disorders such as rheumatoid arthritis, systemic
lupus erythematosus and psoriasis, [10–14] as well as in AITDs [15–19]. The aim of the
study was to examine a panel of nine selected miRNAs to evaluate whether there is a
difference in serum expressions of patients with HT and to investigate possible relations to
thyroid antibodies. Candidate miRNAs for the present investigation have been selected
according to their presence in serum as well as to previously described associations of
humoral and/or cellular immune mechanisms involved in AITDs (Table 1).

Table 1. MiRNAs, mature sequence and source of reference of each selected miRNA.

micro RNAs Sequence Reference

hsa-miR-21-5p 5′UAGCUUAUCAGACUGAUGUUGA [15]
hsa-miR-22-3p 5′AAGCUGCCAGUUGAAGAACUGU [16]
hsa-miR-22-5p 5′AGUUCUUCAGUGGCAAGCUUUA [16]
hsa-miR-96-5p 5′UUUGGCACUAGCACAUUUUUGCU [15]

hsa-miR-142-3p 5′UGUAGUGUUUCCUACUUUAUGGA [15]
hsa-miR-146a-5p 5′UGAGAACUGAAUUCCAUGGGUU [15]
hsa-miR-301-3p 5′CAGUGCAAUAGUAUUGUCAAAGC [15]

hsa-miR-375 5′UUUGUUCGUUCGGCUCGCGUGA [16]
hsa-miR-451 5′AAACCGUUACCAUUACUGAGUU [16]

hsa, homo sapiens; miRNA, micro RNA.

2. Materials and Methods
2.1. Study Populations

Data of the present investigation were obtained from the BioPersMed cohort (“Biomark-
ers of Personalized Medicine”), an ongoing single-centre, prospective, observational study
to evaluate novel biomarkers for the assessment of cardiovascular and common metabolic
diseases and their related complications. This observational trial was initiated in the year
2010 and the study population consists of 1022 asymptomatic subjects without diagnosed
cardiovascular disease (CVD) with at least one classical risk factor for CVD, such as family
history of CVD, hypertension or dyslipidaemia. Extensive anthropometric and clinical data
were carefully recorded, including comorbidities such as previously diagnosed HT. Patients
presenting with severe illnesses independent of aetiology, or who were expected not to
be able to complete study specific examinations, have been excluded from participation.
Moreover, persons with serious co-morbidities or mental health problems have also been
excluded. Written informed consent from each participant was obtained after the study
approval by the institutional review board of the Medical University of Graz (EC Nr. 24-224
ex 11-12). The BioPersMed study is conducted in compliance with Good Clinical Practice
Guidelines Procedures (GCP) and carried out according to the principles of the Declaration
of Helsinki.
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For the present observational investigation, we screened the BioPersMed cohort for
previously diagnosed HT patients (n = 27) as well as age and sex matched participants
suitable as healthy controls (n = 22). HT patients have been diagnosed based on the com-
monly used diagnostic tools such as clinical manifestations, ultrasound and measurement
of thyroid stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4),
thyroglobulin autoantibody (TgAb) and thyroid peroxidase autoantibody (TPOAb) by their
general practitioner or any other medical facilities. Exclusion criteria for HT patients were
comorbidities such as acute (e.g., pancreatitis) or chronic inflammations (e.g., rheumatoid
arthritis, polymyalgia, diabetes mellitus), endocrine disturbances in need of treatment
(other than HT), history of myocardial infarction as well as history of cancers (e.g., bladder
cancer, acoustic neuroma). Participants in the healthy control group showed at least one
classical risk factor for CVD, but no serious comorbidities after a clinical validation by an
experienced clinician. Serum samples were excluded if haemolysis was visually detected.
We therefore excluded 3 samples of the HT group and 5 samples of the control group. In
total, we investigated 24 HT patients compared to 17 healthy controls. A study flow chart
is given in Figure 1.
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Figure 1. Study flow chart.

2.2. Patient Visit

Anthropometric data were measured in all participants. Baseline blood samples for
laboratory analyses were collected between 7.00 and 9.00 a.m. after an overnight fast.
Biobanking of blood samples was performed by freezing and storing the samples at −80 ◦C
until analysis. To evaluate thyroid function and common autoantibodies, serum levels of
TSH, fT3, fT4, TPOAb and TgAb were determined by luminescence immunoassay (Siemens,
Erlangen, Germany) with intra- and inter-assay coefficients of variation (CV) of: TSH, 5.0%
and 6.0%; FT3, 2.4% and 2.9%; FT4, 2.2% and 2.3%; TPO Ab, 5.2% and 6.1%, as well as Tg
Ab, 5.0% and 4.6%, respectively. Body mass index (BMI) was calculated as body weight in
kilograms (kg) divided by height in meters squared (m2).

2.3. Selection of miRNAs

Based on previous studies [15,16], we selected 9 miRNAs that have been related
to relevant immunological functions as candidates for the present investigation. These
miRNAs are listed in Table 1.
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2.4. miRNA Isolation and qPCR

MiRNA was isolated using the miRNeasy Serum/Plasma Advanced Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. RNA was eluted from the
columns by addition of 20 µL RNase-free water, followed by centrifugation. The isolated
miRNAs were short-term stored at −80 ◦C. Complementary DNA (cDNA) was generated
using miRCURY LNA RT synthesis kit (Qiagen, Hilden, Germany), and subsequent quan-
titative real-time PCR (qPCR) was performed in duplicates using miRCURY LNA SYBR
Green PCR Kit and specific miRCURY LNA miRNA PCR Assays (both from Qiagen, Hilden,
Germany) with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA). Exogenous oligonucleotides have been added as spike-in controls (UniSp2,
UniSp4, UniSp5, UniSp6 and cel-miR-39-3p) and were used to estimate the efficiency of
RNA extraction, reverse transcription reaction and qPCR amplification (RNA Spike in Kit
for RT, Qiagen, Hilden, Germany). All qPCRs were performed with interplate calibration, a
maximum of 40 cycles were performed in duplicates and the average of cycle threshold
(Ct) values were calculated. Only those miRNAs with a Ct < 37 were considered for further
analysis. The relative expression levels of all investigated miRNAs were calculated as
fold change [20]. For that, average Ct values have been normalized to spike-in controls to
calculate ∆Ct values. Fold change was calculated as 2−∆∆Ct where ∆∆Ct was ∆Ct of HT
patients minus ∆Ct of controls. Quantitative qPCR data are reported as mean ± standard
deviation (SD).

2.5. Functional Annotation of miRNAs

MiRWalk was used to identify potential target genes of differentially expressed miR-
NAs [21]. Matched binding sites have been evaluated in genes reportedly involved in the
development of AITDs [22].

2.6. Statistical Analysis

Statistical analysis was performed using SPSS statistics version 25.0 (IBM SPSS Statis-
tics GmbH, Ehringen, Germany). Patient characteristics and biomarker results are reported
as mean ± SD unless otherwise stated. Distribution of data was analysed by descriptive
statistics and Kolmogorov–Smirnov test, as well as by evaluation of quantile-quantile plots.
Normally distributed quantitative data were compared using unpaired Student’s t-test and
unequally distributed data by applying Kruskal–Wallis tests for non-parametric samples.
Changes of miRNA in the HT group are displayed as relative change compared to miRNA
levels of healthy controls as reference. The diagnostic value for discriminating between HT
patients and the control group was assessed by calculating the area under the curve (AUC).
Receiver-operator characteristic (ROC) curves were generated by plotting sensitivity vs.
(1-specificity). A p-value of ≤0.05 was considered as statistically significant. Adjustment
for multiple testing has been performed by Bonferroni correction.

3. Results
3.1. General Results

We included a total of 41 participants, 33 women (81%), and 8 men (19%) in our analy-
sis. Of these, 24 subjects (59%) were patients with previously diagnosed HT (22 women
(92%) and 2 men (8%)). 17 subjects (41%) were classified as healthy (11 women (65%) and
6 men (35%)) (Figure 1).

In the HT patients group, 13% (n = 3) showed TgAb > 60 U/mL and 54% (n = 13)
showed TPOAb > 60 U/mL. In total, 4 patients had both TgAb as well as TPOAb > 60 U/mL,
respectively.

Of the HT patients, 29% (n = 7) were treated with levothyroxine. Control group partic-
ipants did not take any recorded medication. Demographic data of the study population
are given in Table 2.
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Table 2. Demographic data of patients with Hashimoto’s thyroiditis and healthy subjects. Frequency
data are presented as number, (percentage), continuous data as mean ± standard deviation. HT,
Hashimoto’s thyroiditis; n, number; BMI, body mass index; FT3, free triiodothyronine; FT4, free
thyroxine; TSH, Thyroid stimulating hormone; TPOAb, thyroid peroxidase autoantibody; TgAb,
thyroglobulin autoantibody. Normal ranges of fT3, 3.0–6.3 pmol/L; fT4, 9.5–24 pmol/L; TSH,
0.10–4.0 µU/mL; TgAb; 0–60 IU/mL; TPOAb, 0–60 IU/mL.

Patients with HT Healthy Subjects

n 24 17
Sex female (n) 22 (91.7%) 11 (64.7%)

Age (yr) 57.9 ± 7.4 61.1 ± 5.8
BMI (kg/m2) 25.2 ± 4.2 23.7 ± 2.34
fT3 (pmol/L) 4.4 ± 0.5 4.8 ± 0.4
fT4 (pmol/L) 15.9 ± 2.3 16.3 ± 2.0
TSH (µU/mL) 1.60 ± 0.87 1.83 ± 0.73
TgAb (IU/mL) 213.8 ± 365.6

TPOAb (IU/mL) 212.2 ± 199.1
Levothyroxine treatment 7 (29%)

3.2. miRNA Expression Is Altered in Patients with HT

Systemic expression of miR-21-5p, miR-22-3p, miR-22-5p, miR-96-5p, miR-142-3p,
miR-146a-5p, miR-301a-5p, and miR-451 was significantly upregulated in patients with HT.
Associations of miR-21-5p, miR-22-3p, miR-142-3p, miR-146a-5p, miR-301-3p as well as
miRNA-451 remained stable after Bonferroni correction. In contrast, miRNA-22-5p and
miRNA-96-5p lost the level of significance after adjustment for multiple testing. Out of the
nine selected miRNAs, miR-375 was the only candidate that was not upregulated in serum
of HT patients. (Table 3). ∆Ct values per group were normally distributed. Respective
scatter plots are given in Figure 2. An annotation in miRWalk provided information on
binding sites of the potential miRNAs.

Table 3. MiRNA ∆Ct values according to the selected miRNAs of patients with Hashimoto’s thyroidi-
tis and healthy subjects. Data are shown as mean ± standard deviation.

hsa-miRNA Patients with HT (n = 24) Healthy Subjects (n = 17) p-Value

miR-21-5p −0.43 ± 0.54 0.68 ± 0.58 <0.001 *
miR-22-3p 1.58 ± 0.85 2.98 ± 0.80 <0.001 *
miR-22-5p 6.42 ± 0.95 7.22 ± 0.91 0.010
miR-96-5p 8.40 ± 1.21 9.22 ± 1.22 0.040

miR-142-3p −0.84 ± 0.58 1.03 ± 0.60 <0.001 *
miR-146a-5p 2.71 ± 0.63 3.69 ± 0.65 <0.001 *
miR-301-3p 6.09 ± 1.01 7.21 ± 0.82 0.001 *

miR-375 8.52 ± 1.67 8.21 ± 1.10 0.503
miR-451 −2.60 ± 1.00 2.82 ± 1.35 <0.001 *

* indicates significant p-values after Bonferroni correction.

3.3. miR-22-5p and miR-142-3p Are Altered in HT Patients with Higher Levels of
Thyroid Antibodies

Subgroup analyses within HT patients showed significantly higher miRNA expres-
sion for miR-22-5p in HT patients with higher thyroid antibody levels (TgAb and/or
TPOAb > 60 U/mL, n = 13), 5.97 ± 0.74, as compared to HT patients with lower thyroid
antibody levels (TgAb and/or TPOAb < 60 U/mL, n = 11) 6.95 ± 0.90; p = 0.008.

MiR-142-3p was also found to be significantly different (p = 0.05) in HT patients
with higher levels of thyroid antibodies −0.25 ± 0.57 as compared to HT patients with
thyroid antibody levels < 60 U/mL, 0.21 ± 0.51. In our regression analysis miR-22-5p and
miR-142-3p expressions did not correlate with TPOAb levels (Figure 3).
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Figure 2. Expression of 9 miRNAs in serum of samples of HT patients and healthy controls. Data 
are displayed as scatter plots, where each dot represents the fold change as 2−∆∆ct-value of one study 
sample. Significance was tested by unpaired Student’s t-test. 
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Figure 2. Expression of 9 miRNAs in serum of samples of HT patients and healthy controls. Data are
displayed as scatter plots, where each dot represents the fold change as 2−∆∆ct-value of one study
sample. Significance was tested by unpaired Student’s t-test.

3.4. Potential Binding Site Targets

A functional annotation of these differentially expressed miRNAs revealed potential
binding sites in genes of important immune mediators such as interleukins (IL), interferons
(IFN), transforming growth factors (TGF), and granulocyte-macrophage colony-stimulating
factor (GM-CSF). A scheme on how these miRNAs may interact in the development of AITD
is given in Figure 4. Higher numbers of predicted miRNA binding sites were determined
for miR-22-5p (n = 6) and for miR-142-3p (n = 4) compared to the mean number of binding
sites for all miRNAs of 3.3 ± 2.0 (SD). MiR-21-5p showed potential interactions with IL-5,
IFN-γ and IL-12. MiR-22-3p potentially interacts with IL-2, IL-5, IL-12, IL-17, IL-23, IFN-
γ and TGF-β. MiR-22-5p potentially interacts with IL-1, IL-12, IL-13, IL-17 and IL-23 and
IFN-γ. MiR-96-5p potentially interacts with IL-5, IL-13 and IL-23. MiR-142-3p potentially
interacts with IL-1, TGFβ, IFN-γ and GM-CSF. MiR-146a-5p potentially interacts with IL-12,
IL-5 and IL-17. MiR-301-3p potentially interacts with IL-7 and IL-17. MiR-451 potentially
interacts with IL-1 and IL-12.
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Figure 3. (a) Altered Expressions of miR-22-5p and miR-142-3p in serum of HT patients with higher
levels of thyroid antibodies compared to HT patients with thyroid antibody levels <60 U/mL. Data
are displayed as scatter plots, where each dot represents the ∆Ct value of one HT patient. Significance
was tested by unpaired Student’s t-test. (b)Thyroid Antibodies (TPOAb) did not correlate with higher
expressions of miR-22-5p and miR-142-3p (∆Ct values). TgAb, thyroglobulin autoantibody; TPOAb,
thyroid peroxidase autoantibody; ∆Ct, delta Cycle threshold.

3.5. miRNAs as Discriminators for HT Status in ROC Analysis

To evaluate the discriminatory potential of the differentially expressed miRNAs, we
performed receiver-operating characteristic (ROC) analysis and calculated area under the
curve (AUC) values. With the exception of miR-96-5p, differentially expressed miRNAs
are “fair” (miRNA 22-5p: AUC = 0.76; 95% CI, 0.61–0.91; p = 0.006), “good” (miR-301-3p:
AUC = 0.82; 95% CI, 0.68–0.96; p = 0.001 and miR-146a-5p: AUC = 0.86; 95% CI, 0.75–0.97;
p < 0.001) or “excellent” (miR-21-5p: AUC = 0.99; 95% CI, 0.85–1; p < 0.001; miR-22-3p:
AUC = 0.92; 95% CI, 0.82–1.00; p < 0.001; miR-142-3p: AUC = 0.92; 95% CI, 0.84–1.00;
p < 0.001 and miR-451: AUC = 1.00; 95% CI, 1.00–1.00; p < 0.001) predictors [23] (Figure 5).
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4. Discussion

In the present observational study, eight out of nine observed miRNAs were differen-
tially expressed in the serum of HT patients compared to healthy controls. In a subgroup
analysis, HT patients with thyroid antibodies (TPOAb and/or TgAb) showed significantly
higher expression levels for miR-22-5p and miR-142-3p but not for the other 7 miRNAs
(Figure 3). To evaluate the accuracy of these differentially expressed miRNAs in predicting
HT, we conducted a ROC analysis. AUC of these miRNAs were at least >0.76, indicating
a “fair” test with enough balance between sensitivity and specificity for discriminating
accurately between HT patients and healthy controls [24], (Figure 5).

The general tendency to overexpression detectable for all investigated miRNAs might
be due to either active secretion as a consequence of increased inflammation in HT patients
or derivation from autoimmune-related cell death. Independent from their cells of origin,
miRNAs can function as endocrine signallers and are taken up by target cells [25].

We detected an increased expression of miR-22-5p and miRNA-142-3p, both associated
with higher levels of serum antibodies (TgAb and/or TPOAb > 60 U/mL) in patients
with HT. This corresponds with data of our ROC analysis. Both miRNAs are suitable
to discriminate between HT patients and healthy controls. We could not confirm the
association between antibody level group and altered expression by correlation analysis.
Thyroid antibodies did not correlate with expression levels of miR-22-5p and miR-142-3p
(Figure 3). Furthermore, and this counts for all of our analyses, we cannot estimate how the
investigated miRNAs vary in their expressions before, during or after development of HT
since this study was observational after development of HT.

Our results are in context with previously published data. Zhu et al. reported positive
associations of TgAb levels and miR-142-5p but not for miR-142-3p [26], which is in line
with our thyroid antibody analysis. Data of ROC curves are corresponding with ROC
curves of Martínez-Hernández et al. with the exception of miR-96-5p. According to their
analysis this miRNA is an “excellent” predictor (AUC = 0.91, 95% CI, 0.84–0.98) whereas
our data failed the level of significance barely (p = 0.055) [24].

Our data of overexpression profiles in HT are in accordance with Martínez-
Hernández et al. [15] as well as Yamada et al. [16], who both studied miRNA expres-
sions in patients with AITD. The only non-concordant exception is miR-375, which was
not differentially expressed in our cohort in contrast to Yamada’s study. That in turn is
in line with Zhao et al. who showed upregulated plasma levels of miR-375 and miR-451
in a four times larger study cohort than Yamada [5]. We are aware that caution must
be taken when comparing miRNA data generated from different types of biofluids [27],
since serum and plasma differ in their content of miRNA derived from different blood
cells [28,29]. One of the potential reasons for the partly conflicting results of studies on
miRNA expression in HT patients may be the interethnic expression differences between
Asian (Yamada et al., Zhu et al.) and Caucasian (present study) cohorts [30]. In both
investigations, serum miRNA profiling was performed by reverse transcription qPCR, the
gold standard for sensitive and specific quantification of miRNAs in cell free biofluids.
However, as frequently encountered, the quality of results varies in general strongly with
the preanalytical steps such as blood drawing and serum/plasma preparation. The very
low amounts of miRNAs, potentially high levels of inhibitors, biological variances of the
individuals themselves (diet, exercise, age) as well as normalization strategies contribute to
the variance in the results of different miRNA studies [31–33].

As confirmed by our in silico analysis, several T cell differentiation cytokines related
to autoimmunity are potential targets of our overexpressed miRNA patterns (Figure 4).

MiR-22-3p binds 7 autoimmune-related cytokines, miR-22-5p has 6 binding partners
and miR-142-3p has 4 binding partners. This may suggest a contribution of these miRNAs
to differentiation of T cells into specific T cell subsets. MiR-22-5p regulates mainly cytokines
involved in the differentiation of Th17 cells, promoting therefore the inflammatory response.
Our focus was on miRNA targets related to autoimmunity of HT. We are aware that such
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stringent criteria potentially excluded other regulatory interactions that might also play a
role in the development of HT.

In our investigation miR-22-3p is associated with HT but not to serum thyroid anti-
bodies. MiR-22-3p mainly targets genes of Th1 cytokines (IL-12, IFN-γ, IL-2 and TGF-β)
but is binding partner of fewer TH2 cytokine genes (IL5) (Figure 4). This might suggest
that miR-22-3p rather regulates the autoimmune related cytotoxicity and infiltration than
changes in the development of thyroid antibodies. These theoretical assumptions are based
on our in silico analysis. Whether cytokine levels are affected by the changed miRNA
profile remains to be elucidated. This study was focussing on the biomarker aspect of the
miRNA pattern. Nevertheless, our data showed serum overexpression of miR-22-5p and
miR-142-3p related to the occurrence of thyroid antibodies.

Some further limitations of the study should be taken into account. There is still a
debate on how and if normalization should be performed on qPCR results of serum miR-
NAs [34]. We decided to use exogenous controls (spike-ins) for normalization, excluding a
potential bias by normalization on endogenous reference genes [33]. We cannot rule out a
certain selection bias by choosing HT patients based on their previous medical history and
not their prospective enrolment into the study. Further, cytokine levels were not determined
in the BioPersMed cohort at the time of the patients’ visits.

It should be kept in mind that published data, including the present study, lack long-
term outcome data regarding disease activity and prognostic expectations. In this study,
we present 2 miRNA candidates associated with higher occurrence of thyroid antibodies
that possibly could be suitable to allow assumptions on whether HT patients are likely to
develop higher titers of thyroid antibodies (TPOAb and or TgAb < 60 U/mL).

In conclusion, miRNA profiles of miR-21-5p, miR-22,3p, miR-22-5p, miR-142-3p,
miR-146a-5p, miR-301-3p and miR-451 are upregulated in HT patients and suitable to
discriminate between HT and healthy controls. Additionally, altered expressions of miR-
22-5p and miR-142-3p are associated with higher levels of thyroid antibodies, suggesting
important roles in the pathogenesis of HT.
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