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Abstract

Background: Blood supply chain management requires estimates about the
demand of blood products. The more accurate these estimates are, the less
wastage and fewer shortages occur. While the current literature demonstrates
tangible benefits from statistical forecasting approaches, it highlights issues
that discourage their use in blood supply chain optimization: there is no single
approach that works everywhere, and there are no guarantees that any favor-
able method performance continues into the future.

Study Design and Methods: We design a novel autonomous forecasting system
to solve the aforementioned issues. We show how possible changes in blood
demand could affect prediction performance using partly synthetic demand data.
We use these data then to investigate the performances of different method selec-
tion heuristics. Finally, the performances of the heuristics and single method
approaches were compared using historical demand data from Finland and the
Netherlands. The development code is publicly accessible.

Results: We find that a shift in the demand signal behavior from stochastic to
seasonal would affect the relative performances of the methods. Our autono-
mous system outperforms all examined individual methods when forecasting
the synthetic demand series, exhibiting meaningful robustness. When forecast-
ing with real data, the most accurate methods in Finland and in the
Netherlands are the autonomous system and the method average, respectively.
Discussion: Optimal use of method selection heuristics, as with our autono-
mous system, may overcome the need to constantly supervise forecasts in
anticipation of changes in demand while being sufficiently accurate in the
absence of such changes.

Abbreviations: APE, absolute percentage error; ARIMA, autoregressive integrated moving average; AUTO-N, Autonomous (method Selection)
forecasting method with N-step selection period length; AVG, method average; COVID-19, coronavirus disease 2019 caused by SARS-CoV-2;
DYNREG, dynamic regression; ELM, extreme learning machines; ETS, exponential smoothing method; MA, moving average; MAPE, mean absolute
percentage error; MLP, multilayer perceptrons; NNAR, autoregressive neural networks; SNAIVE, Seasonal Naive Method; STL, season-trend
decomposition method; STLF, multiseason-trend decomposition method; TBATS, exponential smoothing method with trigonometric seasonality, box-
cox transformation, ARIMA errors, trend, and seasonal components; W.AVG, weighted method average.
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1 | INTRODUCTION

A well-functioning blood supply chain operation reduces
wastage, procurement costs, and avoids life-threatening
shortages. Research on blood supply chain efficiency and
reliability has increased steadily over the past couple of
decades. According to a recent survey,' most research on
supply chain planning assumes demand as stochastic,
deterministic, or otherwise intractably uncertain, using
constant estimates or distribution sampling. However,
demand forecasting has been deemed necessary and supe-
rior to expert planning in several studies," ' suggesting
that supply chain management approaches can be
improved by a significant margin by adopting methods for
demand forecasting. Almost all reviewed research on
demand forecasting attempts to determine the single best
method for reducing shortages or costs, revealing that the
best method varies between blood banks and blood prod-
ucts.>'*'* Researchers also note on multiple occasions
that there are no particular methods that are guaranteed
to give accurate forecasts and that the best method may
change over time.>'*'* To avoid laborious periodic
method reselection, others have suggested using method
selection systems and specific automatic procedures (most
often the Box-Jenkins procedure'”) to help evaluate and
select Autoregressive Integrated Moving Average
(ARIMA) models without human intervention.* ®>'*

In this study, we use a marked but relatively brief change
in the behavior of the weekly red blood cell demand in
Finland to examine how the continuation of this behavior
would affect method performance and selection. We then
devise heuristics for method selection that could allow an
autonomous system to produce robust forecasts without
supervision during changes in the demand behavior and
compare the performance of such a system with individual
method performance using altered demand data. Finally, we
compare the performances of both the heuristics and the indi-
vidual methods using unaltered demand data from Finland
and the Netherlands to gauge its real-world applicability.

2 | MATERIALS AND METHODS

2.1 | Data

Both the Finnish Red Cross Blood Service and Sanquin
record every unit of blood delivered. By filtering these

data by specific blood products (e.g., red blood cells or
platelets) and aggregating them per week, we can create
a weekly demand series. The record of red blood cell
product deliveries spans from 2014 to 2021 in Finland
and from 2009 to 2020 in the Netherlands. The aggre-
gated weekly (Monday to Sunday) demand from this
period for both countries is shown in Figure 1. The Finn-
ish series exhibits a seemingly significant change in
behavior around 2018 and 2019, as the slight downtrend
in demand seems to level out and create a more pulse-
like signal. This behavior, however, does not continue
beyond 2019. To study how the performance of different
methods might be affected by such changes, we artifi-
cially extend the anomalous behavior by modeling the
series between July 2017 and July 2019, adding some
noise to it, and overwriting the actual demand history
from July 2019 onward. The process to generate the syn-
thetic data is explained in detail in Appendix S1, Part
A. The artificially extended demand history is shown in
Figure 2. We use both the altered and unaltered version
of the demand data to test forecasting methods.

2.2 | Methods

As most blood supply operators do not have access to
meaningful clinical variables or other external regres-
sors, we limit ourselves in this study to autoregressive
forecasting methods to enable a broad applicability of
the results. Based on the current literature, we chose to
examine the following methods: simple moving averages
(MA), exponential smoothing (ETS), ARIMA, and auto-
regressive neural networks (NNAR). In addition to
these, we examined the seasonal naive method
(SNAIVE), method averaging (AVG), season-trend
decomposition methods (STL and STLF), a dynamic sea-
sonal method (TBATS), dynamic regression (DYNREG),
multilayer perceptrons (MLP), and extreme learning
machines (ELM). All methods are explained in detail in
Appendix S1, Part B.

The methods are trained using 3 years of most recent
demand history. A forecast is generated for the following
week, and its accuracy is tested using absolute percentage
errors (APEs). This process is repeated until we have bac-
ktested all of the available history. These tests allow us
then to summarize method performances in mean abso-
lute percentage errors (MAPEs):
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where y; denotes the forecast value and y; denotes the
observed value for a specific week i.

Absolute percentage errors are unit-free, so they
enable comparisons between different data sets and
scales. However, they have some important limitations.
Division by zero issues arise when the target observations
contain zeroes, and the metric becomes very unstable if
data has values very close to zero. Additionally, the data
should exist on a ratio scale (entirely positive, meaningful
zero). Our weekly aggregates of blood demand do not
contain zeroes and the data are positive. We discuss other
possible method selection metrics in the Discussion sec-
tion. All development code is written in R (version
4.0.5)."° All methods are implemented using the forecast

2018 2020

Date

Altered weekly demand of red blood cell products in Finland. The dotted line indicates the beginning of the synthetic data

package (version 8.13)'7 and the nnfor package (version
0.9.6),'® except for the combination methods (AVG and
W.AVG). The development code is publicly available on
Github."

The repository contains all scripts used for generating
the results in this article, an implementation of an autono-
mous forecasting system (an R Markdown script that out-
puts an HTML forecast report), as well as the necessary
custom functions for running such a system. No data are
made available for confidentiality reasons.

3 | AUTONOMOUS METHOD
SELECTION SYSTEM

Most of the methods, as implemented in the forecast
package, are so-called “modelers,” meaning that a new
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model is fit every time a forecast is requested. This allows
for a degree of adaptability regarding changes in series
behavior. However, all modelers are restricted to their
respective model formulations, limiting more general
adaptability. This issue can be circumvented by selecting
from a pool of different modelers, thereby expanding the
model space available for selection. As periodic manual
reselection is costly, and often unfeasible, autonomous
application of predetermined selection heuristics may be
preferable. Figure 3 illustrates one possible method selec-
tion process for an autonomous forecasting system, an
implementation of which is provided on Github." To test
whether allowing for autonomous method selection
using historical accuracy metrics would yield advantages

Ignored history
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in accuracy over the individual methods and modelers,
we selected forecasts from the methods that held the low-
est MAPE in 1, 3, 6, 12, 18, and 24 weeks before the fore-
cast date (the selection period). We also tested forecasting
by ranking methods based on the previous week's perfor-
mance and computing an exponentially decaying
weighted average as the forecast (W.AVG).

4 | RESULTS

Figure 4 shows the differences in prediction accuracy
between the first and second half of the artificially extended
weekly data (Figure 2). We see that the STL, STLF, and
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FIGURE 3

A schematic of the method selection process. Methods are trained with a 3-year training window and then tested on the

subsequent observation. The training window then moves, dropping the oldest observation, and including the previous test observation. A
series of tests are performed over a selection period up until the forecast date (e.g., 12 weeks). Next, a forecast is generated by selecting the
method with the lowest mean absolute percentage error (MAPE) from the selection period and retraining it with 2 years of the most recent

observations
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FIGURE 4 Method performances on the first and second half of the synthetic data, ordered by the error magnitude on the second half.

Some methods benefit from the change, some suffer
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DYNREG methods gain a significant advantage over other

methods in the latter half of the data, after first performing g 3
largely comparably to other methods. The neural network N
methods (NNAR, MLP, ELM) stand out here in their sub-

stantial increase in accuracy in the latter half of the data E g
after being the clear underperformers in the first half. =
However, they still compare unfavorably with AVG,

SNAIVE, STL, DYNREG, and STLF. Table 1 shows the E ©
overall mean absolute percentage errors of different s =
methods, and Table 2 shows the overall mean absolute per-

centage errors of method selection heuristics for different =
testing periods as well as the result for the weighted averag- E g

ing method. The best accuracies in both Tables are
highlighted in bold. Among the individual methods, the
DYNREG performs best (4.46%). The majority of selection
heuristics examined outperform most individual methods,
with AUTO-12 at the top (4.33%), beating them all. For the
unaltered demand data (Figure 1), the performances of sin-
gle methods and selection heuristics are presented together
as a heatmap in Figure 5. The first row presents the theo-
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5 | DISCUSSION ERRON
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The aim of this article was to explore blood demand fore- g §

casting systems that could offer robustness in the event of & =

changes in the underlying demand signal. For this pur- ?2; E § §

pose, we identified a period of unusual behavior in the 3 3

Finnish weekly blood demand data and extended it to - %

create a synthetic demand history. We then examined g E E

how these conditions would affect the performance of = E s 5

various popular forecasting methods and found that the : -



= | TRANSFUSION e

TABLE 2 Overall mean absolute
percentage errors (MAPES) of selection
heuristics over the entire synthetic data

AUTO-1 AUTO-3 AUTO-6 AUTO-12 AUTO-18 AUTO-24 W.AVG
5.01 4.64 4.54 4.33 4.68 4.71 4.76

Note: The best accuracies in both Tables are highlighted in bold.

Finland The Netherlands

1 3 6 12 18 24 1 3 6 12 18 24

2.08 2.02 2.03 2.06 2.05 1.95 MIN

750 @ 7.49 7.50 757 | 7.54 7.49
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MA-9
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FIGURE 5 A heatmap presentation of the overall mean absolute percentage errors (MAPESs) for the methods and selection heuristics.
The first row presents the error for the optimal selection strategy (theoretical minimum). Results are spread over six columns (for each
testing period length) to ensure comparable error scores. The splits separate countries and individual methods from heuristics
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method performance is greatly affected by structural
changes in the demand, highlighting the need to reselect
methods over time (Figure 4). To test whether this could
be done autonomously, we devised two different method
selection heuristics that rely on historical performance:
one that chooses the method that had the best mean
absolute percentage error over a certain predetermined
length of history and one that creates an exponentially
weighted average of forecasts from different methods.
The results from an application of various methods for
the synthetic data show dominance of the selection heu-
ristics over all individual methods, suggesting that the
ability to switch between methods autonomously or to
decide their weighting within a combination of methods
successfully utilizes the differences between the methods.
The method selection process behind these results is
illustrated in Figure S1. While our study does not exhaust
the search for the optimal selection strategy, the fact that
a large majority of the heuristics outperform all of the
individual methods indicates that there are multiple ways
to achieve superiority in accuracy over single method
approaches.

Finally, we tested the heuristics and individual methods
using the real, unaltered weekly demand data from Finland
and the Netherlands. The results indicate that the heuristics'
advantage with the altered demand series is most likely a
result of the persistence of the behavioral change, as in real-
ity, they do not differ significantly in accuracy from the
individual methods in either countries. The AVG performed
strongly in both countries, which is likely due to a trade-off
between the robustness enabled by the constant method
reselection and simply forecasting with the historically best
individual method. The AVG method, which computes the
mean of all individual forecasts, seems to take advantage of
the random error in the predictions of the individual
methods. By canceling the biases of the individual methods,
it reduces the variance of the resulting forecast. However,
when more structural changes in the underlying demand
signal emerge, the averaging method is unable to leverage
the advantages gained by some methods or minimize the
penalties suffered by others, as is shown by the dominance
of selection heuristics for the synthetic data.

While it is impossible to build an autoregressive
forecasting system that can foresee changes in demand
behavior (for example, a global COVID-19 pandemic
essentially halting regularly scheduled surgeries), one
can leverage the advantages of various individual
methods by enabling selection from a diverse library
of methods. We did not aim to find the optimal set of
methods nor the absolute best or most generalizable rule
set for selection. For example, in an operation critical
environment such as the blood supply chain, it might be
more meaningful to select methods using a metric that
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harshly penalizes underforecasting or by their ability to
detect peaks. We found no statistically significant differ-
ences between the peak detection abilities of different
methods (Appendix S1, Part D). Nevertheless, by utilizing
some simple method selection heuristics, one can ensure
that any changes in demand behavior will be adjusted
for, while maintaining sufficient forecasting accuracy in
the absence of such changes. As such, we conclude that
this approach is a viable autonomous forecasting solution
for blood centers and blood products in general.
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