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Abstract

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the

X-linked gene MECP2 (methyl-CpG-binding protein 2). Minimally invasive and accurate bio-

markers of disease progression and treatment response could facilitate screening of thera-

peutic compounds in animal models, enrollment of better-defined participants into clinical

trials, and treatment monitoring. In this study, we used a targeted approach based on analy-

sis of brain-enriched microRNAs (miRNAs) circulating in plasma to identify miRNA biomark-

ers of RTT using Mecp2-mutant mice as a model system and human plasma samples. An

“miRNA pair” approach, i.e. the ratio between two miRNAs, was used for data normalization.

Specific miRNA pairs and their combinations (classifiers) analyzed in plasma differentiated

wild-type from Mecp2 male and female mice with >90% accuracy. Individual miRNA pairs

were more effective in distinguishing male (homozygous) animals than female (heterozy-

gous) animals, suggesting that disease severity correlated with the levels of the miRNA bio-

markers. In the human study, 30 RTT patients were compared with age-matched controls.

The results of this study showed that miRNA classifiers were able to differentiate RTT

patients from controls with 85–100% sensitivity. In addition, a comparison of various age

groups demonstrated that the dynamics in levels of miRNAs appear to be associated with

disease development (involvement of liver, muscle and lipid metabolism in the pathology).

Importantly, certain miRNA biomarker pairs were common to both the animal models and

human subjects, indicating the similarity between the underlying pathological processes.

The data generated in this feasibility study suggest that circulating miRNAs have the poten-

tial to be developed as markers of RTT progression and treatment response. Larger clinical

studies are needed to further evaluate the findings presented here.

Introduction

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2
gene, which encodes the transcriptional regulatory protein methyl-CpG-binding protein-2

(MECP2) [1–3]. RTT has an X-linked dominant inheritance pattern, with most mutations
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arising spontaneously in the paternal germ line. Because hemizygosity in males is usually lethal

in the perinatal period, the vast majority of RTT patients are heterozygous females. Affected

females appear normal at birth, and disease onset is typically evident by 6–18 months of age

and is characterized by neurological regression, microcephaly, loss of acquired speech and

motor stereotypies [4–7]. Clinical severity appears to depend on multiple factors, including the

type of MECP2 mutation, skewing of the X-inactivation and likely genetic modifiers of

MECP2. Although gross brain cytoarchitecture is normal in this condition, and RTT does not

cause excessive neuronal cell death or degeneration, there is considerable evidence that loss of

MECP2 leads to widespread disruption of microcircuit structure and function throughout the

neuraxis [8–13]. Numerous mouse models of RTT have been generated and are widely used to

study brain pathologies associated with the loss of MECP2 and for preclinical drug develop-

ment [14–18]. Although diagnostic MECP2 genetic testing is available for RTT, biomarkers of

RTT, including blood-borne indicators of disease severity and progression, are lacking.

Recently, we demonstrated the potential use of circulating microRNAs (miRNAs) as bio-

markers for early detection of Alzheimer’s (AD) and other neurodegenerative diseases (NDs)

[19–21]. miRNAs are comprised of small, single-stranded, highly conserved, non-coding RNA

sequences that are approximately 22 nucleotides long [22] and that play critical roles in post-

transcriptional regulation of gene expression [23]. We hypothesized that the synaptic and neu-

ritic dysfunction and destruction common among numerous neurodegenerative diseases

would result in different levels of miRNA secretion and excretion in affected brain regions,

with subsequent changes in brain-enriched miRNA plasma concentrations [20, 23]. To test

this hypothesis, plasma levels of circulating brain-enriched miRNAs present in the synapses of

brain regions affected by a particular disease (e.g., the hippocampus in early-stage AD or the

midbrain and frontal cortex in Parkinson’s disease) were analyzed [21]. To control for the pos-

sible effects of unrelated variables that may alter synaptic miRNA levels in plasma (e.g.,

changes in blood supply or blood-brain barrier permeability), plasma concentrations of miR-

NAs enriched in other brain regions or cell types were measured simultaneously and were

used as normalizers. Thus, in this approach, an effective biomarker is represented by the ratio

of miRNAs present in synapses and enriched in brain regions affected by pathology (numera-

tor) to miRNAs enriched in other brain regions (denominator). The resulting miRNA ratios

(pairs) have been found to effectively distinguish individuals with mild cognitive impairment,

and even pre-symptomatic AD, from age-matched controls and to detect circulating miRNA

patterns characteristic of normal brain aging [20, 21, 23].

Although there is no evidence of neuronal degeneration in RTT, loss of MECP2 results in

synaptic and neuritic dysfunction and marked dysregulation of miRNA species in the brain [9,

24–28]. Changes in miRNA expression patterns have been reported in the brain in mouse

models of RTT and other neurodevelopmental disorders [29–31] and in bodily fluids of chil-

dren with autism spectrum disorder [32, 33]. Given that brain-enriched miRNAs can be

detected in the blood, these observations suggest that circulating miRNAs may be of value in

monitoring disease severity, progression and treatment response in RTT. In addition, analysis

of miRNAs enriched in other organs and of the metabolic processes affected by RTT may be

useful for early detection and monitoring [34]. miRNA nucleotide sequences are highly con-

served across species, and thus, miRNA pairs are likely to demonstrate utility as biomarkers in

both murine and human RTT applications. In the current study, we used four murine RTT

models (see below) and analyzed eight miRNAs pre-selected on the basis of their enrichment

in the brain. Then, plasma from human patients was tested for 19 pre-selected miRNAs. Addi-

tionally, since RTT development occurs at a young age, which is a time when various parame-

ters within the body are undergoing changes, the data from the RTT patients were compared

with data from age-matched controls (AMCs).
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Results

RTT mouse models study

miRNA selection. Table 1 lists the miRNAs used in the present study. Because loss of

MECP2 affects neurons throughout the neuraxis, miRNAs that have been shown to be

enriched in synapses of both forebrain and brainstem regions were used, including miR-107,

miR-132, miR-411 and miR-491-5p [35–40]. Additional miRNAs enriched in several brain

regions (miR-323-3p) or predominantly in the pituitary gland (miR-335-5p, miR-370), as well

as miR-16, a ubiquitously expressed miRNA involved in apoptosis regulation, were also ana-

lyzed. Predictive analysis indicates that some of the selected miRNAs may affect expression of

RTT-related proteins (Table 1).

Male RTT model. In the first experiment, the levels of eight miRNAs were measured in

plasma samples from 11 Mecp2tm1.1Jae Null and 9 wild-type (Wt) male mice aged 5–6 weeks.

One control sample did not meet the quality control parameters and was thus excluded from

the analysis. The dot plots, receiver operator characteristic (ROC) curves, sensitivity, specificity

and accuracy for the resulting miRNA pairs are presented in Fig 1 and S1 Fig. Several miRNA

pairs and their combinations distinguished Wt from Mecp2 tm1.1Jae mice with 89–95% accu-

racy. These results were encouraging, particularly because two effective numerators in the

miRNA pairs, namely, miR-107 and miR-491-5p, are expressed in synapses of the forebrain

and brainstem.

Table 1. miRNAs used in the study.

# miRNA Brain enrichment Enriched in synapses Mouse models study Human RTT study Down-regulated RTT-related proteins [41–44]�

1 Let-7b-5p Ubiquitous + MECP2, TBL1, TUBA1B

2 miR-16 Ubiquitous + + NCOR1, SIRT, CREB, BDNF

3 miR-29b-3p PG (not brain-enriched) +

4 miR-107 FC, PG, Hip, MB + + + TUBA1B, CREB

5 miR-122 Liver-enriched +

6 miR-125b FC, MB, PG, Hip + + NCOR1, SIRT

7 miR-132-3p PG, Hip + + + MECP2, SIRT, S100, BDNF

8 miR-134 MB, Hip, PG + + CREB, BDNF

9 miR-146a Inflammatory + S100

10 miR-155 Inflammatory + MECP2, S100

11 miR-181a-5p MB, FC + + MECP2, TBL1, S100, NREP, CREB, BDNF

12 miR-206 Muscle, Cer +

13 miR-323-3p FC, Hip, MB + + +

14 miR-335-5p PG, Hip + + TBL1, GFAP, S100, CREB

15 miR-370 PG, FC + + -

16 miR-409-3p Hip + + NR2F2

17 miR-411-5p PG, Hip, FC + +

18 miR-432-5p PG, MB, Cer + MECP2

19 miR-433-3p PG, MB + + CREB

20 miR-491-5p MB, FC + + +

Cer–Cerebellum; FC–Frontal Cortex; Hip–Hippocampus; MB–Midbrain; PG–Pituitary Gland. “+” indicates miRNAs enriched in synapses and miRNAs tested in the

mouse models and human RTT studies

�http://mirtarbase.mbc.nctu.edu.tw/php/search.php

https://doi.org/10.1371/journal.pone.0218623.t001
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To confirm the data obtained in the pilot experiment, we repeated the experiments with 8

Mecp2tm1.1Bird Null and 10 Wt male mice aged 5–6 weeks. The same eight miRNAs were ana-

lyzed in this cohort of plasma samples. Fig 1 presents the data obtained with the same miRNA

Fig 1. Differentiation between four Mutant and Control mice genotypes (GT). Genotypes: 1—male, Mecp2tm1.1Jae

Null; 2—male, Mecp2tm1.1Bird Null; 3 –female, Mecp2tm1.1Jae Het; 4—female, Mecp2tm1.1Bird Het; CNTR–Control.

https://doi.org/10.1371/journal.pone.0218623.g001
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pairs first identified in the initial experiment with Mecp2tm1.1Jae mice. The results obtained

from both mouse strains were very similar. However, in the Mecp2tm1.1Bird animals, additional

miRNA pairs were identified that could effectively differentiate between Wt and Mecp2 Null

mice (S1 Fig).

Although the sample sizes in both the pilot study and the confirmatory study were relatively

small (n = 19 and n = 18 samples, respectively), the reproducibility of the findings from these

two different RTT mouse models obtained by different labs strengthened the conclusion that

plasma levels of the selected brain-enriched miRNAs can reliably distinguish between Wt and

Null animals.

Female RTT model. We then compared the levels of the eight miRNAs in two cohorts of

female heterozygous (Het) and Wt mice: Mecp2tm1.1Jae Het n = 6, Wt n = 7 (6 months old); and

Mecp2tm1.1Bird Het n = 10, Wt n = 10 (18 weeks old). The two pairs of mutant and Wt cohorts

were tested at different ages and, therefore, were analyzed independently. Fig 1 and S2 Fig

present the data from these two experiments as dot plots, ROC curves, sensitivity, specificity

and accuracy. As expected, in the Het mice, the area under the ROC curve (AUC) and associ-

ated accuracy, which represented the ability of miRNA pairs to distinguish mutant from Wt

mice, were lower than those in the Null mice since female heterozygotes retain some normal

Mecp2 expression. However, classifiers consisting of combined miRNA pairs provided >90%

of the overall accuracy in the female Het Mecp2tm1.1Jae and Mecp2tm1.1Bird mouse models. The

AUC values for all four experiments are summarized in Table 2. Notably, certain miRNA pairs

effectively distinguished between mutant and Wt mice consistently across all four animal mod-

els (Mecp2tm1.1Jae Null and Het and Mecp2tm1.1Bird Null and Het).

Table 2. Summary (mouse models and human RTT studies) of the areas under the ROC curves (AUC).

miRNA pairs Mouse models study Human RTT study

1 2 3 4 2–5 y.o. 6–15 y.o. >15 y.o.

n = 19 n = 18 n = 13 n = 20 n = 17 n = 24 n = 14

miR-107 / miR-323-3p 0.96 0.82 0.79 0.8 0.76

miR-107 / miR-335-5p 0.96 0.99 0.93 0.8 0.72 0.84

miR-107 / miR-411-5p 0.92 0.75

miR-107 / miR-132-3p 0.86 0.98 0.71 0.82 0.85 0.65

miR-107 / miR-16 0.83 0.71 0.88

miR-107 / miR-491-5p 0.73 0.8 0.70 0.67 0.91

miR-491-5p / miR-323-3p 0.97 0.81 0.77 0.65

miR-491-5p / miR-335-5p 0.96 0.98 0.79 0.78 0.81

miR-491-5p / miR-370 0.89

miR-491-5p / miR-411-5p 0.87 0.7

miR-491-5p / miR-132-3p 0.87 0.99 0.82 0.90 0.67

miR-491-5p / miR-16 0.97 0.75 0.71 0.87

miR-16 / miR-323-3p 0.88 0.79 0.73 0.75 0.72

miR-16 / miR-335-5p 0.91 0.98 0.95 0.75 0.80

miR-16 / miR-411-5p 0.76 0.79 0.77

miR-16 / miR-132-3p 0.7 1 0.70

miR-132-3p / miR-323-3p 0.82 0.81

miR-132-3p / miR-335-5p 0.84 0.89 0.96 0.91

miR-411-5p / miR-323-3p 0.77 0.84 0.88 0.71

miR-411-5p / miR-132-3p 0.93 0.81 0.65

Genotypes: 1—male, Mecp2tm1.1Jae Null; 2—male, Mecp2tm1.1Bird Null; 3 –female, Mecp2tm1.1Jae Het; 4—female, Mecp2tm1.1Bird Het.

https://doi.org/10.1371/journal.pone.0218623.t002
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Human RTT study

Thirty RTT patients and 30 female age-matched control (AMC) participants were enrolled in

the study (Table 3 and S1 Table). Since larger volumes of human plasma were available, 19

miRNAs (Table 1) were tested, 7 of which were identical to those tested in the mouse model

studies, and 4 were additional miRNAs that were shown to inhibit MECP2 synthesis (http://

mirtarbase.mbc.nctu.edu.tw/php/search.php). Further, inflammatory miR-146a and miR-155,

liver-enriched miR-122, and muscle-enriched miR-206, as well as additional brain-enriched

miRNAs were tested (Table 1). RTT patient groups stratified according to age, namely, 2–5

years old, 6–15 years old, and >15 years old, were effectively differentiated from the AMCs by

miRNA pairs and classifiers with an accuracy up to 100%, 94–97%, and 100%, respectively (Fig

2A–2C). Moreover, disease progression was reflected by changes in levels of miRNAs enriched

Table 3. Demographics and clinical data of RTT patients.

#

Age at BD Genetics Phenotype Seizures Ambulatory Breathing dysfunction Cholesterol (mg/dL) ALT liver enzymes (U/L)

1 2 T241K classical rett no WCB/NA none 144 (76–216) 15 (0–20)

2 2 C312G>T classical rett no WCB/NA none 182 (108–193) 30 (0–20)

3 3 R168X classical rett yes AMB HV 190 (108–193) 13 (< = 25)

4 3 T158M classical rett yes WCB/NA HV, BH 199 (108–193) 9 (0–20)

5 3 G238fs classical rett no WCB/NA none 154 (76–216) 16 (0–20)

6 4 C502T classical rett no AMB irregular only when waking up 118 (108–193) 14 (0–20)

7 5 deletion in exon 4 classical rett yes AMB none 203 (106–193) 13 (0–20) L

8 5 deletion classical rett no WCB/NA HV, BH 230 (106–193) 11(0–20)

9 5 T158M classical rett no AMB HV 99 (106–193) 17 (0–20)

10 6 T158M classical rett yes AMB BH 98 (106–198) 14 (0–20)

11 7 R270X classical rett no AMB HV 154 (106–193) 20 (10–35)

12 8 R270X classical rett no AMB HV 141 (105–218) 17 (0–20)

13 8 P152A classical rett no AMB HV 143 (105–218) 19 (0–20)

14 9 deletion classical rett no AMB MBH 156 (105–218) L 14 (< = 25)

15 9 R255X classical rett no AMB none 116 (108–170) 20 (< = 25)

16 10 R168X classical rett yes WCB/NA apnea, HV, BH 143 (105–218) 26 (0–20)

17 10 deletion HF no AMB none 89 (105–218) 9 (0–20)

18 13 R270X classical rett yes WCB/NA BH 171 (108–170) 15 (0–20)

19 13 deletion classical rett no AMB BH 111 (105–218) 23 (0–20)

20 14 T158M classical rett yes AMB BH 133 (108–170) 29 (< = 25)

21 15 PSNA HF no AMB none 144 (108–170) 12 (0–20)

22 15 R306C classical rett yes AMB BH 146 (<170) 23 (0–31)

23 15 C916C HF no AMB MBH 175 (108–170) 8 (0–20)

24 18 T158M classical rett yes AMB BH 125 (110–170) 18 (0–20)

25 19 R270X classical rett yes WCB/NA none 127 (<200) 60 (9–32)

26 21 R133C classical rett yes AMB MBH 147 (122–200) 10 (0–20)

27 23 Xq28 HF no AMB BH 104 (<200) 29 (5–45)

28 32 L386fs classical rett no WCB/NA none 166 (100–199) 38 (0–32)

29 33 PSNA classical rett yes WCB/NA HV 217 (128–200) 9 0–20)

30 34 P225R HF no AMB MBH 135 (125–200) 28 (6–29)

BD–blood draw; PSNA—positive, specifies not available; HF—high functioning; WCB/NA–wheelchair bound / non-ambulatory; AMB—ambulatory; HV–

hyperventilation; BH—breath holding; MBH—mild breath holding; ALT—Alanine Aminotransferase; higher than normal cholesterol or ALT levels are indicated in

grey.

https://doi.org/10.1371/journal.pone.0218623.t003
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in organs involved in a specific pathology. For example, the appearance of miR-122 as the

numerator reflected the development of liver pathology. Table 2 demonstrates that certain

miRNA pairs were common among different animal RTT models or human RTT in all, or at

least some, age cohorts. The pathological progression was additionally demonstrated by the

differentiation of the RTT groups from each other (S3 Fig). miR-122, as a biomarker of liver

pathology, was the numerator that performed best in separating RTT groups of various ages.

Fig 3 demonstrates that the dynamics of age-dependent changes in the plasma levels of the

tested miRNAs differed substantially between the RTT and AMC groups. S2 Table provides a

summary of miRNA pairs that effectively differentiated RTT age groups but did not differenti-

ate the respective AMC groups and vice versa.

In addition, we subsequently investigated whether some miRNA pairs and/or classifiers were

able to detect the various pathological processes associated with RTT. Table 4 demonstrates that

patients with seizures could be differentiated from patients with no seizures with up to 78%

accuracy. Ten RTT patients with walking problems were effectively differentiated from 20 am-

bulatory RTT patients (Table 5). Though, at present, the cause and effect relationship between

walking problems associated with RTT and muscle-specific pathology remains to be deter-

mined, the best numerator in this case was miR-206, which is highly enriched in muscle cells.

Furthermore, although liver pathology is often present in RTT patients, the alanine transami-

nase (ALT) levels were higher than those of the AMCs in only six RTT patients. These patients

were effectively separated from the other RTT patients by multiple miRNA pairs, with liver-spe-

cific miR-122 being found to be the best numerator (Table 6). Cholesterol, the metabolic pertur-

bations of which are characteristic of some patients with MeCP2 mutations, was also measured

in all 30 RTT patients. Six and three patients had higher and lower than normal cholesterol lev-

els, respectively (Table 3). Table 7 demonstrates that six patients with higher than normal choles-

terol levels were differentiated from the other RTT patients with up to 82% accuracy.

Discussion

The goal of this study was to determine whether circulating cell-free miRNAs in plasma can be

used to reliably detect RTT patients, monitor disease development, and evaluate the different

Fig 2. (a) Differentiation of the 2–5 y.o. RTT age group from the 2–5 y.o. AMC group. (b) Differentiation of the 6–15 y.o. RTT age group from the 6–15 y.o.

AMC group. (c) Differentiation of the>15 y.o. RTT age group from the>15 y.o. AMC group.

https://doi.org/10.1371/journal.pone.0218623.g002
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aspects of this disease, such as liver and muscle pathology. This study initially implemented

animal RTT models to distinguish between Wt and Mecp2 mutant mice as a step towards

examining the utility of this approach in monitoring disease progression and treatment

response in preclinical RTT models. Loss of MECP2 can alter the transcription of many genes,

including those encoding specific brain miRNAs [24], such as miR-132, an inhibitor of

MECP2 expression [24, 45–47]. Altered transcription and secretion of brain miRNAs may, in

turn, lead to changes in the concentrations of these miRNAs in plasma. In fact, it has previ-

ously been shown that analysis of plasma levels of miRNAs enriched in neurites and synapses

of brain regions affected by neurodegeneration yields effective miRNA biomarkers for detec-

tion and monitoring of neurodegenerative diseases compared to healthy controls [20, 21, 23].

Highly conserved miRNA biomarkers are advantageous because the same assay can be applied

to both animal models and humans. Since plasma concentrations of brain-enriched miRNAs

are relatively low, miRNA array and next-generation sequencing (NGS) approaches are not

Fig 3. Age-dependent changes in plasma concentrations of the miRNAs in RTT patients (RETT) and AMCs (CNTR). The X and Y axes

indicate age and the number of miRNA copies per 1 μl of plasma, respectively.

https://doi.org/10.1371/journal.pone.0218623.g003
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sufficiently sensitive for reliable detection of these miRNAs [23, 48], whereas the approach

used in this study is based on targeted analysis of miRNAs by individual RT-qPCR. An addi-

tional challenge is that only a small volume of plasma (approximately 0.2 ml), which is suffi-

cient to analyze only eight miRNAs by RT-qPCR, can be obtained from each mouse.

Furthermore, changes in miRNA expression, not only in the brain but also in other organs,

can affect plasma levels of ubiquitous miRNAs. Based on our previous data and analysis of the

literature [23], in this study we tested seven brain-enriched miRNAs, as well as miR-16, a ubiq-

uitous miRNA involved in apoptosis regulation, in four RTT murine models. In order to

account for the potential effects of extraneous factors, such as plasma collection and specimen

handling, samples from three different sites were tested. The results supported the hypothesis

that miRNA pairs and their combinations, including several miRNA pairs that were uniformly

Table 4. Differentiation of the RTT patients with seizures vs. RTT patients without seizures.

Seizures (12) / No seizures (18)

miRNA pairs Accuracy AUC P-value

miR-132 / miR-491-5p 0.78 0.85 2.80E-03

miR-122 / miR-491-5p 0.73 0.84 2.80E-03

miR-122 / miR-29b-3p 0.70 0.83 4.60E-03

miR-122 / miR-146a 0.71 0.83 5.90E-03

miR-122 / miR-107 0.72 0.81 5.90E-03

miR-122 / miR-335-5p 0.68 0.81 8.40E-03

miR-122 / miR-155 0.71 0.81 8.40E-03

miR-16 / miR-491-5p 0.69 0.81 9.40E-03

miR-16 / miR-29b-3p 0.69 0.81 5.90E-03

let-7b / miR-491-5p 0.70 0.81 7.50E-03

miR-122 / miR-181a-5p 0.66 0.80 8.40E-03

https://doi.org/10.1371/journal.pone.0218623.t004

Table 5. Differentiation of the RTT patients with walking problems vs. ambulatory RTT patients.

Walking problems: WCB/NA (10) / AMB (20)

miRNA pairs Accuracy AUC P-value

miR-206 / miR-125b 0.79 0.95 1.70E-04

miR-206 / miR-491-5p 0.69 0.82 7.30E-03

miR-206 / miR-29b-3p 0.69 0.82 6.40E-03

miR-206 / miR-107 0.68 0.81 7.30E-03

miR-206 / miR-132 0.78 0.88 1.10E-03

miR-206 / miR-335-5p 0.68 0.81 7.30E-03

miR-206 / miR-155 0.70 0.84 5.00E-03

miR-206 / let-7b 0.73 0.83 6.40E-03

miR-206 / miR-146a 0.67 0.79 1.80E-02

miR-206 / miR-134 0.63 0.82 1.80E-02

miR-206 / miR-181a-5p 0.69 0.81 1.60E-02

miR-206 / miR-409-3p 0.65 0.80 1.50E-02

miR-206 / miR-16 0.74 0.83 5.70E-03

miR-206 / miR-323-3p 0.68 0.80 1.50E-02

miR-206 / miR-411-5p 0.65 0.78 2.80E-02

miR-433-3p / miR-125b 0.65 0.78 3.40E-02

miR-432-5p / miR-411-5p 0.65 0.75 4.90E-02

https://doi.org/10.1371/journal.pone.0218623.t005
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effective biomarkers in all murine RTT models tested, are able to differentiate Null and Het

mice from Wt mice with >90% accuracy.

In 2014, Cheng et al. [47] demonstrated that MECP2 regulates biogenesis of some miRNAs

and found changes in their expression, such as increases in miR-107 and miR-122 and decreases

in miR-335-5p, miR-132 and miR-411 expression in the brain, due to MECP2 mutations. These

changes in miRNA expression may explain the effectiveness of certain miRNA pairs in our

studies, for example miR-107/miR-335-5p, and miR-107/miR-132. On the other hand, although

according to Cheng et al. expression of miR-323-3p increases, this miRNA proved to be a good

denominator both in our animal and human studies. This discrepancy can be explained by vari-

ous factors, including differences in genotypes and the ages of the animals tested in the two

studies. Additional studies should be performed to address these questions.

Consistent with our hypothesis, individual miRNA pairs are more effective in Null (male)

RTT models than in Het (female) models, indicating that disease severity correlates with

miRNA ratios, with the only exception being miRNA pairs with miR-132 as the numerator

(miR-132/miR-335-5p and miR-132/miR-323-3p; Table 2), which were equally effective in the

Null and Het models.

Table 6. Differentiation of the RTT patients with elevated ALT levels vs. RTT patients with normal ALT levels.

ALT-enzyme level: Elevated (6) / Normal (24)

miRNA pairs Accuracy AUC P-value

miR-206 / miR-155 0.82 0.94 8.50E-04

miR-206 / miR-132 0.81 0.94 1.40E-03

miR-206 / miR-335-5p 0.80 0.93 1.70E-03

miR-122 / miR-335-5p 0.74 0.92 2.80E-03

miR-122 / miR-125b 0.67 0.92 4.40E-03

miR-206 / miR-146a 0.80 0.92 2.00E-03

miR-206 / miR-491-5p 0.81 0.92 1.70E-03

miR-206 / miR-107 0.80 0.92 2.00E-03

miR-206 / miR-29b-3p 0.80 0.92 2.00E-03

miR-122 / miR-155 0.71 0.91 3.80E-03

miR-206 / miR-181a-5p 0.81 0.91 2.00E-03

miR-122 / miR-146a 0.69 0.90 3.20E-03

miR-122 / miR-107 0.78 0.90 4.40E-03

miR-122 / miR-29b-3p 0.74 0.90 3.80E-03

miR-122 / miR-181a-5p 0.74 0.90 5.10E-03

miR-206 / miR-125b 0.80 0.90 2.40E-03

miR-122 / miR-132 0.74 0.89 9.20E-03

miR-122 / miR-491-5p 0.73 0.88 6.90E-03

miR-206 / miR-134 0.72 0.88 8.00E-03

miR-433-3p / miR-181a-5p 0.73 0.88 5.10E-03

miR-16 / miR-155 0.75 0.87 9.20E-03

miR-122 / let-7b 0.64 0.86 1.60E-02

miR-206 / let-7b 0.70 0.86 1.10E-02

miR-206 / miR-409-3p 0.73 0.86 6.90E-03

miR-206 / miR-323-3p 0.74 0.86 8.00E-03

miR-433-3p / miR-29b-3p 0.74 0.86 1.40E-02

miR-16 / miR-335-5p 0.80 0.86 1.20E-02

miR-16 / miR-132 0.73 0.86 1.40E-02

miR-433-3p / miR-146a 0.72 0.85 9.20E-03

https://doi.org/10.1371/journal.pone.0218623.t006
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We then extended our investigation to human patients, and the data obtained both sup-

ported and expanded the results of the mouse models studies due to the testing of more miR-

NAs, the analysis of RTT patients at several stages of pathological development, and the

comparison of patients with different RTT symptoms. The most important result was that the

same brain-enriched miRNAs formed biomarker pairs that could be used to detect RTT in

both animal models and humans (Table 2). In addition, the human data demonstrated the

applicability of our approach to the detection of liver and muscle pathologies and of changes

in cholesterol metabolism. The analysis of various age groups indicated the importance of

using AMCs for data analysis. The results generated in this study are preliminary due to the

relatively small number of study participants, and larger studies are needed to select the best

miRNA biomarkers; however, the similarity between the data obtained in the 4 animal models

and those obtained in the human patients is highly promising.

In summary, the data presented here demonstrated that RTT biomarker development

based on analysis of plasma miRNAs is feasible. Moreover, our finding that miRNA biomarker

candidates more effectively differentiated male rather than female Mecp2 mutants from con-

trols in the mouse models studies, as well as in the human studies, suggested that these markers

correlate with disease severity. This result, in turn, suggested that miRNA pairs have the poten-

tial to be developed as prognostic biomarkers for RTT and as markers of disease progression

and treatment response. Finally, our data suggested that this approach could also prove fruitful

for other neurodevelopmental disorders.

Table 7. Differentiation of the RTT patients with elevated cholesterol levels vs. RTT patients with normal choles-

terol levels.

Cholesterol level: Elevated (6) / Normal (24)

miRNA pairs Accuracy AUC P-value

miR-146a / miR-29b-3p 0.82 0.92 1.20E-03

miR-206 / miR-122 0.75 0.89 6.00E-03

miR-181a-5p / miR-409-3p 0.56 0.86 4.10E-02

miR-335-5p / miR-29b-3p 0.69 0.85 1.40E-02

miR-335-5p / let-7b 0.73 0.84 1.60E-02

miR-146a / miR-411-5p 0.70 0.83 2.30E-02

miR-107 / miR-29b-3p 0.70 0.83 2.00E-02

miR-155 / miR-125b 0.58 0.83 2.00E-02

miR-491-5p / miR-411-5p 0.60 0.83 3.30E-02

miR-146a / miR-432-5p 0.68 0.82 3.30E-02

miR-146a / miR-125b 0.66 0.81 4.10E-02

miR-146a / miR-323-3p 0.62 0.81 3.70E-02

miR-146a / miR-433-3p 0.70 0.81 3.70E-02

miR-206 / miR-125b 0.68 0.81 2.30E-02

miR-335-5p / miR-125b 0.70 0.81 2.90E-02

miR-335-5p / miR-134 0.69 0.81 3.70E-02

miR-181a-5p / miR-411-5p 0.55 0.81 3.70E-02

miR-181a-5p / miR-134 0.59 0.81 3.70E-02

miR-181a-5p / miR-323-3p 0.53 0.81 3.70E-02

miR-491-5p / miR-432-5p 0.64 0.81 3.70E-02

miR-146a / miR-409-3p 0.68 0.80 3.70E-02

miR-146a / miR-134 0.67 0.80 4.10E-02

miR-491-5p / miR-409-3p 0.64 0.80 4.60E-02

https://doi.org/10.1371/journal.pone.0218623.t007
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Methods

Animal models and plasma collection

Two mouse models of RTT, Mecp2tm1.1Jae (deletion of exon 3)14 and Mecp2tm1.1Bird (deletion of

exons 3 and 4)15, were tested. Similar to RTT patients, these animals appear normal at birth and

then develop RTT-like symptoms, including reduced brain size and weight, hypoactivity, abnor-

malities in locomotion (altered gait, hindlimb clasping), anxiety, cognitive deficits, and occasional

hard respiration. MECP2 is located on the X chromosome, and the severity of RTT depends on

the type of mutation (MECP2 can be completely or partially inactivated) and variability in X chro-

mosome inactivation. The disease is much more severe in males. In the Mecp2tm1.1Bird Null male

model, mice appear normal until postnatal week 3, with symptoms progressing between postnatal

weeks 3 and 5, leading to death around postnatal week 8. Mecp2tm1.1Bird Het females are asymp-

tomatic up to postnatal week 6 when initial symptoms appear, and animals die by 11–12 months

of life. In Mecp2tm1.1Jae Null males, progression of symptoms occurs between postnatal weeks 5

and 8 leading to death around 2.5 months of life. In Mecp2tm1.1Jae Het females, symptoms appear

by postnatal week 15, and animals die at 12 months of life.

Male (Null) and female (Het) Mecp2tm1.1Jae (Case Western) mice and Mecp2tm1.1Bird (Jack-

son Labs, Psychogenics) mice were used and compared to wild-type (Wt) mice as follows:

Mecp2tm1.1Jae: (i) 11 Null vs 9 Wt (5–6 weeks old) and (ii) 6 Het vs 7 Wt (6 months old)

Mecp2tm1.1Bird: (iii) 8 Null vs 10 Wt (5–6 weeks old) and (iv) 10 Het vs 10 Wt (18 weeks old)

Mice were anesthetized with isoflurane gas. Whole blood was collected into K2EDTA tubes

via cardiac puncture. Samples were centrifuged at 2000 g for 15 minutes at 4˚C, and approxi-

mately 0.2 ml of plasma was transferred to Eppendorf tubes and frozen on dry ice. All animal

studies were conducted in accordance with the relevant guidelines and regulations and were

approved by the corresponding IACUCs of Case Western Reserve University School of Medi-

cine, Jackson Labs, and Psychogenics.

Study participants and plasma collection

All patients with RTT were recruited from the Tri State Rett Syndrome Center (NY) database.

The parents were informed about the study prior to their scheduled annual health care mainte-

nance visit, and the patients were recruited during the visit. Written, informed consent was

provided by all patients and/or their legal guardians. The study protocol and procedures were

approved by the Institutional Review Board of Albert Einstein College of Medicine, Monte-

fiore Medical Center and were conducted in accordance with the Declaration of Helsinki.

All study participants with RTT were experiencing their usual, baseline health at the time of

their recruitment and of the blood draw. Control study participants were recruited from the

pediatric waiting area at the Children’s Hospital at Montefiore from among healthy siblings

(with no neurological developmental problems and who were not on medications), who were

accompanying their brothers/sisters to their medical appointments. Control study participants

were age- and gender-matched to the recruited patients with RTT. The clinical information

regarding the study participants is summarized in Table 3. Five high functioning (HF) patients

were excluded from the analysis due to the small sample size and wide age distribution.

Whole blood from 30 RTT patients and 30 AMCs was collected via venipuncture into

K2EDTA vacutainers, and the plasma was separated as described above and frozen at -70˚C.

RNA isolation and RT-qPCR

In each experiment, RNA was extracted from 200 μl of plasma (two preps obtained from the

same human study participant were then combined) using a TRIzol treatment and silica
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(Ambiom Glass Fiber Microcolumn) binding protocol (http://asuragen.com/wp-content/

uploads/2016/05/biomarkers.pdf). Single-target quantitative RT-PCR (RT-qPCR) was per-

formed using the TaqMan Reverse Transcription Kit and miRNA-specific stem-loop primers

(ThermoFisher). The RT step was performed in triplicate, and 2 μl of the original plasma

equivalents was present in the final PCR. Placental RNA was used as a “positive control”, and

no-template controls were used as a “negative control” for each run. Calibration curves were

obtained for each miRNA tested. Quality control of the miRNA preps was performed by test-

ing two ubiquitous miRNAs, namely, miR-16 and miR-27a, known to have low variability in

each plasma preparation.

Statistical methods

All Ct values were recalculated for 1 μl of plasma based on the calibration curves. DiamiR’s

custom software (20) was used for all calculations, including the identification of miRNA pairs

capable of differentiating control and mutant Mecp2 mice based on their concentration ratios

(ΔCt) in plasma. Mann-Whitney U tests were used to evaluate the significance of the differ-

ences between any two experimental groups based on the various biomarker miRNA pairs.

Receiver operating characteristic (ROC) curves were constructed, and the AUC values were

calculated to evaluate the sensitivity and specificity of the miRNA pairs. The sensitivity and

specificity are reported for the cutoff points on the ROC curves that provided the best overall

accuracy.
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