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Abstract
The spatial distribution of species, functional traits and phylogenetic relationships at both

the regional and local scales provide complementary approaches to study patterns of biodi-

versity and help to untangle the mechanisms driving community assembly. Few studies

have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic

(PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and

PBD with the biome (representing different regional species pools) and land use, and inves-

tigate whether TBD, FBD and PBD were correlated. In the study design we considered two

widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest

and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics.

Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic

distances were associated to biome and land use; study sites grouped into four groups on

the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest

and grassland), and that was consistent across beta diversity facets and taxa. Mantel and

PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both

bird and ant assemblages; in general, partial correlations were also significant. Some of the

functional traits considered here were conserved along phylogeny. Our results will contrib-

ute to the development of sound land use planning and beta diversity conservation.
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Introduction
Amajor goal in ecological research is to explain patterns of biological diversity in natural and
anthropogenic environments. Traditional approaches from the purely taxonomic viewpoint
recognized three spatial components of diversity: local and regional species diversity (alpha
and gamma, respectively) and species turnover (beta diversity). However, since the beginning
of the XXI century studies started to focus on the spatial distribution of both species functional
traits and phylogenetic relationships [1], and more recently on mechanisms beyond those pat-
terns of biodiversity at different temporal and spatial scales [2].

Community ecologists increasingly recognize that a trait-based approach may be more
meaningful than the species richness or composition to understand species responses to the en-
vironment [3]. The diversity of traits, or functional diversity, represents the diversity of species’
niches or functions [3,4], and has been used to understand how diversity respond to environ-
mental disturbances [5,6] and how species diversity relates to ecosystem function [4–8]. Thus,
traits determine where a species can live, how species interact, and the species contribution to
ecosystem functioning [9]. Furthermore, the phylogenetic dimension of biodiversity reflects
evolutionary differences among species based on times since divergence from a common an-
cestor [10]; it represents an estimate of phylogenetically conserved ecological and phenotypic
differences among species [11]. The study of phylogenetic diversity provides insight into how
evolutionary and ecological processes may interact to shape patterns of species and trait rich-
ness and composition [12]. Thus, the study of biodiversity is no longer limited to the taxonom-
ic perspective, but it has been expanded to understand functional and phylogenetic changes
within and between communities. Functional and phylogenetic diversities are related to ecosys-
tem resilience to environmental disturbances [13], and conservation objectives are expanding
to include multiple facets of diversity and ecosystem services [14]. The three facets of diversity
may show different patterns of change along successional stages [15], and land use may affect
functional structure of communities that is not necessarily reflected by the taxonomic diversity
[16]. Here we integrate the taxonomic, functional and phylogenetic approaches to the study of
beta diversity.

Beta diversity is a central concept in theoretical ecology, conservation biology, and ecosys-
tem management [17]. While taxonomic beta diversity (TBD) was defined as the change
in species composition across geographical space [18,19], functional beta diversity (FBD)
was defined as the change in ecological functions or species traits between assemblages [20];
and phylogenetic beta diversity (PBD) as a measure of how deep lineages occurring in differ-
ent assemblages have been separated in evolutionary time [21]. The simultaneous study of
the three facets of beta diversity might reveal phylogenetically basal or terminal turnover be-
tween communities (for example, the turnover of phylogenetically close species would be
considered low phylogenetic but high taxonomic turnover), and the phylogenetic signal in
trait data (in such a case, the phylogenetic turnover between communities should mirror the
functional turnover) [12]. Thus, an integrated approach of TBD, FBD and PBD can improve
our understanding on how biodiversity patterns are caused and maintained, and the long
term consequence of human disturbances on biological assemblages and ecosystem function-
ing [22]. For example, Devictor et al. [23] showed the congruence between patterns of the
three beta diversity facets of birds suggesting the application for delimitation of regional
ecotones. Flynn et al. [15] found that facets of plant beta diversity were correlated but
only functional turnover showed significant deviations from random expectations along suc-
cession after human disturbance, suggesting successional changes in the process of assem-
blage formation and the relevance to consider all facets of diversity even though they may
be correlated.
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Anthropogenic pressure on terrestrial ecosystems has been accelerated in the last decades,
associated to an increase on human incomes and population growth [24]. Human activities
that require large extensions of land, such as agriculture and forestry, often result in habitat
conversion due to land use for cropfields and tree plantations. In intensively modified land-
scapes where little natural habitat remains, human activities promote the replacement or im-
poverishment of native communities and the arrival of cosmopolitan species (loss of beta
diversity); consequently, it is expected that taxonomic similarity between communities in-
creases in this process of biotic homogenization [25]. Furthermore, given that species able to
exploit human-modified habitats tend to be ecologically redundant and/or phylogenetically
close related, FBD and PBD would also be lost [26]. How habitat replacement and land-use in-
tensification change patterns of TBD, FBD and PBD remains little explored.

Climate acts as a regional filter that sorts species distribution according to each species
range of tolerance to the various environmental factors, a process of assemblage formation
known as species sorting at the metacommunity scale [27,28]; together with the species dis-
persal and interspecific competition determines the species presence-absence at a given site.
That complex process results on different regional biomes and species pools over which
human activities impose additional filters. Different types of human land uses impose different
local filters to each pool of species and their functional traits. Here we analyze the associations
between taxonomic, functional and phylogenetic turnover with biomes (representing different
regional species pools) and human land uses (representing different environmental filters),
identify the species contributing the most to differences in assemblage composition, and inves-
tigate whether TBD, FBD and PBD were positively correlated. In the study design we consid-
ered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical
forest and grassland) and human land uses (tree plantations and cropfields). Our working hy-
pothesis is that species ecological niche facing environmental filtering (a deterministic process)
is the primary driver of assemblage formation at both the regional and local levels. Thus, if the
species capability of responding to regional and local environmental conditions were phyloge-
netically conserved and were different for each biome and land use, for both ants and birds we
predict that 1) taxonomic, phylogenetic and functional differentiation between communities is
determined by a combination of the effects of the regional context and local habitat and 2)
TBD, FBD and PBD are positively correlated.

Materials and Methods

Study design
To study the turnover between biological assemblages, we tested the multivariate response of
community composition to biome and land use, based on the taxonomic, functional and phylo-
genetic similarities between sites located in different regions and human land uses in the
southern Neotropics. We selected two conservation priority biomes (subtropical forest and
temperate grassland) with contrasting climates and vegetation structure, and two extended
land uses (soybean cropfields and mature eucalypt plantations) with contrasting vegetation
structure. In each biome, we selected five study sites per land use, for a total of 10 sites per
biome. Birds and ants were used as independent biological models to consider community re-
sponses of different organisms. Field study did not involve endangered or protected species,
and no birds were collected.

Study areas and sites
The two selected biomes were the semideciduous subtropical Atlantic forest and the Pampean
grassland (from here on Forest and Grassland, respectively) in southern South America (Fig 1);
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they are both considered priority biomes for biodiversity conservation [29,30]. Study sites were
located in the eastern Paraguay area of the Atlantic Forest [31], and in the Mesopotamic
Pampa in eastern Argentina [32,33] (Fig 1). The Atlantic forest in Paraguay was originally oc-
cupied by semideciduous forests; the climate is subtropical with average annual temperatures
of 20°C and average annual rainfall of 2000 mm [34]. In the eastern Paraguay area, only 13% of
the original native forest remains [35], and it concentrates 80% of the soybean cropfields of the

Fig 1. Physiognomy and geographical location of study biomes (Atlantic Forest in the North and
Pampean grassland in the South) and study sites in the southern Neotropics.

doi:10.1371/journal.pone.0126854.g001
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country [36]. Both cropfields and tree plantations replaced the more or less degraded native
forests over the last 50 years. The Pampean region was originally a grassland crossed by ravines;
the climate is temperate, average annual temperature is 15°C, and annual rainfalls range from
1000 mm in the North to 600 mm in the South [31]. The Pampas have a history of antropo-
genic use; it was first used for extensive ranching followed by agriculture increasing in intensity
over the 20th century. Currently, native vegetation is highly degraded and fragmented [37];
tree plantations replaced cattle pastures and cropfields in some areas.

In both Forest and Grassland, we selected five soybean cropfields and five stands of mature
eucalypt plantations (from here on cropfields and tree plantations). Within each biome, sam-
pling sites were located at an average distance of 16 km in Grassland and 10 km in Forest. Sam-
pling sites with the same land use (soybean and eucalypt) within each region were located at an
average distance of 11 km in Grassland and 9 km in Forest (S1 Table). When sampling started,
soybean cropfields were two months-old, and eucalypt plantations were 7–8 years old. Soybean
usually rotates with corn. Agricultural and silvicultural management (e.g. herbicide applica-
tion, thinning) was similar between biomes. The study was carried out on private lands, and
the heads of the following forest companies or landowners should be contacted for future per-
missions: Desarrollos Madereros S.A., Tierra Roja S.A., Estancia El Palmar, Paul Forestal S.R.
L., Aserradero Ubajay de Siete Hnos. S.R.L., La Aurora del Palmar, Mastellone Hnos. S.A.,
Redepa S.A.

Bird surveys and ant sampling
Bird surveys and ant collections were conducted in December 2007 in Forest and during Janu-
ary 2008 in Grassland, determined by soybean phenology. Birds were surveyed by establishing
10 observation points (200-m apart to avoid sub-sample overlap) in the 20 study sites. At each
observation point, we recorded all birds seen or heard within a 100 m radius and five minutes
observation period, on a single visit during the breeding season [38]. Surveys were simulta-
neously conducted by two trained independent observers from dawn to 10:30 on clear and
sunny mornings. We verified that six to eight observation points in each study site were enough
to detect 75–100% of the species recorded by a sampling effort of 10 observation points and
five minutes time-period [39].

Ants were sampled during 28 consecutive days in each study site, by using 10 pitfall traps
[40] located 10-m apart along a transect. Each trap consisted of a plastic container (500 ml
volume, 85 mm diameter) with 150 ml of a propylene glycol and: water (1:2) solution. Species
and morphospecies were identified following Bolton [41] nomenclature and taxonomic keys
(S2 Table).

Selection of functional traits
We selected functional traits related to the recorded species life-history, based on literature
studying functional diversity or responses to habitat replacement by birds [42– 45] and ants
[46–48]. We selected nine traits for birds adapted from Lopez-Lanus et al. [49] and Stotz et al.
[50] and four traits for ants based on Andersen [51] and Fernández [52] (Table 1).

Construction of phylogenetic super-trees
We constructed two informal super-trees including all recorded species of birds and ants. In-
formal super-trees combine different phylogenies by taxonomic substitution, i.e. terminal taxa
in one tree are replaced by trees representing phylogenetic relationships within each taxon
[53]. Bird super-tree topology was obtained from Hackett et al. [54]. Then, the recorded species
were added by taxonomic substitution following Birdsley, Irestedt et al., Fjdelsa et al., Ericson
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et al., Irestedt et al., Jonsson and Fjdelsa, Lerner and Mindell, Brown, Tree of Life Web Project,
Harshman, Mindell and Harshman, Baker and Pereira, Brown and Mindell, and Moore and
Miglia [55–70].

Ant super-tree was first assembled combining phylogenies by Moreau et al. and Brady et al.
[71,72]. Then, taxonomic substitutions were done using phylogenies given by Schultz and
Brady, Brandão and Mayhe-Nunes and Wild [73–75]. Species absent from reference phyloge-
nies were assembled within related taxa, based on bird [50] and ant [41] systematics (S1 Fig).

Data analysis
We performed a series of analysis to 1) statistically (PERMANOVA, PERMDISP) and visually
(NMDS) explore the independent influence of biome and land use on patterns of taxonomic,
functional and phylogenetic beta diversities (2x2 factorial design); 2) explore the individual ant
and bird species contributing mostly to differentiate land uses within and between biomes
(SIMPER); and 3) examine the associations among the different facets of diversity (simple and
partial Mantel tests) and the existence of phylogenetic signal in trait data (D-Statistic).

The three beta diversity facets were estimated using the appropriate distance measure be-
tween sites. To estimate TBD between land uses (cropfields and tree plantations) and biomes
(Forest and Grassland) we first built an incidence matrix (sites x species) for each of birds and
ants, in which species presence/absence was recorded for each study site; then we calculated
the 1-Sorensen index as a measure of taxonomic dissimilarity. To estimate FBD and PBD for
both birds and ants, we first built phenotypic dendrograms and phylogenetic ultrametric trees
and then calculated the 1-Sorf and 1-PhyloSor indices using PICANTE [76]. Sorf and PhyloSor
represent the proportion of branch lengths shared by two assemblages [77]; they are analogous
to the Sorensen taxonomic similarity index, and consequently we minimized the potential lack
of correlation between TBD, FBD and PBD due to differences in index construction.

The phenotypic distance (euclidean) matrix (species x species), used to calculate the 1-Sorf
index, was built using the selected species functional traits as variables (Table 1). All traits were
defined as binary categorical variables, and multi-state traits (such as diet, habitat type, worker
ant body-size, or ant functional group) were analyzed as multiple binary characters (0 = no,
1 = yes) [44]. Using phenotypic distances between species, we performed a hierarchical cluster-
ing procedure (UPGMA) in R [78] to obtain the functional dendrogram. To calculate 1-Phylo-
sor, phylogenetic ultrametric trees and phylogenetic distance matrices (species x species) were
obtained after branch length adjustment in each constructed super-tree. Adjustments were
conducted using bladj algorithm (Phylocom, [79]), which minimizes the variance between
branch lengths within the constraints imposed by the dating of tree internal nodes. Node ages

Table 1. Bird and ant functional traits considered in the estimation of functional beta diversity.

Birds AHS, amplitude of habitat use (one to five habitats; more than five habitats); TNA, trophic niche
amplitude (generalist; specialist); RP, reproductive potential (one to three eggs; more than three
eggs); SHD, sensitivity to human disturbance (unfavored; favored); BD, body size (less than 100 gr,
more than 100 gr); AHT, association with habitat type (grasslands: GRA; forests: FOR);DIE, diet
(FRU: frugivore-granivore; INS, insectivore; CAR, carnivorous bird of prey; OMN, omnivore); FS,
foraging stratum (HIGH; LOW); MIG, migratory status (resident; migratory)

Ants FG, functional group (C, cryptic; T, specialist in tropical climate; W, specialist in warm climate; SP,
specialist predators; SC, subordinate camponitines; GM, generalist mirmicines; O, opportunist; DD,
dominant dolicoderines); DIE, diet (SP, specialist predator; FV, fresh vegetation; GF,generalist
forager; E,exudate collector; GP, generalist predator; GRA, granivore); HAB, association with
habitat type (GRA, grasslands; FOR, forests); SIZ, worker body size (S, small; M, medium; L, large)

doi:10.1371/journal.pone.0126854.t001
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were obtained from available information for birds [80] and ants [71–73] compiled on the
Time Tree of Life website [81].

After estimating TBD, FBD and PBD we tested for significant associations between taxo-
nomic, functional and phylogenetic distance matrices with biome and land use. To do that, we
first visually explored site ordination based on taxonomic, functional and phylogenetic dis-
tances between assemblages in the Euclidean space, by performing non-metric multidimen-
sional scaling (NMDS). First and second axes were plotted to evaluate whether site ordination
was associated with biome or land use. Then, we performed permutational multivariate analy-
sis of variance (PERMANOVA) [82] that can be computed for any distance index and allows
to test for interaction effects between factors (i.e. biome x land use). However, the interaction
term may have significant effects on distances when simple effects are different in direction or
magnitude; thus, we tested for significant simple effects and for homogeneity of multivariate
dispersion using PERMDISP [83]. Significance was obtained for each test by 9999 Monte Carlo
permutations. Finally, the Similarity Percentage analysis (SIMPER) [84] was performed to
identify species that contributed mostly to the taxonomic 1-Sor distances between treatments.
SIMPER performs pairwise comparisons of groups of sampling units (treatments; i.e. cropfields
in Grassland) and ranks all species according to the average contribution of each one to the
overall average distance index. Using presence data, species that occur in most sites within
treatments are those that contribute the most to the similarity within and dissimilarity between
treatments. Thus, SIMPER allows identifying bird and ant species that better discriminate be-
tween treatments [85]. NMDS and SIMPER were implemented in R [78].

To analyze the association between the three beta diversity facets, we performed correlations
between pairs of distances matrices (i.e., simple Mantel tests) [86] to test the association be-
tween each pair of taxonomic (1-Sor), functional (1-Sorf) and phylogenetic (1-PhyloSor) beta
diversities. Then, we performed partial correlations (i.e., partial Mantel tests) between pairs of
distance matrices [87] to remove the effects of the third distance matrix. Tests were performed
using the VEGAN package [88] applicable in R [78], and 1000 permutations of the distance
matrices to obtain the significance level.

A high correlation between 1-Sorf and 1-Phylosor is a strong indicator of phylogenetic sig-
nal in trait data [89]. Thus, the phylogenetic conservation of species traits was explored by test-
ing the degree of phylogenetic signal of each bird and ant species trait using D-statistic for
binary traits [90]. Starting from trait values randomly distributed along a phylogenetic tree (D
~ 1), the D-statistic approaches zero as trait phylogenetic signal increases. When traits are
more conserved than expected by the Brownian evolutionary model (i.e. trait values differ pro-
portionally to species divergence times [91]), then the D-statistic is significantly less than zero.
Observed and expected distributions of the D-statistic, and significance level for each test were
obtained using the CAPER package [92] applicable in R [78].

Results
We recorded a total of 638 individual birds representing 49 species (S3 Table). For the 49 re-
corded species, we built a functional dendrogram with 47 internal nodes and assembled a phy-
logenetic tree with 41 internal nodes (S1 Fig). For ants, we captured over 25,000 individuals
from 35 genera, 84 species and 15 morphospecies (S3 Table). Among the total 99 ant species
and morphospecies, 28 had no references on the preferred habitat type (forests or grasslands);
thus, they were excluded when testing the association of functional distances between biome
and land use, and the correlation between functional and taxonomic or phylogenetic distances.
Consequently, we built a functional dendrogram for 71 species or morphospecies with 51
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nodes and a phylogenetic tree for all 99 species and morphospecies with 61 internal nodes
(S1 Fig).

Taxonomic, functional and phylogenetic distances between bird and ant assemblages were
associated to biome and land-use in the NMDS (Fig 2). Study sites grouped into four clearly

Fig 2. Non-metric multidimensional scaling (axes NMDS1 vs. NMDS2) using the taxonomic 1-Sorensen (a and b), functional 1-Sorf (c and d) and
phylogenetic 1-PhyloSor (e and f) distances between bird (left) and ant (right) assemblages from soybean cropfields (circles) andmature eucalipt
plantations (triangles) located in the Atlantic Forest (filled symbols) or the Pampean grasslands (empty symbols).

doi:10.1371/journal.pone.0126854.g002
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differentiated groups on the bi-dimensional space (cropfields in Forest and Grassland, and tree
plantations in Forest and Grassland). Site grouping was consistent across taxa and beta diversi-
ty facets indicating similar patterns of changes in the taxonomic composition, functional traits,
and phylogenetic lineages.

For both bird and ant assemblages, PERMANOVA and single effects tests confirmed that
site taxonomic, functional and phylogenetic composition was associated to both land use and
biome (Table 2). PERMANOVA detected significant interactions between biome and land use
for the three distance indices, and single effect tests showed significant effects of biome on each
level of land use and viceversa. PERMDISP applied to bird dataset showed that multivariate
dispersion among eucalypt plantations was lower in Forest than in Grasslands for taxonomic
1-Sor distance (t = 2.8, p = 0.02), functional 1-Sorf distance (t = 2.7, p = 0.02), and phylogenetic
1-PhyloSor distance (t = 2.5, p = 0.03). For ants, PERMDISP showed no differences in multi-
variate dispersion between treatments for the taxonomic 1-Sor (F = 0.7, p = 0.47). Furthermore,
PERMDISP showed that multivariate dispersion among tree plantations was lower in Forest
than in Grasslands for the phylogenetic 1-PhyloSor (t = 4.2, p<0.01) and the 1-Sorf distances
(t = 2.6, p = 0.02). SIMPER analyses revealed the species of birds and ants that made important
contributions to the taxonomic distance between treatment levels (Table 3).

Mantel tests showed that TBD, FBD and PBD were positively correlated for both bird and
ant assemblages (Table 4). Partial correlations were also significant, except between bird func-
tional and phylogenetic distances and between ant taxonomic and functional distances
(Table 4). Then, taxonomic and phylogenetic distances were associated between ant and bird
assemblages, independently of the distance between functional traits. For birds (but not for
ants) taxonomic and functional distances were associated independently of the phylogenetic
distance. For ants (but not for birds) functional and phylogenetic distances were associated in-
dependently of the taxonomic distance.

Among bird traits, carnivorous, frugivorous-granivorous and insectivorous diet types, mi-
gratory-status, body-size, and high and low foraging-strata were conserved along the phyloge-
ny (Table 5). Ant traits were all conserved along the phylogeny (Table 5).

Discussion
Studying simultaneously major regional (i.e. biome determined by climate) and local (i.e. habi-
tat type determined by human land use) factors driving species distribution contributes to a
unified view of community dynamics [93]. As expected, our results showed that bird and ant
assemblages from both the Atlantic Forest and Pampean Grassland differed taxonomically,
functionally and phylogenetically in response to local environmental conditions imposed by

Table 2. PERMANOVA tests (p-values) for birds and ants and the taxonomic (1-Sor), functional (1-Sorf) and phylogenetic (1-PhyloSor) distance
indices.

Biome single effects t (p) Land-use single effects t (p)

Distance
index

Interaction term (biome x land
use). F(p)

In soybean
cropfields

In eucalypt
plantations

In Atlantic
Forest

In Pampean
Grassland

Birds 1-Sor 8.9 (<0.01) 3.0 (<0.01) 2.8 (<0.01) 5.2 (<0.01) 3.9 (<0.01)

1-Sorf 9.1 (<0.01) 2.8 (<0.01) 2.9 (<0.01) 5.1 (<0.01) 3.9 (<0.01)

1-PhyloSor 8.5 (<0.01) 2.4 (<0.01) 3.3 (<0.01) 3.8 (<0.01) 3.9 (<0.01)

Ants 1-Sor 3.7 (<0.01) 5.1(<0.01) 3.9 (<0.01) 2.1 (<0.01) 2.2 (<0.01)

1-Sorf 0.8 (0.5) 9.9 (<0.01) 7.1 (<0.01)

1-PhyloSor 2.9 (0.01) 2.3 (<0.01) 2.6 (<0.01) 2.0 (<0.01) 2.5 (<0.01)

doi:10.1371/journal.pone.0126854.t002
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Table 3. Proportion of occurrence of bird and ant species that contributed the most to the distance between treatment levels (land use x biome
combinations).

Prop.
occur

Prop.
occur

Pair of treatments Bird species A B Contribution
(%)

Ant species A B Contribution
(%)

Soybean Forest(A) vs. Soybean Grassland
(B)

Volantinia jacarina 1 0 6.23 Strumigenys lousianae 1 0 4.17

Zonotrichia capensis 0 1 6.23 Ectatomma bruneum 0 1 4.17

Crypturellus
parvirostris

0.8 0 4.89 Mycetarotes parallelus 0 0.8 3.27

Pyramica eggersi 0 0.8 3.23

Labidus praedator 0 0.8 3.23

Mycocepurus goeldii 0 0.8 3.23

Ectatomma edentatum 0.2 0.8 3

Pachycondyla striata 0.8 0.2 2.96

Pogonomyrmex naegelli 0.8 0.2 2.79

Soybean Forest(A) vs. Eucalypt Forest(B) Ammodramus
humeralis

1 0 4.86 Ectatomma bruneum 1 0 4.55

Buteo magnirostris 0 1 4.86 Pogonomyrmex
coartactus

0 0.8 3.76

Guira guira 0 1 4.86 Paratrechina silvestrii 0.8 0 3.61

Pitangus sulphuratus 0 1 4.86 Mycetarotes parallelus 0.8 0 3.56

Troglodytes aedon 0 1 4.86 Pyramica eggersi 0.8 0 3.51

Turdus rufiventris 0 1 4.86 Labidus praedator 0.8 0 3.51

Tyrannus
melancholicus

0 1 4.86 Solenopsis interrupta 0.2 0.8 3.37

Volantinia jacarina 1 0 4.86 Mycocepurus goeldii 0.8 0.2 3.08

Megarhynchus
pitangua

0 0.8 4.06

Crypturellus
parvirostris

0.8 0 3.83

Rhynchotus rufescens 0.8 0 3.83

Furnarius rufus 0 0.8 3.62

Eucalypt Forest(A) vs. Eucalypt Grassland(B) Guira guira 1 0 5.76 Pogonomyrmex
coartactus

0.8 0 4.14

Pitangus sulphuratus 1 0 5.76 Atta sexdens 0.2 0.8 3.44

Turdus rufiventris 1 0 5.76 Wasmannia auropunctata 0.8 0.2 3.24

Megarhynchus
pitangua

0.8 0 4.85

Tyrannus
melancholicus

1 0.2 4.53

Columbina talpacoti 0.8 0 4.21

Eucalypt Grassland(A) vs. Soybean
Grassland(B)

Ammodramus
humeralis

0 1 7.81 Solenopsis interrupta 1 0.2 3.92

Patagioenas picazuro 1 0 7.81 Paratrechina silvestrii 0.2 1 3.75

Rhynchotus rufescens 0 1 7.81 Pachycondyla striata 0 0.8 3.6

Tyrannus savana 0 1 7.81 Atta sexdens 0.8 0 3.59

Zonotrichia capensis 0.2 1 6.63 Strumigenys lousianae 0.2 1 3.48

Troglodytes aedon 0.8 0 6.12 Wasmannia auropunctata 0.2 1 3.48

Ectatomma edentatum 0.8 0.2 3

Species are ranked in order of importance (% contribution to the overall taxonomic distance between treatments) as determined by the SIMPER

procedure. Only paired proportions �0.8 and �0.2 are reported.

doi:10.1371/journal.pone.0126854.t003
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Table 4. Mantel correlation and partial correlation tests (p-values) between taxonomic, functional and phylogenetic distance matrices for bird and
ant assemblages.

Test Beta divers. Taxonomic Functional

Birds Ants Birds Ants

Mantel correlation Functional 0.98 (0.001) 0.69 (0.001) — —

Phylogenetic 0.91 (0.001) 0.86 (0.001) 0.89 (0.001) 0.77 (0.001)

Partial Man. correlation Functional 0.88 (0.001) 0.08 (0.149) — —

Phylogenetic 0.40 (0.001) 0.70 (0.001) 0.04 (0.246) 0.49 (0.001)

doi:10.1371/journal.pone.0126854.t004

Table 5. Phylogenetic conservatism tests for bird and ant functional traits.

Trait Dobs p(Dobs<1) p(Dobs>0)

Birds CAR -1.01 0 0.9

FGR -0.39 0 0.776

MIG -0.08 0.015 0.563

SIZ 0.03 0.007 0.493

HIGH 0.03 0.001 0.503

LOW 0.19 0.003 0.365

INS 0.37 0.013 0.227

OMN 0.58 0.132 0.156

SHD 0.72 0.129 0.065

TNA 0.97 0.441 0.009

FOR 1.04 0.531 0.008

GRA 1.13 0.662 0.005

RP 1.21 0.789 0

AHS 1.40 0.868 0.002

Ants W -4.76 0 0.981

SP -2.64 0 0.989

DD -2.57 0 0.985

SC -2.04 0 0.999

VF -1.56 0 0.999

GM -1.41 0 1

C -1.34 0 0.932

O -1.05 0 0.966

FG -0.94 0 0.999

T -0.82 0 0.999

S -0.63 0 0.988

SP -0.35 0 0.841

GRA -0.27 0.002 0.694

L -0.17 0 0.74

GP -0.07 0 0.585

FOR 0.27 0 0.169

M 0.40 0.003 0.2

GRA 0.73 0.02 0.002

Traits are ranked by increasing observed D-statistic value (Dobs); p(Dobs<1) is the significance level in the

test of random distribution of traits along phylogeny, and p(Dobs>0) in the test against the expected by the

Brownian evolutionary model. For abbreviations see Table 1. Traits highly (Dobs< 0) and moderately

(0 < Dobs< 1) conserved are bolded.

doi:10.1371/journal.pone.0126854.t005
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human land use (i.e., eucalypt plantations and soybean cropfields). Studies conducted in north-
ern United State along local and regional environmental gradients also showed that composi-
tion of bird communities resulted from the interactive effects between land use and climate/
geomorphology [94]. Consequently, changes in taxonomic, functional and phylogenetic com-
positions due to human land use should be interpreted accounting for the biome, at least in the
Pampean Grassland and the Atlantic Forest and presumably in other ecoregions as well. It has
been shown that species from the original regional pool respond to land use depending on the
environmental similarity between the native and novel habitat [39, 95].

Results obtained from PERMANOVA, PERMDISP and the NMDS exploration indicated
that the biome on which human activities developed had a significant influence on the capabili-
ty of species to exploit different types of human-created habitats. Our studied biomes have dif-
ferent species pools over which soybean cropfields and eucalypt plantations imposed the
additional environmental filter, which likely leaded to the differential taxonomic, functional
and phylogenetic assemblages. Furthermore, human-created habitats may be more or less simi-
lar (or preserve more or less elements) to the biome in which the habitat is located. For exam-
ple, eucalypt plantations were structurally more similar to forests than to grasslands; and
soybean cropfields were more similar to grasslands than to forests. Thus, the set of traits phylo-
genetically distributed allows species to use soybean cropfields and eucalypt plantations differ-
ently depending on whether the human activity is developed in the Pampas Grassland or the
Atlantic Forest. In a previous study we demonstrated that soybean cropfields supported a
higher proportion of native bird species in Grassland than in Forest, where similarity in vegeta-
tion structure between the native and human-created habitat was greater; the opposite oc-
curred in tree plantations that supported more native species in Forest than in Grasslands [39].

Results from PERMANOVA and PERMDISP indicated that both biome and land use were
associated with taxonomic, functional and phylogenetic turnovers in bird and ant assemblages.
Thus, land uses and biomes seemed to promote assemblage differentiation not only in species
identities but in traits and lineages that occurred in anthropogenic habitats. Moreover, we
showed evidence that TBD, FBD and PBD were positively associated to each other, and that
most of the studied traits were conserved along bird and ant phylogenies. Results obtained by
the partial Mantel tests indicated that in bird assemblages, species and trait compositions were
not completely phylogenetically structured, and that other traits (not considered here) caused
species and phylogenetic composition associations. However, the association between taxo-
nomic and functional distances in ant communities was completely explained by the phyloge-
netic information considered. Moreover, the association between functional and phylogenetic
distance in bird communities was completely explained by the taxonomic distance. Overall,
those results suggest that taxonomic, functional and phylogenetic distances between assem-
blages were related to changes in phylogenetically conserved traits along each regional species
pool. That is, lineages bearing traits which favored colonization and survival in soybean crop-
fields or eucalypt plantations differed between biomes, which is the pattern expected when
communities were assembled by environmental filtering of independent lineages [1,21].

Bird TBD was associated (to some extent) with FBD beyond any phylogenetic structure of
the communities. On the one hand, as mentioned before, that result is extremely dependent on
the selected traits and consistent with traits that were not phylogenetically conserved. In fact,
the inclusion of additional or alternative relevant traits could even reverse our findings if there
is a phylogenetic signal in them. The result is also dependent on the obtained phylogenetic tree,
because different phylogenetic considerations may lead to different trees and derive in a differ-
ent result. On the other hand, it is possible that a “specific (likely ecological) component” (e.g.,
quantity and quality of available resources) explained species turnovers beyond any phyloge-
netic relationship. As expected, both birds and ants were sensitive to human alterations of the
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habitat such as changing vegetation structure [51,96–99]. Furthermore, the general patterns of
turnover that we found were relatively similar between taxa regardless of differences between
bird and ant life histories. Although previous studies showed that the combined effects of local
and regional factors determined taxonomic, functional or phylogenetic compositions in assem-
blages of varied taxa [100–103], this is the first field study combining the analysis of the three
beta diversity facets on both a vertebrate and invertebrate taxa.

Finally, we used an integrated approach to study community differentiation considering
three complementary facets (taxonomic, functional and phylogenetic) of beta diversity. We ac-
counted for regional (biome) and local (land use) factors that proved to influence turnover. To
emphasize the relevance of the approach, we used conservation priority biomes and extended
human-created habitats as the regional and local factors, respectively, influencing assemblage
composition. In countries where economy depends on human activities that require large areas
(e.g. agriculture, livestock, forestry), our results contribute to the development of sound land
use planning and beta diversity conservation. For example, our results should be useful to help
selecting the most appropriate ecoregion to develop agriculture and forestry in Argentina. We
hope our work will serve to encourage the use of a more complete approach to the study of
beta diversity and its application in conservation biology.
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