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Abstract: Arabinogalactan proteins (AGPs) are members of a family of proteins that play important
roles in cell wall dynamics. AGPs from inclined pines were determined using JIM7, LM2, and LM6
antibodies, showing a higher concentration in one side of the stem. The accumulation of AGPs in
xylem and cell wall tissues is enhanced in response to loss of tree stem verticality. The differential gene
expression of AGPs indicates that these proteins could be involved in the early response to inclination
and also trigger signals such as lignin accumulation, as well as thicken cell wall and lamella media
to restore stem vertical growth. A subfamily member of AGPs, which is Fasciclin-like has been
described in angiosperm species as inducing tension wood and in some gymnosperms. A search for
gene sequences of this subfamily was performed on an RNA-seq library, where 12 sequences were
identified containing one or two fasciclin I domains (FAS), named PrFLA1 to PrFLA12. Four of these
sequences were phylogenetically classified in group A, where PrFLA1 and PrFLA4 are differentially
expressed in tilted pine trees.

Keywords: AGPs; fasciclin-like; compression wood; Pinus radiata

1. Introduction

Arabinogalactan proteins (AGPs) are a complex and highly glycosylated superfamily
present in cell walls, the surface of plasma membranes and extracellular secretions [1].
These proteins are composed of a protein nucleus linked to one or more O-glycosylated
amino acids by β→ 1–3 or β→ 1–6-galactan chains to other sugars, mostly arabinose,
including glucuronic acid [2,3]. The AGPs linked to the glycosylphosphatidylinositol (GPI)
anchor signal in the C-terminal and have also been found on the plasma membrane [4].
Classical AGPs usually have N-terminal signal peptide, are rich in hydroxyproline, and
possess a central domain called PAST-rich, which is rich in Pro, Ala, Ser, and Thr. The
PAST-rich domain is usually separated if more than one Lys-rich region is present. Six
different proteins can be recognized based in the protein structure, which include classical
type, rich in lysine, AG peptides, fasciclin-like (FLAs), non-classical and chimeras [5].

Classical AGPs present domains rich in hydroxyproline, alanine, serine, threonine and
glycine, while non-classical domains have hydroxyproline-poor domains rich in asparagine
or cysteine. A signal for the link to a GPI at the C-terminal domain is present in the classical
AGPs and absent in the non-classical AGPs. From a structural point of view, the function of
the GPI allows binding of the AGPs to the plasma membrane [6]. However, the AG peptides
contain short backbones [7]. Non-classical AGPs have hydroxyproline-poor domains and
are rich in cysteine or asparagine and do not have a C-terminal GPI domain, so from a struc-
tural point of view, since they lack GPI, they are found as soluble molecules on the surface
of the cell wall [8]. The chimeric type AGPs contain long polysaccharides arabinogalactans
of type II AGPs and short hydroxyproline-oligoarabinosides of extensins [9].

Fasciclin proteins have one or two fasciclin I domains (FAS1), which play an important
role in cellular adhesion [7,10]. The two regions are highly conserved and have nine
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amino acids each. The H1 region is composed of Leu-Thr-Ile/Leu-Phe-Ala/Val and Pro.
The H2 region is composed of Val/Leu-Ile/Val-Ile-Tyr-Gln/Glu-Val-Asp/Asn-Lys. A less
conserved but central YH motif has also been found, which includes the amino acids
Leu-Leu/Ile/Cys/Val-Leu/Cys-Phe-Tyr-His-Ala/Ile-Leu and Pro [11,12]. Moreover, these
proteins can be subclassified into four different groups (A, B, C and D), depending in the
number of FAS domains present in the protein. In addition, an anchoring site may or may
not have a GPI section in the C-terminal sector [13]. It has been suggested that this subclass
of AGP is implicated in plant growth, development and response to abiotic stress [5].

AGPs have been attributed to have roles in plant growth and development, both
structurally and regulatory, from root elongation, somatic embryogenesis, response to
hormones, xylem differentiation [14–16], growth and direction of the pollen tube [17],
programmed cell death, cell expansion and tolerance to saline stress, among others, as we;;
as host-pathogen interaction (response to abiotic stress) and cellular signaling [6]. These
proteins are present from plasma membrane to the extracellular matrix of plants [18] and
are integral to many adhesion-based mechanisms [19].

The characteristic structure of AGPs has been described in conifers [20], and their
functional role was reported from Pinus taeda [21]. Two AGPs (PtX3H6 and PtX14A9) were
differentially expressed in xylem. The PtX14A9 gene is expressed mostly in radial expansion
of seedlings hypocotyl, suggesting a role during seedling development. The differences
in expression of both genes are due to hormonal signals. PtX14A9 is a probable ortholog
of FLA11. Additionally, PtaAGP3 and PtaAGP6 were found to be differentially expressed
in xylem tissue, associated with secondary cell wall formation, xylem differentiation, and
wood formation [21]. At the same time, PtaAGP6 is highly expressed in immature xylem in
vertical or normal wood, as well as in compression wood [21]. Furthermore, PtaAGP4 is
expressed mostly in compression wood xylem at the lower stem side [22]. Additionally,
Ptx3H6 and Ptx14A9 are expressed preferentially in xylem, in comparison to other tissues.

Compression wood (CW) is formed in gymnosperm in response to trunk vertical loss,
inducing eccentric stem growth with a greater proportion of lignin, rounded tracheids,
absence of wall S3 and greater fibrillar angles in wall S2, the presence of intercellular spaces,
and a reduction in the proportion of lignin in the middle lamina [23,24]. Trunk deformation
decreases wood quality and affects the production of pulp and paper [25]. This type of
wood is formed in conifers in the lower side of tree trunk and in branches in response to
non-vertical orientation associated with initial gravitropic stress [26].

Angiosperm species react to loss of trunk verticality by inducing tension wood (TW).
A double mutant for FLA in Arabidopsis thaliana (atfla11/atfla12) showed altered mechanical
properties of its secondary cell wall-rich stems, and the chemical composition and cell
wall structure showed a reduction in galactose, arabinose and cellulose, and a concomitant
increase in lignin content [13]. The authors speculate that FLA proteins, through their FAS1
domains, might form a heteromeric higher-order network, strengthening the interaction
between cellulose microfibrils. In Populus tormentosa, PtFLA6 was abundantly expressed in
TW and localized in differentiating G-fibers. When this gene was silenced with antisense
RNA, a reduction in PtFLA6, as well as in other FLA genes, was observed [27,28]. The stem
biomechanics was altered in a transgenic tree due to a reduction in the composition of
lignin and cellulose. The role for these FLA proteins in the recovery of trunk verticality can
therefore be assumed.

In radiata pine, some FLA nucleotides sequences were described, mainly in samples
from xylem in compression wood. However, when all the ESTs reported from Li [29,30]
were checked, mostly incomplete or misidentified proteins were found. In this work, a
comparison between FLA genes within a RNA-seq data prepared from inclined radiata pine
seedlings is reported, in addition to phylogenetic analysis. Stem histological preparations
were prepared to perform phenotypic characterization using monoclonal antibodies to
identify AGP and the qRT-PCR technique was used to validate the differential expression
for different genes found in pine trees.
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2. Results
2.1. Molecular and Biochemical Description of Pine AGP

A list of 102 ESTs related to AGPs was found from Pinus radiata D. Don cDNA xylem
libraries, which included the data from the cell wall protein categorization of the Maize
wall data base. Those EST were distributed as 73 ESTs, matched to AGP, 2 to extensions,
11 to HGRP and 16 to PRP. The radiata pine RNA-seq library from the bioproject carried
out by Li et al. was examined to obtain full sequences and the FAS domain within those
genes [29,30]. When the RNAseq library prepared in our laboratory was examined, a list of
12 sequences were obtained, all of which presented the conserved domains. Even though
a larger number of sequences was found and reported within the fasciclin domain, only
those within the FAS domain and/or PAST-rich domain were considered, resulting in
12 sequences, which were further analyzed.

A phylogenetic tree was constructed using these twelve sequences from radiata pine
in addition to the other 126 AGP sequences (Supplementary Table S1) from Amborella
trichopoda (12), Eucaliptus grandis (19), Populus trichocarpa (49), Arabidopsis thaliana (22), and
Picea abies (24). Five cluster groups were generated in the phylogenetic analysis (Figure 1).
Group A is the larger cluster group with 53 genes and includes FLA6, FLA7, FLA9, FLA11,
FLA12 and FLA13 from A. thaliana. Four radiata pine genes classified in group A: PrPLA1,
PrPLA2, PrPLA3 and PrPLA4. PrFLA1 were clustered next to PabFLA12, PrFLA2 next to
PabFLA13, at the same time PrFLA3 grouped next to PabFLA10, and PrFLA4, in the same
clade next to PabFLA14 and PabFLA10.

In the case of group B, all sequences were similar to AtFLA17 40 with a minimum of
60% identity. Group B clustered 18 sequences and includes four radiata pine genes: PrPLA5
to PrPLA8. PrFLA5 grouped together with PabFLA9, PrFLA6 with PabFLA22, PrFLA7 with
PabFLA17, and PrFLA8 shares the same root with the PrFLA5–7.

Group C contains 27 sequences divided in two large groups, where PrFLA9 and
PrFLA10 were grouped together, as well as PabFLA21, PabFLA8, PabFLA6, and PabFLA23.
The sequences showed similarity with AtFLA8 (Table 1).

Finally, two D groups, named D1–D2, were identified (Figure 1). D1 (light blue) was
not included in any PrFLA sequence, but in the D2 group (blue), two sequences were
clustered: PrFLA11 and 12. PrFLA11 next to PabFLA15, and PrFLA12 next to PabFLA20, in a
group of eleven sequences.

All twelve PrFLA sequences were examined for consensus conserved regions H1, YH,
and H2 using MEME.

The four protein sequences from radiata pine (PrFLA1 to PrFLA4) which were classified
in group A shared an identity between 52 and 46% with AtFLA6 (Table 1) and displayed
one fasciclin domain (Figure 2). The H2 motif was more conserved within the FAS domain
when the pine sequences were compared against Arabidopsis (Supplementary Figure S1).
When the four sequences were analyzed using HmmScan, two protein sequences (PrFLA1
and PrFLA2) included a signal peptide, but only PrFLA2 displayed this sequence when
SignalP was employed. Furthermore, when big-PI Plant Predictor [31] was used, three of
the predicted PrFLAs from group A showed the GPI anchor (Figure 2).
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Table 1. Classification group according to phylogeny and other features of glycoproteins.

Gene Group Length (aa) AP/PA/SP/TP/GP/VP Repeats
in AGP Region Total PAST% Part PAST% Part Length (aa) Fasciclin

Domain
Predicted Signal

Peptide Predicted GPI Anchor A. thaliana FLA
BLASTP Hits Intraspecies FLA BLASTP Hits Hmmscan

PrFLA1 A/273 6-5-2-1-0-1 0.38 0.08 19 and 8 1 Yes No AtFLA11 FLA1(Pinus taeda) SP-FAS-Dis-TM

PrFLA2 A/264 3-4-1-2-0-0 0.41 0.09 16 and 8 1 Yes Yes AtFLA6
p14A9 (Pinus

taeda)/arabinogalactan-like protein
(Pinus armandii)

SP-FAS-Dis-TM

PrFLA3 A/127 2-2-3-0-0-0 0.48 0.086 11 1 None Yes AtFLA6 FLA7(Pinus taeda) Dis-Dis-TM

PrFLA4 A/164 4-4-1-0-0-1 0.45 0.08 15 1 None Yes AtFLA6
FLA7-11(Pinus taeda)-FLA7

(Cinnamomum micranthum f.
kanehirae)-AGP-like (Pinus densata)

FAS-Dis

PrFLA5 B/461 4-2-0-0-2-0 0.24 0.04 26 2 Yes None AtFLA17

FLA16(Amborella
trichopoda)-FLA17(Elaeis
guineensis)-FLA17(Elaeis

guineensis)-FLA17(Populus
trichocarpa)

SP-FAS-Dis-Dis-FAS-Dis

PrFLA6 B/434 4-2-0-0-2-0 0.28 0.25 14 2 None None AtFLA17
FLA16(Amborella

trichopoda)-FLA16-17(Dendrobium
catenatum)-FLA17(Carica papaya)

SP-FAS-Dis-Dis-FAS-Dis

PrFLA7 B/411 9-7-3-2-1-0 0.38 0.09 8 and 42 2 Yes Yes AtFLA17
FLA8(Pinus taeda)-FLA10(Hevea

brasiliensis)-FLA10(Citrus
clementina)

SP-FAS-FAS

PrFLA8 B/221 0-0-0-0-0-0 0.27 0 0 1 None None AtFLA17
FLA7-11(Pinus taeda)-FLA7

(Cinnamomum micranthum f.
kanehirae)-AGP-like (Pinus densata)

SP-FAS-Dis

PrFLA9 C/845 13-9-3-2-3-0 0.33 0.06 8, 41 and 14 3 None None AtFLA8
FLA8(Pinus taeda)-FLA16(Amborella

trichopoda)-FLA16(Dendrobium
catenatum)

SP-FAS-Dis-TM

PrFLA10 C/390 5-6-1-2-0-1 0.36 0.09 44 2 Yes None AtFLA8
FLA8(Pinus taeda)-FLA10(Populus

alba)-FLA10(Populus
trichocarpa)-FLA8(Prunus avium)

SP-FAS-Dis-TM

PrFLA11 D2/464 4-2-1-0-0-1 0.34 0.03 4, 5 and 8 2 Yes None AtFLA4
FLA4 isoform X1(Amborella

trichopoda)-FLA4(Nymphaea
colorata)-FLA4(Glycine soja)

SP-FAS-FAS-Dis-Dis-TM

PrFLA12 D2/415 3-4-5-1-0-0 0.36 0.05 7 and 14 2 None None AtFLA4
FLA4 isoform X1(Amborella

trichopoda)-FLA4(Nymphaea
colorata)-FLA4(Elaeis guineensis)

FAS-FAS-Dis
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Figure 1. Phylogenetic comparison of pine protein sequences with Arabidopsis, Amborella, Euca-
lyptus, Populus and Picea. Amino acid sequences of fasciclin were aligned by ClustalX, and the
phylogenetic tree was built by MEGA X using Maximum Likelihood (ML) and JTT matrix-based
model with 5000 N◦ of Bootstrap replications. The tree was divided into five major clades: Group A
(pink), Group B (yellow), Group C (green), Group D1 and Group D2. The conserved motifs (H1, H2,
and YH motifs) in pine’s sequences shown below the tree were found using the MEME web server.

Fasciclin-like proteins from group B were mainly defined according to the Arabidopsis
nomenclature for the presence of two FAS domains separated by a PAST motif, but they do
not have a GPI anchor. The four pine sequences belonging to this group (PrFLA5 to PrFLA8)
showed high sequence similarity with AtFLA17 (Table 1). Three out of four pine sequences
present all relevant domains (regions H1, H2 and motif YH; Supplementary Figure S2), but
PrFLA8 contains only one FAS domain (Figure 2).

PrFLA9 and PrFLA10 were classified in group C. Both sequences showed similarity
with AtFLA8 (Table 1). In this case, these proteins can have 1 or 2 FAS domains, in some
cases if FLA protein has 1 FAS domain, it could be at the amino or carboxi end (Figure 2).
When PrFLA 9/10 to AtFLA1/2/3/5/8/10/14 were compared, all proteins had the FAS
domain at the carboxi end (Supplementary Figure S3).

Finally, PrFLA11 and PrFLA12 were included in group D2, and shared high similarity
with the AtFLA4 sequence (Figure 2). Both radiata pine sequences showed two FAS do-
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mains, and the second FAS domain was more conserved than the first one (Supplementary
Figure S4).
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Figure 2. Analysis of domains and conserved motifs within FAS proteins identified in radiata pine in
comparison with A. thaliana sequences. The search for domains and conserved motifs was performed
with Pfam. The signal peptide is indicated in yellow, green capsules correspond to Fasciclin domains,
binding to transmembrane (TM and signal peptide) is indicated in red, could be GPI anchor, and
Disorder or PA motifs of AGP are indicated in lilac.

2.2. Determination of Total AGP and Identification of Differential Epitopes

The presence of the AGP domain was evaluated using two strategies. The first based
was based on the reaction between AGP and Yariv reagent, and the second used the
antibodies JIM7, LM2 and LM6. The antibody JIM7 binds homogalacturonan and recognizes
specific methyl esterification patterns [32]. LM2 and LM6 bind different AGP-antibodies,
LM2 recognizes (1→6)-β-D-Galp units with terminal ß-D-GlcAp in AGP. LM6 recognizes
(1→5)-α-L-Araf oligomers in arabinan or AGP [32,33].

The AGP relative abundance was determined using electrophoresis rockets (Figure 3).
Stem samples of one year old radiata pine taken from the lower stem side after 10 h of
bending and after 2.5 h of bending (lower and upper sides) showed the higher intensity of
AGPs in rocket electrophoresis. Arabic gum was used as a standard and the more intense
samples showed a concentration of 1 µg.
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Figure 3. Rocket electrophoresis of pine stem seedlings samples obtained after different inclination
times (2.5 h, 10 h, 24 h) from the lower side or upper side of bent stems. C, control sample (not inclined,
0 h). Arabic gum was employed as a standard at concentrations of 0.5 µg, 1 µg, 1.5 µg and 2 µg.
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A particular stain pattern was observed when JIM7 was used (Figure 4). A clear
separation phase was observed in the xylem of control stems (non-tilted) (Figure 4A).
A more homogenous luminescence was observed in the upper stem side after 2.5 h of
bending (Figure 4B). Nevertheless, the major intensity of the new emerging xylem cells was
observed in the inferior stem side after 2.5 h of inclination (Figure 4C). The signal intensity
grew covering the new xylem and floem cells after 10 h inclination (Figure 4D,E). However,
after 10 h of inclination, the fluorescence of homogalacturonans detected on xylem cells at
the upper stem side was less intense (Figure 4D). On the contrary, after 24 h of inclination,
the fluorescence of JIM7 was more intense in xylem cells at the upper stem side than in
lower stem side (Figure 4F,G). When the staining area was compared with Imagej, the
samples from the upper stem sides after 2.5 h of inclination showed a greater staining area
compared to inferior stem sides (Supplementary Figure S5A).
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Figure 4. Confocal microscopy of thin sections of one year old radiata pine seedlings incubated
with JIM7 antibody and Alexa Fluor. Control stem (non-inclined) (A). Upper side of inclined stems
after 2.5 h (B), 10 h (D) and 24 h (F). Lower side of inclined stems after 2.5 h (C), 10 h (E) and 24 h
(G). Arrows indicate the section within the cuts corresponding to marrow, xylem and phloem. Scale
of 100 µm.

Arabinogalactan proteins were labeled with LM2 antibody. A slight separation be-
tween both marrow and xylem and xylem and floem was observed in non-inclined stems
(Figure 5A). A slight major luminescence of arabinogalactan was observed in the lower
stem side after 2.5 h of inclination (Figure 5C), contrasting with no changes at 2.5 h in the
upper stem side (Figure 5B). On contrary, major arabinogalactans were observed in the
upper stem side at 10 and 24 h of inclination (Figure 5D,F). The stem samples taken after
2.5 up and down inclination showed a major stained area but without statistical significance,
while the other samples showed a smaller staining area than the control (Supplementary
Figure S5B).

Then, the third arabino residue ((1→5)-α-L-arabinosilo) was observed using LM6
antibody. A clear separation of marrow and xylem was observed after 2.5 h of inclination
(Figure 6B,C), contrasting with the control (Figure 6A). The intense and homogenic adhesion
observed at 2.5 h of inclination in the lower stem side slowed down at 10 h (Figure 6D,E).
The accumulation of arabino residues in the xylem cells in the upper and lower stem cut,
decreases the intensity after 24 h of inclination (Figure 6F,G), even so, all the samples showed
a larger staining area than the control, especially at 2.5 h (Supplementary Figure S5C).
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Figure 6. Confocal microscopy of thin sections of one year old radiata pine seedlings incubated
with LM6 antibody and Alexa Fluor. Control stem (non-inclined) (A). Upper side of inclined stems
after 2.5 h (B), 10 h (D) and 24 h (F). Lower side of inclined stems after 2.5 h (C), 10 h (E) and 24 h
(G). Arrows indicate the section within the cuts corresponding to marrow, xylem and phloem. Scale
of 100 µm.

Total amounts of proteins were determined by Elisa (data not shown). No significant
differences were observed when JIM7 antibody was used (Supplementary Figure S5A).
Differences was found when LM2 antibody was used with the control and samples from
lower stem side showing a similar value (Supplementary Figure S5B). A peak of absorbance
was determined in samples collected from the lower stem side at 2.5 and 10 h and a further
decrease at 24 h was observed when LM6 was used (Supplementary Figure S5C).

Finally, samples from the basal and medium cut stem were taken and the relative
expression analyzed for four genes associated with group A were compared (Table 2).
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Table 2. Primer list.

Gene Fordward Reverse

PrFLA1 GATAGGATTTATTGGGGCAATTCAC CTGCCCCTATAAATCAGAATTCCAT
PrFLA2 TAGCGCCCGTCGTTTAAATG CTGACGCAACGATTACTTACCAAAT
PrFLA3 AGCACCAGCACCAGCACCAGTCTT GGGAAATGCAATGGGCCAA
PrFLA4 AGCCAATCTGACACAACTGCTATCA CAGGATCAGATGGTGCAAATATTGT

Relative expression value for PrFLA1 at the base of the stem was significantly high
at the upper stem side for 2.5 and 10 h of inclination (Figure 7A). Both genes PrFLA2
(Figure 7B) and PrFLA3 (Figure 7C) did not show statistical differences. Nevertheless,
in the case of PrFLA3, the same tendency as PrFLA1 was observed, which means high
accumulation of transcripts at 2.5 and 10 h in the upper stem side. On the contrary, a
reduction in the accumulation of transcript for PrFLA4 was observed at the upper stem side
at 10 h, but an increase in the accumulation of transcript at the lower stem side (Figure 7D).
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Figure 7. Relative expression of gene from group A in phylogenic. Comparison of basal and medium
cut of stem on radiata pine seedlings, at different time and stem side (Control or Time 0, 2.5 h S
(upper stem side), 2.5 h I (lower stem side), 10 h S (upper stem side), 10 h I (lower stem side)).
(A) PrFLA1 relative expression in basal cut samples. (B) PrFLA2 relative expression in basal cut
samples. (C) PrFLA3 relative expression in basal cut samples. (D) PrFLA4 relative expression in basal
cut samples. (E) PrFLA1 relative expression in middle cut samples. (F) PrFLA2 relative expression
in middle cut samples. (G) PrFLA3 relative expression in middle cut samples. (H) PrFLA4 relative
expression in middle cut samples. Asterisks indicate statistical significance between control and
sample at each sampling time (* p < 0.05, ** p < 0.01, *** p < 0.001, Student´s t-test).

In the second third of the stem PrFLA1, a slight significantly higher accumulation of
transcript was observed at 10 h upper stem side compared to the other time of inclination
(Figure 7E). In the case of the genes PrFLA2 (Figure 7F) and PrFLA3 (Figure 7G), no
significant differences were observed. On the contrary, a different expression pattern was
observed for PrFLA4 (Figure 7H). In this case, an initial higher expression was observed at
2.5 h on the upper stem side, which was reduced with time in both stem sides.

3. Discussion

Each of the twelve radiata pine sequences selected in this study were grouped into
one of the four main groups described for the fasciclin protein family (groups A-B-C-D) in
Figure 2. These groups were defined for the presence of FLA domains and GPI anchor, and
showed for proteins in Arabidopsis [7], eucalyptus [13,34], and Oryza sativa [35].

Two large clades were observed in group A (Figure 1), in which four sequences of
radiata pine were included (PrFLA1, PrFLA2, PrFLA3, PrFLA4), with one FAS domain.
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These sequences were in the same clade as the gymnosperm Picea abies [11], and two Pinus
taeda sequences (PtFLA18 and PtFLA12), which present 40% PAST motif and a differential
expression in xylem [36]. The four pine sequences from this group shared the same length
for PAST domain and a similarity between 38% and 48% (Table 1). Even if these pine
sequences were more similar to AtFLA7/6, a major resemblance is found with AtFLA11
and AtFLA12 sequences, because these two Arabidopsis sequences were expressed in
stems and specifically in sclerenchyma cells (xylem) [13,37]. The sequences belonging to
this group are associated with the regulation of the cell wall [13]. In this sense, EgrFLA is
involved in the mechanical modification of stems, particularly in microfiber angle for the
transition of cellulose enlargement and thickening of the plant cell wall [38].

Group A includes genes such as AtFLA6, AtFLA9 and AtFLA13. It has been reported
that AtFLA9 interacts physically with receptor-like kinase (RLK) and both act on cellulose
synthase, which suggest that FLA proteins from this group can modulate cellulose biosyn-
thesis and primary cell wall biosynthesis [12]. It has been shown that AtFLA11/12 and
PtFLA10 were highly expressed in stems and differentiated xylem [5]. This evidence sug-
gests that these proteins are functionally specific in the formation of woody structures, due
to the fact that they were mostly expressed in xylem [12,13,34,36,39]. On the other hand,
PtFLA26 (43% PAST) and PtFLA21 (38% PAST) showed higher expression in spring than in
winter, and in male catkin tissue [5,36]. It is noticeable that PtrFLA26 is a different gene
but used with the same nomenclature in the work of these two authors. The sequences
reported by Showalter et al. was used in this work [5,36].

The sequences classified in group A contain one FAS domain, however the outputs
of HMM and Pfam databases were contradictory, and, according to the HMM PrFLA3
protein, does not present the FAS domain (Figure 2, Table 1). The analysis of PrFLA3 using
ScanProsite showed a zone rich in serine and proline, which continues to be classified as
AGP, without a probable AGP motif (Table 1). The H1/YH/H2 regions were incomplete
and, possibly, a non-functional protein or without cell adhesion characteristics could be
incorporated in one of the databases.

The FLA proteins from group B were more homogeneous, with few members and
characterized as having at least two FAS domains and the absence of a GPI anchor. However,
PrFLA8 presents only one FAS domain, and the remaining sequences contain the two FAS
domains (PrFLA5/6/7). The genes from Arabidopsis were expressed in seeds, embryo
tissue, and seed coat [40].

Two sub-clades can be observed in group C, with one or two FAS domains, including
EgrFLA10/11/12, and PtFLA22 [34,36]. The gene from Pinus taeda is expressed in female
inflorescence and presented 33% PAST. Interestingly, PrFLA9 showed similar percentage
of PAST sequences, as well as PrFLA10 with 36% PAST, even though these two sequences
were clustered on the second clade with P. abies PabFLA 6/8/21. From the sequences char-
acterized from this group, AtFLA3 seems to be essential for microspore formation [41,42],
it is expressed in pollen grains and tube, possibly by participating in cellulose deposition.
Unfortunately, we could not see what happened in flower organs or with the flowering
phenomenon, as work had been performed in pine seedlings of one year old without flow-
ers. PabFLA23 sequence was classified in group D1, probably due to the low percentage
of PAST sequences [11]. EgrFLA13 has also been reported but no differential expression
was observed in the leaves of either stems [34]. Other genes such as AtFLA3/5/8/10 were
associated with pollen development and maturation [39,42]. No further functional evidence
has been reported for PAST sequences in plants.

Group D is the most diverse clade, which is divided into D1 and D2; however, only
two pine sequences were classified in D2 (PrFLA11 and PrFLA12). FLA4 from Arabidopsis
is found in the same clade (Figure 1), as it shows characteristics such as tolerance to salt
stress and root development [39,41,42], as well as, cell expansion and stress signaling [34].

The Yariv reagent binds specifically to arabinogalactan proteins, and mainly to those
proteins located in the cell surface, which has been observed in different plant tissues [15,43].
AGPs isolated from embryonic cells of Pinus caribaea showed a high rotation of proteogly-
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cans, allowing cells to react to the environment [44]. In this sense, it is possible that the
expression or overexpression of AGP proteins can reorient stem cells to vertical growth. In
poplar, a greater amount of AGPs was observed in tension wood compared to opposite
wood, during an experiment where poplar trees were inclined with an angle of 45◦ for two
months [45]. In young radiata pine, a high abundance of AGP was found at the early stage
of response to inclination.

Total AGPs were determined by a cross electrophoresis, which requires the Yariv
reagent [45,46]. A differential accumulation of AGPs in the lower stem side was within
the frame of the time course, but the results were not conclusive. In gymnosperm, another
method was used based on nitrogen content determination for protein and hydroxyproline,
which could be the difference found in our strategy [47]. Genes involved in cell wall
remodeling have been reported as differentially expressed when radiata pine seedlings
were inclined. The differential expression for XTH [48], Expansins [49] and genes from the
secondary metabolism [50] takes place over time on either stem sides (upper or lower side),
in response to stem bending.

AGPs in woody tissues were detected in Pinus taeda trees of 11 and 15 years old using
JIM13 antibody, showing that AGPs were abundant and specific to differentiated xylem
cells and linked to a secondary wall thickening [51]. A demarcated strip corresponding to
cells of differentiated xylem was observed because JIM antibodies recognize carbohydrates
from AGPs epitopes. Differentiated xylem cells were clearly observed with JIM7, especially
in the lower stem side after 2.5 h of bending. JIM7 has been used to identify AGPs in
arabidopsis seed mucilage together with LM6 that identifies (1→5)-α-L-arabinans [32].
Most reports for AGPs in plants have been performed in root samples such as barley [52],
but few have been used in woody plants cuts, as in the present report.

The analysis of relative expression suggests that genes from group A show a differen-
tially higher accumulation of transcripts in the upper stem side. The gene PrFLA1 shows
a greater accumulation of transcript at the base and the middle half of the stem for both
times 2.5 y 10 h. Interestingly, the higher concentrations of AGPs using immunolocalization
was observed at the lower stem side. Not all members of the gene family were analyzed
by qRT-PCR, which may be the reason for the difference observed. However, the AGPs at
the lower stem side could likely play a role as a signal transductor [47]. Furthermore, it is
important to consider that there is a major accumulation of lignin and an altered amount of
microfibrils when AtFLA11/12 is overexpressed in inclined pine seedlings [53].

4. Materials and Methods
4.1. Sequence Analysis

Putative FLA sequences from radiata pine were identified using “Fasciclin-like” se-
quences from coniferous and other plant species available from NCBI as a reference for
the alignment into transcriptomic data, and the “Finding-AGP” search algorithm [54].
Additionally, RNAseq libraries were built from inclined radiata pine and sequences loaded
in GenBank with the name of Bioproject ID PRJNA822053.

An ORF prediction was performed by AUGUSTUS [55], using only full CDS. A com-
parison was made using the Pfam [56] and PROSITE [57] database to identify previously
described critical domains and motifs, respectively. Signal peptides prediction was made
using the SignalP 5.0 server [58,59] and transmembrane helices prediction using TMHMM
2.0 server [60]. To identify the GPI-anchored signal, the GPI modification site prediction
server BIG-PI was used [31]. Finally, alignment visualization was performed with ESPrit
3.0 [61].

4.2. Multiple Sequence Alignment, Phylogenetic Analysis and Motif Prediction

Based on [11], five plant species (A. trichopoda, E. grandis, P. trichocarpa, P. abies,
A. thaliana) were selected to be used as a reference. These sequences were obtained from
the Phytozome database [62] and were used to identify their orthologs in radiata pine
transcriptome. Twelve full length sequences from the transcriptome were selected and
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considered in addition to the reference ones to perform multiple sequence alignment us-
ing ClustalX. A rooted phylogenetic tree was generated by the MEGAX [63] construct
Maximum Likelihood and JTT matrix-based model with 5000 bootstrap replications.

The MEME web server [64] was used to identify the conserved motifs (H1 and H2
regions, YH motif).

4.3. Cryo-Sectioning

Radiata pine stem cuts of 2 cm long were obtained from the control (without inclination)
and inclined plants (45◦) after 2.5 h, 10 h and 24 h of bending; lower and upper stem
sides were clearly named following the strategy reported by Herrera [65]. Stem cuts were
embedded in an optimum cutting temperature (OCT) compound (cat #62550-01; Electron
Microscopy Sciences, Hatfield, PA, USA) and frozen at−18 ◦C in a CM1510S Cryostat (Leica,
IL, USA). The frozen block with the sample was trimmed, and thick sections were taken
and sectioned until the region of interest was reached. Sections (50 µm) containing the
intact plant material were cut and placed onto the adhesive side of a cryo-compatible clear
adhesive tape (cat #62800-72S; Electron Microscopy Sciences). The slides were stored in the
dark at 4 ◦C until imaged. Frozen OCT-embedded stem sections were stored at −80 ◦C.

4.4. AGP Extraction

Young pine seedlings were inclined and samples were taken at 2.5; 10 and 24 h, as
described by Ramos et al. [27]. The analysis was performed in triplicate per condition.
Frozen tissues (3 g per condition) were ground to a fine powder in liquid nitrogen. Proteins
were extracted in 1 mL of 0.1 M Tris-HCl (pH 7.5), 2% PEG 6000 (w/v), 2% PVPP (w/v),
0.2 sodium ascorbate for 1 min at 4 ◦C according to a modified method of Chabannes
et al. [66]. The crude extract was clarified by centrifugation (13,000 g) for 10 min at 4 ◦C and
the supernatant was collected to obtain fraction A, which contained mostly cytosolic and
plasma membrane-bound proteins. Fraction B, which contained cell wall-bound proteins,
was then extracted from the remaining pellet with 1 NaCl during one night at 4 ◦C under
vigorous shaking. After centrifugation (13,000 g) for 10 min at 4 ◦C, the supernatant
containing cell wall-bound proteins was recovered [45].

To extract AGPs, 3 g of frozen stem samples were ground in 3 mL of extraction
buffer containing 50 mM Tris-HCl (pH 8.0), 10 mM EDTA, 2 mM Na2SO5, and 1% Triton
X-100 (v/v), homogenized by vortexed for 10 min, then incubated at 4 ◦C for 2.5 h and
centrifuged at maximum speed for 10 min in a microcentrifuge. The supernatant was
mixed with three volumes of ethanol and the mixture was incubated overnight at 4 ◦C. The
precipitate was collected by centrifugation at maximum speed for 10 min and then resus-
pended in 50 mM Tris-HCl (pH 8.0), 0.15 M NaCl, 0.02% sodium azide and sonication for
2 min. The ethanol precipitation step was repeated once before the sample was analyzed by
rocket electrophoresis [45]. Rocket gel electrophoresis was run with 1% agarose containing
15 µM β-Yariv reagent [66–68]. The gel and running buffer consisted of 25 mM Tris and
200 mM glycine (pH 8.4). After completion of electrophoresis, gels were washed overnight
with 2% (w/v) NaCl and dried onto filter paper.

The relative amounts of AGP proteins of stem samples were estimated through rocket
electrophoresis, using 1% agarose gels containing 15 µg mL−1 of β-glycosil Yariv reagent.
Arabic gum was employed as standard at concentrations ranging from 0.5 to 2 µg [45]. The
extract is a branched polyglycosylated product.

4.5. Immunolabelling and Staining

We used three monoclonal antibodies: JIM7 [69], LM2 [3] and LM6 [33]. Sections
were separated in the block with a special pencil to classified control versus samples with
inclination. We used samples for triplicate per antibody with four or more stain samples;
the same method was used for the three antibodies. Blocking solutions were swapped with
15 µL 1:36 dilutions of supplied antibody solutions; then, sections were incubated at 4 ◦C
for 16 h. Sections were washed twice in 100 µL 1× TBST buffer, either 15 µL of 2 µg µL−1
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Alexa Fluor™ 488 donkey anti-rat IgG (H + L) (Invitrogen) or 15 µL of 2 µg µL−1 Alexa
Fluor™ 488 goat anti-mouse IgG (H + L).

4.6. Confocal Microscopy

Sample images using confocal microscopy were acquired by a Zeiss LSM 710 attached
to an Axio Examiner (Carl Zeiss, Jena, Germany) using a C-Apochromat 40× NA 1.2 wa-
ter immersion objective lens. The 405 nm and 488 nm diode lasers were used with a
405/488/561 nm main beam splitter.

Three biological replicates were used and, for each of them, at least ten technical
replicates; the best three confocal photographs from each sample were processed for
antibody staining.

4.7. Quantitative PCR Expression Analysis

Total RNA was isolated from radiata pine seedlings, base and medium cut from the
stem, and these samples were divided facing the upper and lower side. Plants were treated
as inclined to 45◦ in the control, and taken at 2.5, 10 and 24 h. Their stems were divided in
different zones, pooled, and immediately frozen in liquid nitrogen and stored at −80 ◦C
until RNA extraction. Total RNA was extracted from 100 mg of frozen tissue using the
CTAB extraction procedure described previously [70]. Remaining traces of DNA were
removed with DNase I (Biolabs, London, UK) according to the manufacturer’s instructions.
Concentration was estimated by an Epoch 2, Take 3 (Agilent technologies, Santa Clara,
CA, USA). Primers for quantitative real time-PCR (RT-qPCR) were designed using Primer-
BLAST (Table 2), and Housekeeping genes PrUBC2 and PrUBC7 [71]. All primers used in
this work are listed in Table 2. SYBR Green/ROX quantitative PCR (qPCR) Master Mix
(2×; Fermentas Life Science, Foster City, MA, USA) was used for all qPCR quantifications
in a final volume of 20µL, following the manufacturer’s protocol. All experiments were
run on a real-time Mx3000P PCR detection system (Stratagene, San Diego, TX, USA). The
cDNA template for each sample was synthesized using 1µg of DNase-treated total RNA,
using a first-strand cDNA synthesis kit (Fermentas Life Science, MA, USA) according to
the manufacturer’s instructions. The first-strand RT reaction product was diluted ten-
fold, and 2µL was used for each qPCR reaction. The instrument was set to measure dye
florescence at the end of each cycle at the 60 ◦C annealing/extension step and a melting
curve was performed at the end of each reaction. Two-way ANOVA-LSD post hoc was
used to determine the main effects of inclination and time of inclination exposure effect
for each gene using MaxStatPRO v. 3.6. Significant differences were inferred at * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001.

5. Conclusions

The identification of AGPs and their subsequent classification were based on charac-
teristic domains and motifs. The presence of a GPI anchor would only indicate whether
these proteins were anchored to the membrane. The phylogeny showed that four sequences
corresponded to group A of fascilin-like (PrFLA1-PrFLA2-PrFLA3-PrFLA4), which were
mainly expressed in stems. Histological sections and immunolabeling with JIM7, LM2,
and LM6 antibodies showed the presence of AGPs in xylem and highly accumulated in
the lower stem side. Xylem cells accumulate AGP proteins in the cell wall in response
to inclination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11091190/s1, Supplementary Figure S1. Alignment of
radiata pine versus Arabidopsis thaliana sequences, group A according to phylogeny. Highlighting
whether there is the presence of FAS domains (mustard-colored line) and whether the elements of
this domain contain their characteristic regions and motifs, H1 (blue square), YH (green square) and
H2 (yellow square); Supplementary Figure S2. Alignment of radiata pine versus Arabidopsis thaliana
sequences, group B according to phylogeny. Highlighting whether there is the presence of 1 or 2 FAS
domains (mustard-colored line) and whether the elements of this domain contain their characteristic
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regions and motifs, H1 (blue square), YH (green square) and H2 (yellow square); Supplementary
Figure S3. Alignment of radiata pine versus Arabidopsis thaliana sequences, group C according to
phylogeny. Highlighting whether there is the presence of 1 or 2 FAS domains (mustard-colored line)
and whether the elements of this domain contain their characteristic regions and motifs, H1 (blue
square), YH (green square) and H2 (yellow square); Supplementary Figure S4. Alignment of radiata
pine versus Arabidopsis thaliana sequences, group D according to phylogeny. Highlighting whether
there is the presence of 1 or 2 FAS domains (mustard-colored line) and whether the elements of this
domain contain their characteristic regions and motifs, H1 (blue square), YH (green square) and H2
(yellow square); Supplementary Figure S5. Measurement of area of staining in samples treated with
Antibody. (A) Staining area treated with JIM7 antibody, in control stem samples, inclined at 2.5 h
upper and lower cuts, 10 h upper and lower cuts, 24 h upper and lower cuts. (B) Staining area treated
with LM2 antibody, in control stem samples, inclined at 2.5 h upper and lower cuts, 10 h upper and
lower cuts, 24 h upper and lower cuts. (C) Staining area treated with LM6 antibody, in control stem
samples, inclined at 2.5 h upper and lower cuts, 10 h upper and lower cuts, 24 h upper and lower
cuts. The letters indicated significance differences, and * p < 0.05, ** p < 0.01, *** p < 0,001; Table S1.
Putative FLAs identified in Plants.
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2. Orbović, V.; Göllner, E.M.; Soria, P. The effect of arabinogalactan proteins on regeneration potential of juvenile citrus explants

used for genetic transformation by Agrobacterium tumefaciens. Acta Physiol. Plant. 2013, 35, 1409–1419. [CrossRef]
3. Palacio-López, K.; Tinaz, B.; Holzinger, A.; Domozych, D.S. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes:

A Sticky Business. Front. Plant Sci. 2019, 10, 447. [CrossRef]
4. Zhou, K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Trans-

duction. Front. Plant Sci. 2019, 10, 1022. [CrossRef] [PubMed]
5. He, J.; Zhao, H.; Cheng, Z.; Ke, Y.; Liu, J.; Ma, H. Evolution Analysis of the Fasciclin-Like Arabinogalactan Proteins in Plants

Shows Variable Fasciclin-AGP Domain Constitutions. Int. J. Mol. Sci. 2019, 20, 1945. [CrossRef]
6. Showalter, A.M. Arabinogalactan-proteins: Structure, expression and function. Cell. Mol. Life Sci. 2001, 58, 1399–1417. [CrossRef]
7. Zang, L.; Zheng, T.; Chu, Y.; Ding, C.; Zhang, W.; Huang, Q.; Su, X. Genome-Wide Analysis of the Fasciclin-like Arabinogalactan

Protein Gene Family Reveals Differential Expression Patterns, Localization, and Salt Stress Response in Populus. Front. Plant Sci.
2015, 6, 1140. [CrossRef]

8. Tan, L.; Showalter, A.M.; Egelund, J.; Hernandez-Sanchez, A.; Doblin, M.S.; Bacic, A.F. Arabinogalactan-proteins and the research
challenges for these enigmatic plant cell surface proteoglycans. Front. Plant Sci. 2012, 3, 140. [CrossRef]

9. Johnson, K.L.; Jones, B.J.; Bacic, A.; Schultz, C.J. The Fasciclin-Like Arabinogalactan Proteins of Arabidopsis. A Multigene Family
of Putative Cell Adhesion Molecules. Plant Physiol. 2003, 133, 1911–1925. [CrossRef]

10. Hernández Sánchez, A.M.; Capataz Tafur, J.; Rodríguez-Monroy, M.; Sepúlveda-Jiménez, G. Arabinogalactan proteins in plant
cell cultures. Interciencia 2009, 34, 170–176.

11. Iris Pérez-Almeida, N.C.C. Las β-galactosidasas y la dinámica de la pared celular. Interciencia 2006, 31, 10.
12. Elkins, T.; Zinn, K.; McAllister, L.; HoffMann, F.M.; Goodman, C.S. Genetic analysis of a drosophila neural cell adhesion molecule:

Interaction of fasciclin I and abelson tyrosine kinase mutations. Cell 1990, 60, 565–575. [CrossRef]
13. Seifert, G.J. Fascinating Fasciclins: A Surprisingly Widespread Family of Proteins that Mediate Interactions between the Cell

Exterior and the Cell Surface. Int. J. Mol. Sci. 2018, 19, 1628. [CrossRef] [PubMed]
14. MacMillan, C.P.; Mansfield, S.D.; Stachurski, Z.H.; Evans, R.; Southerton, S.G. Fasciclin-like arabinogalactan proteins: Specializa-

tion for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 2010, 62, 689–703. [CrossRef]
15. Bossy, A.; Blaschek, W.; Classen, B. Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea

purpurea. Planta Med. 2009, 75, 1526–1533. [CrossRef] [PubMed]

http://doi.org/10.3389/fpls.2014.00198
http://www.ncbi.nlm.nih.gov/pubmed/24966860
http://doi.org/10.1007/s11738-012-1179-4
http://doi.org/10.3389/fpls.2019.00447
http://doi.org/10.3389/fpls.2019.01022
http://www.ncbi.nlm.nih.gov/pubmed/31555307
http://doi.org/10.3390/ijms20081945
http://doi.org/10.1007/PL00000784
http://doi.org/10.3389/fpls.2015.01140
http://doi.org/10.3389/fpls.2012.00140
http://doi.org/10.1104/pp.103.031237
http://doi.org/10.1016/0092-8674(90)90660-7
http://doi.org/10.3390/ijms19061628
http://www.ncbi.nlm.nih.gov/pubmed/29857505
http://doi.org/10.1111/j.1365-313X.2010.04181.x
http://doi.org/10.1055/s-0029-1185801
http://www.ncbi.nlm.nih.gov/pubmed/19562658


Plants 2022, 11, 1190 15 of 17

16. Göllner, E.M.; Gramann, J.C.; Classen, B. Antibodies against Yariv’s reagent for immunolocalization of arabinogalactan-proteins
in aerial parts of Echinacea purpurea. Planta Med. 2013, 79, 175–180.

17. Motose, H.; Sugiyama, M.; Fukuda, H. A proteoglycan mediates inductive interaction during plant vascular development. Nature
2004, 429, 873–878. [CrossRef]

18. Seifert, G.J.; Roberts, K. The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 2007, 58, 137–161. [CrossRef]
19. Yang, J.; Sardar, H.S.; McGovern, K.R.; Zhang, Y.; Showalter, A.M. A lysine-rich arabinogalactan protein in Arabidopsis is essential

for plant growth and development, including cell division and expansion. Plant J. 2007, 49, 629–640. [CrossRef]
20. Mohammadinejad, R.; Kumar, A.; Ranjbar-Mohammadi, M.; Ashrafizadeh, M.; Han, S.S.; Khang, G.; Roveimiab, Z. Recent

Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers 2020,
12, 176. [CrossRef]

21. Makarova, E.N.; Shakhmatov, E.G.; Udoratina, E.V.; Kutchin, A.V. Structural and chemical charactertistics of pectins, arabino-
galactans, and arabinogalactan proteins from conifers. Russ. Chem. Bull. 2015, 64, 1302–1318. [CrossRef]

22. Ca, L.; Jd, P.; Eg, N. Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta 2000, 210, 686–689.
23. Yang, S.-H.; Loopstra, C.A. Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical

regions. Tree Physiol. 2005, 25, 1063–1073. [CrossRef] [PubMed]
24. Diaz-vaz, J.E.; Fernandez, A.; Valenzuela, L.; Torres, M. Madera de compresión en Pinus Radiata D. Don: I, características

anatómicas. Maderas Cienc. Tecnol. 2007, 9, 29–43. [CrossRef]
25. Groover, A. Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol. 2016,

211, 790–802. [CrossRef] [PubMed]
26. Lomagno, J.; Rozas, C. Determinación De la madera de compresión en Pinus radiata D.DON. Maderas Cienc. Tecnol. 2001, 3, 63–67.

[CrossRef]
27. Ramos, P.; Provost, G.L.; Gantz, C.; Plomion, C.; Herrera, R. Transcriptional analysis of differentially expressed genes in response

to stem inclination in young seedlings of pine. Plant Biol. 2012, 14, 923–933. [CrossRef]
28. Wang, H.; Jiang, C.; Wang, C.; Yang, Y.; Yang, L.; Gao, X.; Zhang, H. Antisense expression of the fasciclin-like arabinogalactan

protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition
in transgenic trees. J. Exp. Bot. 2015, 66, 1291–1302. [CrossRef]

29. Wang, H.; Jin, Y.; Wang, C.; Li, B.; Jiang, C.; Sun, Z.; Zhang, Z.; Kong, F.; Zhang, H. Fasciclin-like arabinogalactan proteins, PtFLAs,
play important roles in GA-mediated tension wood formation in Populus. Sci. Rep. 2017, 7, 6182. [CrossRef]

30. Li, X.; Yang, X.; Wu, H.X. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation
with implications in plant gravitropism. BMC Genom. 2013, 14, 768. [CrossRef]

31. Li, X.; Wu, H.X.; Dillon, S.K.; Southerton, S.G. Generation and analysis of expressed sequence tags from six developing xylem
libraries in Pinus radiata D. Don. BMC Genom. 2009, 10, 41. [CrossRef] [PubMed]

32. Eisenhaber, B.; Bork, P.; Yuan, Y.; Löffler, G.; Eisenhaber, F. Automated annotation of GPI anchor sites: Case study C. elegans.
Trends Biochem. Sci. 2000, 25, 340–341. [CrossRef]

33. Macquet, A.; Ralet, M.-C.; Kronenberger, J.; Marion-Poll, A.; North, H.M. In situ, chemical and macromolecular study of the
composition of Arabidopsis thaliana seed coat mucilage. Plant Cell Physiol. 2007, 48, 984–999. [CrossRef] [PubMed]

34. Happ, K.; Classen, B. Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant
Lineage, Are Structurally Different to Those of Angiosperms. Plants 2019, 8, 460. [CrossRef]

35. MacMillan, C.P.; Taylor, L.; Bi, Y.; Southerton, S.G.; Evans, R.; Spokevicius, A. The fasciclin-like arabinogalactan protein family of
Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol. 2015, 206, 1314–1327. [CrossRef]

36. Ma, H.; Zhao, J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in
rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 2647–2668. [CrossRef]

37. Showalter, A.M.; Keppler, B.D.; Liu, X.; Lichtenberg, J.; Welch, L.R. Bioinformatic Identification and Analysis of Hydroxyproline-
Rich Glycoproteins in Populus trichocarpa. BMC Plant Biol. 2016, 16, 229. [CrossRef]

38. Ito, S.; Suzuki, Y.; Miyamoto, K.; Ueda, J.; Yamaguchi, I. AtFLA11, a Fasciclin-Like Arabinogalactan-Protein, Specifically Localized
in Screlenchyma Cells. Biosci. Biotechnol. Biochem. 2005, 69, 1963–1969. [CrossRef]

39. Guerriero, G.; Mangeot-Peter, L.; Legay, S.; Behr, M.; Lutts, S.; Siddiqui, K.S.; Hausman, J.-F. Identification of fasciclin-like
arabinogalactan proteins in textile hemp (Cannabis sativa L.): In silico analyses and gene expression patterns in different tissues.
BMC Genom. 2017, 18, 741. [CrossRef]

40. Costa, M.; Pereira, A.M.; Pinto, S.C.; Silva, J.; Pereira, L.G.; Coimbra, S. In silico and expression analyses of fasciclin-like
arabinogalactan proteins reveal functional conservation during embryo and seed development. Plant Reprod. 2019, 32, 353–370.
[CrossRef]

41. Bygdell, J.; Srivastava, V.; Obudulu, O.; Srivastava, M.K.; Nilsson, R.; Sundberg, B.; Trygg, J.; Mellerowicz, E.J.; Wingsle, G. Protein
expression in tension wood formation monitored at high tissue resolution in Populus. J. Exp. Bot. 2017, 68, 3405–3417. [CrossRef]
[PubMed]

42. Xue, H.; Veit, C.; Abas, L.; Tryfona, T.; Maresch, D.; Ricardi, M.M.; Estevez, J.M.; Strasser, R.; Seifert, G.J. Arabidopsis thaliana
FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. Plant J. 2017, 91, 613–630.
[CrossRef] [PubMed]

http://doi.org/10.1038/nature02613
http://doi.org/10.1146/annurev.arplant.58.032806.103801
http://doi.org/10.1111/j.1365-313X.2006.02985.x
http://doi.org/10.3390/polym12010176
http://doi.org/10.1007/s11172-015-1011-6
http://doi.org/10.1093/treephys/25.8.1063
http://www.ncbi.nlm.nih.gov/pubmed/15929937
http://doi.org/10.4067/S0718-221X2007000100003
http://doi.org/10.1111/nph.13968
http://www.ncbi.nlm.nih.gov/pubmed/27111862
http://doi.org/10.4067/S0718-221X2001000100007
http://doi.org/10.1111/j.1438-8677.2012.00572.x
http://doi.org/10.1093/jxb/eru479
http://doi.org/10.1038/s41598-017-06473-9
http://doi.org/10.1186/1471-2164-14-768
http://doi.org/10.1186/1471-2164-10-41
http://www.ncbi.nlm.nih.gov/pubmed/19159482
http://doi.org/10.1016/S0968-0004(00)01601-7
http://doi.org/10.1093/pcp/pcm068
http://www.ncbi.nlm.nih.gov/pubmed/17540691
http://doi.org/10.3390/plants8110460
http://doi.org/10.1111/nph.13320
http://doi.org/10.1093/jxb/erq104
http://doi.org/10.1186/s12870-016-0912-3
http://doi.org/10.1271/bbb.69.1963
http://doi.org/10.1186/s12864-017-3970-5
http://doi.org/10.1007/s00497-019-00376-7
http://doi.org/10.1093/jxb/erx186
http://www.ncbi.nlm.nih.gov/pubmed/28633298
http://doi.org/10.1111/tpj.13591
http://www.ncbi.nlm.nih.gov/pubmed/28482115


Plants 2022, 11, 1190 16 of 17

43. Li, J.; Yu, M.; Geng, L.-L.; Zhao, J. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development
of Arabidopsis. Plant J. 2010, 64, 482–497. [CrossRef]

44. Yariv, J.; Lis, H.; Katchalski, E. Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J.
1967, 105, 1C–2C. [CrossRef] [PubMed]

45. Domon, J.-M.; Neutelings, G.; Roger, D.; David, A.; David, H. A Basic Chitinase-like Protein Secreted by Embryogenic Tissues of
Pinus caribaea acts on Arabinogalactan Proteins Extracted from the same Cell Lines. J. Plant Physiol. 2000, 156, 33–39. [CrossRef]

46. Lafarguette, F.; Leplé, J.-C.; Déjardin, A.; Laurans, F.; Costa, G.; Lesage-Descauses, M.-C.; Pilate, G. Poplar genes encoding
fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 2004, 164, 107–121. [CrossRef]

47. Cassab, G.I. Arabinogalactan proteins during the development of soybean root nodules. Planta 1986, 168, 441–446. [CrossRef]
48. Baumann, A.; Pfeifer, L.; Classen, B. Arabinogalactan-proteins from non-coniferous gymnosperms have unusual structural

features. Carbohydr. Polym. 2021, 261, 117831. [CrossRef]
49. Valenzuela, C.; Ramos, P.; Carrasco, C.; Moya-Leon, M.A.; Herrera, R. Cloning and characterization of a xyloglucan endo-

transglycosylase/hydrolase gene expressed in response to inclination in radiata pine seedlings. Tree Genet. Genomes 2014,
10, 1305–1315. [CrossRef]

50. Mateluna, P.; Valenzuela-Riffo, F.; Morales-Quintana, L.; Herrera, R.; Ramos, P. Transcriptional and computational study of
expansins differentially expressed in response to inclination in radiata pine. Plant Physiol. Biochem. 2017, 115, 12–24. [CrossRef]

51. Cruz, N.; Méndez, T.; Ramos, P.; Urbina, D.; Vega, A.; Gutiérrez, R.A.; Moya-León, M.A.; Herrera, R. Induction of PrMADS10 on
the lower side of bent pine tree stems: Potential role in modifying plant cell wall properties and wood anatomy. Sci. Rep. 2019,
9, 18981. [CrossRef] [PubMed]

52. Zhang, Y.; Brown, G.; Whetten, R.; Loopstra, C.A.; Neale, D.; Kieliszewski, M.J.; Sederoff, R.R. An arabinogalactan protein
associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Mol. Biol. 2003, 52, 91–102. [CrossRef]
[PubMed]

53. Marzec, M.; Szarejko, I. Arabinogalactan proteins are involved in root hair development in barley. J. Exp. Bot. 2014, 66, 1245–1257.
[CrossRef] [PubMed]

54. Ma, Y.; MacMillan, C.P.; de Vries, L.; Mansfield, S.D.; Hao, P.; Ratcliffe, J.; Bacic, A.; Johnson, K.L. FLA11 and FLA12 glycoproteins
fine-tune stem secondary wall properties in response to mechanical stresses. New Phytol. 2022, 233, 1750–1767. [CrossRef]

55. Ma, Y.; Yan, C.; Li, H.; Wu, W.; Liu, Y.; Wang, Y.; Chen, Q.; Ma, H. Bioinformatics Prediction and Evolution Analysis of
Arabinogalactan Proteins in the Plant Kingdom. Front. Plant Sci. 2017, 8, 66. [CrossRef]

56. Stanke, M.; Steinkamp, R.; Waack, S.; Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids
Res. 2004, 32, W309–W312. [CrossRef]

57. El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.;
Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [CrossRef]

58. de Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite:
Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res.
2006, 34, W362–W365. [CrossRef]

59. Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H.
SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [CrossRef]

60. Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions.
Nat. Methods 2011, 8, 785–786. [CrossRef]

61. Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov
model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [CrossRef] [PubMed]

62. Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014,
42, W320–W324. [CrossRef] [PubMed]

63. Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al.
Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [CrossRef] [PubMed]

64. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing
Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef]

65. Herrera, R.; Krier, C.; Lalanne, C.; Ba, E.H.M.; Stokes, A.; Salin, F.; Fourcaud, T.; Claverol, S.; Plomion, C. (Not) Keeping the stem
straight: A proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism. BMC Plant Biol. 2010,
10, 217. [CrossRef] [PubMed]

66. Chabannes, M.; Barakate, A.; Lapierre, C.; Marita, J.M.; Ralph, J.; Pean, M.; Danoun, S.; Halpin, C.; Grima-Pettenati, J.;
Boudet, A.M. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous
down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J. 2001,
28, 257–270. [CrossRef]

67. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef]

68. Ding, L.; Zhu, J.-K. A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 1997, 203, 289–294. [CrossRef]
69. Hall, H.C.; Cheung, J.; Ellis, B.E. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding

Arabidopsis stem. Plant J. 2013, 74, 134–147.

http://doi.org/10.1111/j.1365-313X.2010.04344.x
http://doi.org/10.1042/bj1050001C
http://www.ncbi.nlm.nih.gov/pubmed/6069833
http://doi.org/10.1016/S0176-1617(00)80269-2
http://doi.org/10.1111/j.1469-8137.2004.01175.x
http://doi.org/10.1007/BF00392262
http://doi.org/10.1016/j.carbpol.2021.117831
http://doi.org/10.1007/s11295-014-0762-9
http://doi.org/10.1016/j.plaphy.2017.03.005
http://doi.org/10.1038/s41598-019-55276-7
http://www.ncbi.nlm.nih.gov/pubmed/31831838
http://doi.org/10.1023/A:1023978210001
http://www.ncbi.nlm.nih.gov/pubmed/12825692
http://doi.org/10.1093/jxb/eru475
http://www.ncbi.nlm.nih.gov/pubmed/25465033
http://doi.org/10.1111/nph.17898
http://doi.org/10.3389/fpls.2017.00066
http://doi.org/10.1093/nar/gkh379
http://doi.org/10.1093/nar/gky995
http://doi.org/10.1093/nar/gkl124
http://doi.org/10.1038/s41587-019-0036-z
http://doi.org/10.1038/nmeth.1701
http://doi.org/10.1006/jmbi.2000.4315
http://www.ncbi.nlm.nih.gov/pubmed/11152613
http://doi.org/10.1093/nar/gku316
http://www.ncbi.nlm.nih.gov/pubmed/24753421
http://doi.org/10.1093/nar/gkr944
http://www.ncbi.nlm.nih.gov/pubmed/22110026
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.1186/1471-2229-10-217
http://www.ncbi.nlm.nih.gov/pubmed/20925929
http://doi.org/10.1046/j.1365-313X.2001.01140.x
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1007/s004250050194


Plants 2022, 11, 1190 17 of 17

70. le Provost, G.; Herrera, R.; Paiva, J.A.; Chaumeil, P.; Salin, F.; Plomion, C. A micromethod for high throughput RNA extraction in
forest trees. Biol. Res. 2007, 40, 291–297. [CrossRef]

71. Ramos, P.; Valenzuela, C.; le Provost, G.; Plomion, C.; Gantz, C.; Moya-León, M.A.; Herrera, R. ACC Oxidase and ACC Synthase
Expression Profiles after Leaning of Young Radiata (P. radiata D. Don) and Maritime Pine (P. pinaster Ait.) Seedlings. J. Plant
Growth Regul. 2012, 31, 382–391. [CrossRef]

http://doi.org/10.4067/S0716-97602007000400003
http://doi.org/10.1007/s00344-011-9248-2

	Introduction 
	Results 
	Molecular and Biochemical Description of Pine AGP 
	Determination of Total AGP and Identification of Differential Epitopes 

	Discussion 
	Materials and Methods 
	Sequence Analysis 
	Multiple Sequence Alignment, Phylogenetic Analysis and Motif Prediction 
	Cryo-Sectioning 
	AGP Extraction 
	Immunolabelling and Staining 
	Confocal Microscopy 
	Quantitative PCR Expression Analysis 

	Conclusions 
	References

