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Background: Artificial intelligence has far surpassed previous related technologies in

image recognition and is increasingly used in medical image analysis. We aimed to

explore the diagnostic accuracy of the models based on deep learning or radiomics

for lung cancer staging.

Methods: Studies were systematically reviewed using literature searches from PubMed,

EMBASE, Web of Science, and Wanfang Database, according to PRISMA guidelines.

Studies about the diagnostic accuracy of radiomics and deep learning, including the

identifications of lung cancer, tumor types, malignant lung nodules and lymph node

metastase, were included. After identifying the articles, the methodological quality was

assessed using the QUADAS-2 checklist. We extracted the characteristic of each study;

the sensitivity, specificity, and AUROC for lung cancer diagnosis were summarized for

subgroup analysis.

Results: The systematic review identified 19 eligible studies, of which 14 used radiomics

models and 5 used deep learning models. The pooled AUROC of 7 studies to determine

whether patients had lung cancer was 0.83 (95% CI 0.78–0.88). The pooled AUROC

of 9 studies to determine whether patients had NSCLC was 0.78 (95% CI 0.73–0.83).

The pooled AUROC of the 6 studies that determined patients hadmalignant lung nodules

was 0.79 (95% CI 0.77–0.82). The pooled AUROC of the other 6 studies that determined

whether patients had lymph node metastases was 0.74 (95% CI 0.66–0.82).

Conclusion: The models based on deep learning or radiomics have the potential to

improve diagnostic accuracy for lung cancer staging.

Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0167/,

identifier: INPLASY202230167.
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INTRODUCTION

Lung cancer is one of the most common malignancies
globally and the leading cause of cancer-related death
in the world. Its morbidity and cancer-related mortality
rank first among malignant tumors. There are ∼2.2
million new cases and about 1.5 million deaths
worldwide (1).

Radiomics and deep learning, as an innovative means
to characterize lung lesions, can be applied to generate
descriptive data, build predictive model, and correlate
quantitative image features with phenotypes or gene-protein
signatures, thus aiding in cancer detection, diagnosis, staging,
treatment response prediction, and prognosis assessment
and playing an increasingly important role in clinical
decision-making, especially the management of malignant
tumors (2).

Lung cancer staging is usually done by radiologists
evaluating CT images of patients with lung cancer. The
accuracy of diagnosis is affected by various factors, such
as device performance, standardized imaging protocols,
the experience of the reporting radiologist, and patient-
specific factors. While radiomics involves using advanced
computational algorithms to extract large numbers of
researcher-defined features from images for defining
related lung lesions, studies suggesting that deep learning
algorithms can identify a more nuanced approach that
eschews traditional radiology and statistical methods
for cancer staging were extensively reported (3–6). Deep
learning, as a new research direction in the field of machine
learning (ML), is applied to learn the inherent laws and
representation levels of sample data for feature recognition
and model building (7). In the last decade, radiomics models
and deep learning have made meaningful contributions
to medical imaging diagnosis and related individual
medicine (8).

This study aimed to perform a systematic review and meta-
analysis of published data on lung cancer diagnosis and the
diagnostic accuracy of deep learning algorithms and radiomics
models for lung cancer staging.

METHODS

Search Strategy
This study followed the Preferred Reporting Item of the
Guidelines for Systematic Reviews and Meta-Analysis
(PRISMA), and selection criteria, data extraction, and
data analysis were determined before study initiation.
Any eligible studies in the PubMed, EMBASE, Web of
Science, and Wanfang Database will be searched by Cancer,
Radiomics, Deep Learning, Lung Cancer, and more. The

Abbreviations: CT, Computer tomography; MRI, Magnetic resonance imaging;

AI, Artificial intelligence; ML, machine learning; LNM, lymph node metastasis;

QUADAS-2, Quality assessment of diagnostic accuracy studies tool 2; AUROC,

Area under the receiver operating characteristic curve; NSCLC, non-small cell

lung cancer.

search method is shown in Table 1. Search terms such
as “radiomics,” “deep learning,” “lymph node metastasis,”
“non-small cell lung cancer,” “malignant lung nodules,” and
“diagnostic accuracy.” Use the Boolean operator AND to
combine the results of different queries. We also manually
searched the reference lists of included studies to identify
any relevant articles. Both English and Chinese articles are
considered eligible.

Study Selection
We selected publications for review if they met several of the
following inclusion criteria: (1) patients with pathologically
diagnosed lung cancer were included in the study; (2)
radiomics or deep learning algorithms applied to lung
cancer staging were evaluated. Exclusion criteria included:
(1) informal publication types (e.g., reviews, letters to the
editor, editorials, conference abstracts); (2) only focus on
research on image segmentation or image feature extraction
methods; (3) animal studies. After the removal of duplicates,
titles and abstracts were identified by two independent
reviewers using the Covidence systematic review software.
Any disagreements will be resolved by consensus by arbitration
by a third author.

Data Extraction
We reviewed data from selected primary studies using
standardized forms, and two reviewers independently
extracted data from each eligible study. Data extraction for
each study included first author, country, year of publication,
type of AI model, number of patients, patient characteristics
(mean/median age, gender), type of malignancy, benign
and malignant pulmonary nodules, lymph node metastasis.
In addition, we extracted the area under the receiver
operating characteristic curve (AUROC), along with sensitivity,
specificity, accuracy, etc., for data processing and forest map
production. The primary endpoint of this systematic review
was AUROC.

Quality Assessment
Two independent reviewers will initially assess the risk of
bias. A third reviewer will then review each study using
the Quality Assessment of Studies for Diagnostic Accuracy
(QUADAS-2) guidelines. The QUADAS-2 tool can assign a
risk of bias rating of “low,” “high,” or “uncertain” based
on the answer to “yes,” “no,” or “uncertain” to the relevant
flag questions included in each section. For example, if
the answer to all the landmark questions in a range is
“yes,” then it can be rated as low risk of bias; if all the
informational questions are answered “no,” then the risk of
bias is rated as “high” (9). We summarized the risk of bias in
individual studies in a narrative summary during the systematic
review phase.

Statistical Analysis
The accuracy measures for this diagnostic meta-analysis
included pooled sensitivity, pooled specificity, and their 95%
confidence intervals (95% CI). Missing data is calculated
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TABLE 1 | Search strategy.

Sources Search in MeSH terms Limits Search

results

Web of science Search

manager

(“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”)

AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “Benign and malignant

pulmonary nodules”)AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)

None 11

PubMed,

(MEDLINE)

N/A (“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”)

AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “benign and malignant

pulmonary nodules”) AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)

None 30

EMBASE Quick

search

(‘deep learning’/exp OR “deep learning” OR “machine learning”/exp OR “machine learning” OR

“radiomics”/exp OR “radiomics” OR “radiomic”) AND (“ct”/exp OR “ct” OR “mri”/exp OR “mri”) AND (“lymph

node”/exp OR “lymph node” OR “lymph node metastasis”/exp OR “lymph node metastasis” OR “benign

and malignant pulmonary nodules”) AND (“lung cancer”/exp OR “non-small cell lung cancer” OR “NSCLC”)

None 56

Wanfang database N/A (“deep learning” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“CT” OR “MRI”) AND (“Lymph

node” OR “lymph node metastasis”) AND (“lung cancer” OR “NSCLC”)

None 5

TABLE 2 | Formulas.

Measure Formula

Sensitivity TP
P

=
TP

TP + FN

Specificity TN
N

=
TN

TN + FP

Accuracy TP + TN
P+N

=
TP+TN

TP + TN + FP + FN

PPV TP
TP + FP

NPV TN
TN + FN

SE (Upper Limit−Lower Limit)
3.92

95% Confidence interval best estimate +/− (1.96) * (SE)

P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true

negative and TP, true positive; PPV, positive predictive value; NPV, negative predictive

value; Upper limit, upper limit of confidence interval; Lower limit, lower limit of confidence

interval; SE, standard error.

using the formula in Table 2. At the same time, AUROC
was calculated; an AUROC value close to 1.0 indicates
that the test can discriminate almost perfectly, while an
AUROC value close to 0.5 means poor discrimination (10,
11). The discordance index (I2) was used (12). Heterogeneity
was assessed as low, medium, and high, with upper limits
for I2 of 25, 50, and 75%, respectively. A forest plot
was drawn to show the AUROC estimates relative to the
summary pooled estimates for each study. In addition, we
will draw a funnel plot to assess publication bias more
intuitively. All statistical analyses were performed using STATA
V16.0 software.

RESULTS

Study Selection
Our search identified 74 studies, with 56 screened after
removing duplicates. Of these, 27 did not meet the inclusion
criteria based on title and abstract. The remaining 29
full manuscripts were individually assessed, and, finally,
22 studies were eligible and included in our systematic
review. Of these, 19 papers were available for meta-
analysis, and five articles were excluded because of their

insufficient data information. We outline the study
selection process for review using the PRISMA flowchart
(Figure 1).

Study Characteristics
Of the 19 included studies, 14 had sufficient data for a
meta-analysis of AUROC (Figure 2). Regarding study design,
17 studies were retrospective, and two were prospective.
Sixteen studies were single-center, and the other three
were multicenter. Most of the patients are male, and
the median age of 63 years (24–93 years) [Table 3 (13–
31)]. The malignancy type in twelve studies was NSCLC,
and the malignancy type in the remaining studies was
lung cancer. Seven studies used the diagnostic output per
patient, and eight studies used the lymph node diagnostic
output per node for metastases. While seven studies used
post-operative pathology reports as reference standards, 11 used
radiology reports.

Quality Assessment
According to the QUADAS-2 tool, the summary of this study’s
assessment is shown in Figure 3. The risk of bias in patient
selection was low in 12 (74%) studies and high in 5 (26%)
studies. The risk of bias for the index test was high in
2 studies (10%) and low in 17 studies (90%). The risk of
bias for the reference standard test was low in 16 studies
(85%), high in 2 studies (10%), and unclear in 1 study
(5%). Process and timing made the risk of bias unclear for
all 19 studies. Table 4 shown individual evaluation of the
risk of bias and applicability. Overall suitability issues are
low. To assess the publication bias of the studies, a funnel
plot was constructed (Figure 4). The shape of the funnel
plot revealed asymmetry in the included studies, showing
study heterogeneity.

Diagnostic Accuracy
Of the 19 studies eligible for quantitative analysis, 14 used
radiomics and 5 used deep learning. For each outcome, on
a per-patient basis, pooled estimates including specificity,
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FIGURE 1 | PRISMA flow chart outlining the selection of studies for review.

sensitivity, and AUROC were generated with 95% confidence
intervals. The categorized data extraction for each study
report is shown in Table 5. The type of lung cancer,
malignant lung nodules, lymph node metastases, and
deep learning or radiomics models discussed in each study
were considered.

The data from radiomics models showed high heterogeneity,
except for AUROC and the sensitivity of each node. After
removing the literature with insufficient data, the pooled
AUROC of the 7 studies determining whether a patient had
lung cancer was 0.83 (95% CI 0.78–0.88; Figure 2A), and
the pooled sensitivity and specificity were 0.838 and 0.653,

respectively, indicating high heterogeneity (I2 = 65.3%, p =

0.008). For the 9 NSCLC studies that currently represent
∼85% of lung cancer, the pooled AUROC of radiomics was
0.78 (95% CI 0.73–0.83; Figure 2B), and the pooled sensitivity
and specificity were 0.782 and 0.715, respectively, with higher
heterogeneity (I2 = 66.1%, p = 0.003). Among the six studies
predicting benign or malignant pulmonary nodules, the pooled
AUROC of radiomics was 0.79 (95% CI 0.77–0.82; Figure 2C),
and the pooled sensitivity and specificity were 0.787 and
0.774, respectively, with heterogeneity relatively low (I2 =

9.7%, p = 0.354). Among the 6 studies that predicted the
accuracy of LNM in lung cancer patients, the pooled AUROC
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FIGURE 2 | Summary of forest plots for different classifications. (A) The forest plot of determine if a patient has lung cancer. (B) The forest plot of determining whether

the cancer type is NSCLC. (C) The forest plot of predicting benign and malignant pulmonary nodules. (D) The forest plot of predicting lymph node metastasis in

lung cancer.

of radiomics was 0.74 (95% CI 0.66–0.82; Figure 2D), and
the pooled sensitivity and specificity were 0.661 and 0.598,
respectively, with heterogeneity relatively high (I2 = 88.7%,
p= 0.000).

DISCUSSION

During the diagnosis and treatment of lung cancer, many imaging
data, such as CT, MRI, and PET, are generated. Doctors usually
subjectively evaluate these data based on experience and make
treatment plans (32). However, the features that doctors can
observe from the image data with the naked eye are limited,
and the potential of the image data is often not fully realized.
Over the years, many researchers have tried to use complex
mathematical and statistical algorithms to extract quantitative

information that is hard to observe, even predicting cancer
progression (33–35).

With the development of artificial intelligence technology,
radiomics has emerged as the times require, using machine
learning algorithms to mine high-throughput features
from medical images and conduct modeling analysis.
Increasing evidence shows that radiomics can be used for
quantitative characterization of tumors for tasks such as
disease diagnosis, treatment planning, and prognosis, which
constitutes an important research direction for artificial
intelligence technology in medical applications (36, 37).
Radiomics is an emerging and rapidly developing field
that integrates knowledge from radiology, oncology, and
computer science and is an interdisciplinary subject that
emphasizes the integration of medicine and engineering
(38). With the rise of deep learning technology in recent

Frontiers in Public Health | www.frontiersin.org 5 July 2022 | Volume 10 | Article 938113

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zheng et al. AI in Lung Cancer Staging

TABLE 3 | Selected characteristics of included studies.

References Country Year Study

design

Patients

(% female

patients)

Sample

size for

diagnostic

accuracy

Mean or

median age

(SD; range),

years

Imaging

modality

Type of

malignancy

AI model

(Per-

patient/per-

node

diagnostic

output)

Reference

standard

Classification

criteria

Coroller

et al. (13)

USA 2016 Retrospective

single-center

85 (65%) – 60.3 CT NSCLC Radiomics

(per-patient)

Radiology B D

Parmar

et al. (14)

USA 2018 Retrospective

single-center

1,194 – 68.3 (32–93) CT NSCLC Deep learning

(per-patient)

Pathology A B C

Sun et al.

(15)

China 2019 Retrospective

single-center

385 (68%) 201 53.1 (±12.2) CT Lung Cancer Radiomics

(per-patient)

Radiology A C

Ling et al.

(16)

China 2019 Retrospective

multi-center

229 (31.5%) 74 64 (59–81) CT Lung Cancer Radiomics

(per-patient)

Radiology A

Coudray

et al. (17)

USA 2018 Retrospective

single-center

1,176 459 61

(51.3–72.8)

CT NSCLC Deep learning

(per-patient)

Radiology B C

Xu et al. (18) China 2019 Retrospective

single-center

179 (52.8%) – 63 (32–93) CT NSCLC Deep learning

(per-patient)

Pathology B D

Baldwin

et al. (19)

UK 2020 Retrospective

single-center

1,337 328 – CT Lung Cancer Deep learning

(per-patient)

– A

Schroers

et al. (20)

Germany 2019 Retrospective

single-center

82 (38%) 50 61.5 (±5.0) MRI Lung Cancer Radiomics

(per-patient)

Pathology A C

Wang et al.

(21)

China 2019 Retrospective

single-center

249 (39.8%) – 61.4 (±8.96) CT Lung Cancer Deep learning

(per-patient)

Radiology D

Leleu et al.

(22)

France 2020 Retrospective

single-center

215 (39%) 72 58.6 (±10.3) CT Lung Cancer Radiomics

(per-patient)

Pathology A

Ann et al.

(23)

USA 2019 Prospective

multi-center

262 48 – CT NSCLC Radiomics

(per-patient)

Pathology A B C

Cong et al.

(24)

China 2020 Retrospective

single-center

411 (50.4%) 141 59.62

(24–84)

CT NSCLC Radiomics

(per-patient)

Radiology B C D

Botta et al.

(25)

Italy 2020 Retrospective

single-center

270 (38%) – 67.4

(61.0–72.6)

CT NSCLC Radiomics

(per-patient)

Radiology A B D

Wei et al.

(26)

USA 2020 Retrospective

multi-center

146 (39.7%) – 65.72 (±

12.88)

PET/CT NSCLC Radiomics

(per-node)

Radiology A B C

Khorrami

et al. (27)

USA 2019 Retrospective

single-center

112 – – CT NSCLC Radiomics

(per-patient)

Pathology B D

Kirienko

et al. (28)

Italy 2021 Retrospective

single-center

149 (37.6%) 73 70 (41–84) PET/CT Lung Cancer Radiomics

(per-node)

Radiology B C

Rossi et al.

(29)

Italy 2020 Retrospective

single-center

109 – – CT NSCLC Radiomics

(per-patient)

Radiology A B

Chai et al.

(30)

China 2021 Retrospective

single-center

198 (54%) 402 58.1 (± 8.5) CT NSCLC Radiomics

(per-node)

Pathology A B D

Wang et al.

(31)

China 2019 Retrospective

single-center

717 386 — CT NSCLC Radiomics

(per-node)

Radiology B D

A, Determine whether the patient has lung cancer; B, Determine whether the patient has non-small cell lung cancer; C, Determine whether the patient has malignant lung nodule; D,

Determine whether the patient has lymph node metastasis.

years, the need for high precision and high stability
in lung cancer staging has become more and more
urgent (39).

To our knowledge, this is the first meta-analysis to summarize
the diagnostic accuracy of deep learning and radiomics involving
in lung cancer staging. We provided summarized data in this
field and compared the identification effectiveness of lung
cancer, tumor types, malignant lung nodules and lymph node
metastase. In this article, the included studies mainly used

radiomics (n = 14) rather than deep learning methods (n =

5). Of the five deep learning models, two were developed using
transfer learning and three were developed using convolutional
neural networks (CNN). Part of the reason there are relatively
few deep learning models is that deep learning techniques
are relatively new and prone to bias. The difference in the
number of studies of the two AI models will lead to a
significant deviation in the data ratio, affecting the ability
comparison of the two models. Furthermore, most studies

Frontiers in Public Health | www.frontiersin.org 6 July 2022 | Volume 10 | Article 938113

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zheng et al. AI in Lung Cancer Staging

FIGURE 3 | Summary of QUADAS-2 assessments of included studies.

TABLE 4 | Quality assessment.

Source Risk of bias Applicability concerns

Patient selection Index test Reference

standard

Flow and

timing

Patient

selection

Index

test

Reference

standard

Was the

statistical

management

adequate?

Were the

inclusion/

exclusion

criteria

specified?

Was the type

of study

(retrospective

or prospective)

specified?

Were the

imaging

acquisition

protocol and

the

segmentation

method(s)

detailed?

Was the

image

processing

approach

detailed?

Was the

validation

independent

(i.e., no

internal)?

Was the

reference

standard

adequate?

Was there an

appropriate

interval

between

index test

and

reference

standard?

Chetan et al. (1) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Unclear

Parmar et al. (2) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Sun et al. (3) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Yes

Ling et al. (4) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Coudray et al. (5) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Xu et al. (6) Yes No Yes Yes Yes No Unclear Unclear Yes Yes Yes

Baldwin et al. (7) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Schroers et al. (8) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Wang et al. (9) Yes No Yes Yes No No Unclear Unclear Yes Yes Unclear

Leleu et al. (10) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes

Ann et al. (11) Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes Unclear

Cong et al. (12) Yes Yes Yes Yes Yes Yes No Unclear Yes Yes Yes

Botta et al. (13) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Botta et al. (13) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Wei et al. (14) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Khorrami et al. (15) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Yes

Kirienko et al. (16) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Unclear

Rossi et al. (17) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Unclear

Chai et al. (18) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes

Wang et al. (19) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Unclear

are retrospective in design, there are few prospective deep
learning studies in lung cancer medical imaging staging, and
most studies lack data and code availability. At the same

time, most studies are single-center and use internal validation
or resampling methods (cross-validation). However, internal
validation tends to overestimate AUROC due to the lack of
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generality of the models, limiting the integration of AI models
into clinical settings (40). Therefore, predictive models validated
externally by using images from different hospitals are needed
to create reliable estimates of the performance levels of other
sites (41).

This systematic review performed a statistical assessment
of pooled data collected from 19 studies. However, our
findings must take into account some limitations. First, while
comprehensive, our search may have missed some studies that
could have been included. Second, we calculated estimates of
diagnostic performance using limited data as several studies

FIGURE 4 | Funnel plot of the area under the receiver operating characteristic

in 14 studies.

reported incomplete data. Third, there may be geographic
bias because the included studies were from geographically
different quantitative distributions. Finally, the type of scanner
used for diagnosis, the imaging protocol, and the criteria
for lung cancer staging may affect the accuracy of the
results. In the future, the clinical benefit of diagnostic lung
cancer staging models must be rigorously evaluated against
current diagnostic criteria, as not all models are applicable
in clinical practice (42, 43). Under the current hot spot
of artificial intelligence development, more and more deep
learning studies have shown that deep learning big data
extracted from patients’ medical images can have good clinical
application value in tumor staging of patients. Therefore, we
can combine deep learning features to establish a radiomics
combined with deep learning diagnostic model, so that the
accuracy of lung cancer staging diagnosis of patients can
be improved.

CONCLUSION

The models based on deep learning or radiomics
have the potential to improve diagnostic accuracy
in the pathological staging of lung cancer with the
purpose of providing individualized preoperative non-
invasive auxiliary prediction means for clinicians and
realizing valuable prediction for patients to obtain better
treatment strategy. Future studies are welcomed to use
standardized radiomics features, more robust tools of feature
selection and model development to further improve
the diagnostic accuracy of artificial intelligence in lung
cancer staging.

TABLE 5 | Summary of AUROC for each study.

References Sensitivity, % Specificity, % Accuracy, % AUROC 95%CI Standard error

Coroller et al. (13) – – – 0.630 0.583–0.713 0.0331

Parmar et al. (14) 82.4 73.1 83.5 0.710 0.60–0.82 0.0561

Sun et al. (15) – – – 0.770 0.69–0.86 0.0434

Ling et al. (16) – – – 0.864 0.782–0.904 0.0311

Coudray et al. (17) 89.0 93.0 83.3 0.869 0.753–0.961 0.0531

Xu et al. (18) – – 63.5 0.670 – –

Baldwin et al. (19) 99.57 28.03 40.01 0.896 0.876–0.915 0.0010

Schroers et al. (20) 86.95 93.25 88.89 – – –

Wang et al. (21) 64.04 58.97 61.47 0.640 0.61–0.67 0.0153

Leleu et al. (22) – – 72.6 – – –

Ann et al. (23) 79.9 75.2 65.8 0.761 0.59–0.71 0.0306

Cong et al. (24) 72.97 63.33 55.22 0.790 0.77–0.81 0.0102

Botta et al. (25) – – – 0.840 0.63–0.98 0.0893

Wei et al. (26) 54.16 55.56 63.64 0.860 0.79–0.94 0.0383

Khorrami et al. (27) 61.34 57.16 63.81 0.880 0.79–0.97 0.0459

Kirienko et al. (28) 85.7 88.2 93.3 – – –

Rossi et al. (29) 100.0 66.7 85.7 0.850 – –

Chai et al. (30) – – 95.3 – – –

Wang et al. (31) – – 72.4 0.712 0.678–0.770 0.0235
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