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Abstract

Background: APOA2 is a positional and biological candidate gene for type 2 diabetes at the
chromosome 1q21-q24 susceptibility locus. The aim of this study was to examine if HapMap phase
Il tag SNPs in APOA2 are associated with type 2 diabetes and quantitative traits in French Caucasian
subjects.

Methods: We genotyped the three HapMap phase Il tagging SNPs (rs6413453, rs5085 and rs5082)
required to capture the common variation spanning the APOA2 locus in our type 2 diabetes case-
control cohort comprising 3,093 French Caucasian subjects. The association between these
variants and quantitative traits was also examined in the normoglycaemic adults of the control
cohort. In addition, meta-analysis of publicly available whole genome association data was
performed.

Results: None of the APOA2 tag SNPs were associated with type 2 diabetes in the French
Caucasian case-control cohort (rs6413453, P = 0.619; rs5085, P = 0.245; rs5082, P = 0.591).
However, rs5082 was marginally associated with total cholesterol levels (P = 0.026) and waist-to-
hip ratio (P = 0.029). The meta-analysis of data from 12,387 subjects confirmed our finding that
common variation at the APOA2 locus is not associated with type 2 diabetes.

Conclusion: The available data does not support a role for common variants in APOA2 on type 2
diabetes susceptibility or related quantitative traits in Northern Europeans.
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Background

The APOA2 gene is located at chromosome 1q23.3,
within the 1-LOD support interval of several genome-
wide linkage scans for type 2 diabetes [1-3]. The peak of
linkage in the French and Utah Caucasian genome-wide
linkage scans was defined by the APOA2 intragenic micro-
satellite D1SAPO2 [1,3]. APOA2 encodes the apolipopro-
tein (apo) A-II, the second most abundant protein of the
high-density lipoprotein (HDL) particles [4,5].

Transgenic mice overexpressing human APOA2 on a
standard chow diet displayed lipid profiles similar to that
seen in human type 2 diabetes [6,7]. Moreover, plasma
human apoA-II levels were positively correlated with
blood glucose levels and these animals displayed
impaired glucose tolerance [7]. In the human HepG2 cell
line and in rat primary hepatocytes, transcription of the
human APOA2 transgene was upregulated by glucose in a
HNF-4d-dependent fashion, whereas in streptozotocin-
induced diabetic rats Apoa2 mRNA levels were not affected

[7].

Overexpression of mouse Apoa2 contrastingly resulted in
elevated levels of HDL and fasting blood glucose levels
that were not significantly different from normal [8-10].
However, these mice appeared to be in a state of insulin
resistance exhibiting two-fold raised plasma insulin lev-
els, decreased triglyceride hydrolysis and increased fat
deposition in adipose tissue, as well as delayed glucose
clearance due to slower uptake in skeletal muscle [8].
Taken together, these findings point to a primary lipopro-
tein disturbance causing the development of several fea-
tures of insulin resistance.

On the other hand, homozygous Apoa2 null-mice had
HDL level reductions of 70%, as well as lower free fatty
acid, glucose and insulin levels, suggesting they may be
insulin hypersensitive [11].

Previous genetic analysis of APOA2 in type 2 diabetes
Elbein and colleagues tested four APOA2 variants for asso-
ciation with T2D by TDT in 698 family members and in a
very small case-control cohort of 247 subjects [12]. None
of the SNPs exhibited association with T2D in the case-
control cohort, nor were any of the SNP alleles over-trans-
mitted in the TDT analysis. Certain microsatellite alleles,
however, indicated a trend for excess transmission to dia-
betic patients and marginal association with triglyceride
levels, FFA and fasting glucose, as well as first phase insu-
lin response and insulin deposition index in model anal-
ysis [12].

http://www.biomedcentral.com/1471-2350/10/13

Methods

Case-control subjects

All subjects were of French Caucasian ancestry. Individu-
als identified by Sladek et al. [13] to lie outside the Hap-
Map CEU ancestry cluster were excluded from the study.
Type 2 diabetic case subjects were known diabetic patients
receiving treatment for the condition. Normoglycaemic
control subjects were selected to have a fasting blood glu-
cose concentration <6.1 mM [14]. Case subjects were
composed of: (i) 372 probands from diabetic families [3],
recruited in Lille; and (ii) 1083 patients with a family his-
tory of T2D recruited at the Corbeil-Essonne Hospital.
Control subjects were composed of: (i) 353 normoglycae-
mic parents from T2D families; (ii) 543 subjects from the
SUVIMAX (Supplementation en Vitamines et Minéraux
Antioxidant) prospective population-based cohort study
[15]; and (iii) 742 subjects selected from the DESIR (Data
from an Epidemiologic Study on the Insulin Resistance
Syndrome) cohort, a large prospective study of insulin
resistance in French subjects [16]. Informed consent was
obtained from all subjects and the study was approved by
the local ethics committees.

Statistical power

The case-control cohort comprised 1,455 type 2 diabetic
subjects (age, 60 + 12 years; BMI, 29.0 £ 6.0 kg/m?; male/
female, 56:44%) and 1,638 normoglycaemic subjects
(age, 54 + 13 years; BMI, 24.1 + 3.3 kg/m2; male/female,
43:57%). At a = 0.05, this sample size provided 91%
power [17] to detect a type 2 diabetes susceptibility vari-
ant, assuming an allele frequency of 0.20, a disease preva-
lence of 0.1 and a heterozygote relative risk of 1.2
(multiplicative model).

APOAZ2 tag SNP selection

The genomic target region for tag SNP selection extended
across the 3 kb NCBI36 APOA2  locus
(chr1:159,458,001..159,461,000). A total of three Hap-
Map phase II pairwise tagging SNPs (rs6413453, rs5085
and 1s5082) were sufficient to tag the common variation
across the APOA2 locus (HapMap Data Release 22/Apr07)
with 12 and minor allele frequency (MAF) thresholds of
0.9 and 0.05, respectively.

SNP genotyping

Genotyping was performed with the Sequenom MassAR-
RAY iPLEX system [18]. SNP genotype frequencies were
tested for accordance with Hardy-Weinberg equilibrium
using chi-squared analysis. Quality control: all genotyped
SNPs exhibited a call rate >99% and a Hardy-Weinberg P
> 0.05, with well defined genotype clusters. In total, 19
case and 42 control subjects (1.97% of the total sample
size) consistently failed genotyping and were removed
from further analysis.

Page 2 of 6

(page number not for citation purposes)



BMC Medical Genetics 2009, 10:13

Statistical analyses

To test for association of APOA2 SNPs with type 2 diabe-
tes, chi-squared analysis of allele and genotype counts was
performed. Pairwise SNP linkage disequilibrium (LD) val-
ues were calculated from the genotype data of the control
cohort with Haploview (4.0) [19]. Quantitative anthropo-
morphic phenotypes, body mass index (BMI), weight and
waist-hip ratio (WHR), as well as fasting serum levels of
glucose, insulin, triacylglycerol (TG), total and high-den-
sity lipoprotein (HDL)-cholesterol, apolipoprotein A-I
(APOA1) and apolipoprotein B (APOB), measured in
1,539 normoglycaemic subjects from the control cohort,
were log transformed and adjusted for age, sex and BMI,
as appropriate. SNPs were tested for association with
adjusted quantitative traits using SPSS 15.0 with the
ANOVA test under a codominant model. Quantitative
trait association p-values are presented uncorrected for
multiple testing. Combined analysis of association data-
sets was carried out by pooling of log-transformed odds
ratios with the inverse variance method for the fixed-
effects and random-effects models. The DIAGRAM [20]
data included a sib-ship component from the DGI GWAS
[21]; however, due to uncertainties about controlling for
the effects of the relatedness of part of the study sample,
we excluded these subjects and obtained data solely for
unrelated subjects from the authors (E. Zeggini, personal
communication, 23/04/2008). Inter-study heterogeneity
was assessed with Cochran's Q statistic and the 12 metric
[22]. These calculations were performed using R (2.5.1)
statistical software [23].

Results

None of the three genotyped APOA2 tag SNPs showed evi-
dence for association (P < 0.05) with type 2 diabetes in
this French Caucasian cohort (Table 1; genotype counts
see Additional file 1: Additional table 1). This finding is in
agreement with the French GWAS [13], as well as a recent
meta-analysis [20] of the DGI [21], FUSION [24] and
WTCCC [25] genome-wide association studies.

Table I: Association of APOA2 SNPs with type 2 diabetes.
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Quantitative trait associations

The APOA2 promoter SNP rs5082 was marginally associ-
ated with total cholesterol levels (P = 0.026) and waist-to-
hip ratio (P = 0.029) (Table 2), and both associations
exhibited a linear increase of the value of the quantitative
phenotype from the common homozygote to the rare
homozygote allele carriers (Table 3). The intronic variant
1s6413453 was marginally associated with weight (P =
0.049), but given the small number of homozygote carri-
ers of the minor allele (n = 13), it is likely that this is a spu-
rious result (Table 2).

Linkage disequilibrium structure of the APOA2 genomic
locus

The structure of linkage disequilibrium across the three
tag SNPs studied was consistent with HapMap phase 11
data. The levels of intermarker LD (r2) were negligible for
the APOA2 locus (Additional file 1: Additional table 2).
Therefore, no haplotype analysis was performed for
APOA2 variants.

Meta-analysis of APOA2 variants

Meta-analysis combining publicly available data with our
current study confirmed in over 12,000 subjects that none
of the APOA2 tag SNPs were associated with type 2 diabe-
tes (Additional files 2, 3, 4) and there appeared to be no
study heterogeneity (Cochran's Q: P > 0.72; 12= 0% for all
variants). Consistent with the absence of inter-study het-
erogeneity the fixed and random effects models were
identical for all three variants, therefore only the fixed
effects are displayed.

Discussion

The APOA2 gene appeared to be a highly plausible candi-
date gene for type 2 diabetes susceptibility. In addition to
defining the peak of linkage at chromosome 1q in French
and Utah Caucasian families, APOA?2 is the second most
abundant lipoprotein component of HDL-cholesterol

SNP Alleler Chr Gene N Allele | Allele 2 Call Rate OR P DIAGRA
Position Region subjects (%) (%) (95% CI) M GWAS-
(NCBI36) MA
p#
rs641345 C/T 159458940 INTRONI  T2D 1414 2523 (89) 299 (l1) >99% 1.04 0.619 0.808%
3 C (0.89-1.23)
NG 1581 2809 (89) 347 (l1) >99%
rs5085 G/C 159459135 INTRONI  T2D 1441 2304 (80) 568 (20) 100% 1.08 0.245 0.225
Cc (0.95-1.23)
NG 1596 2595 (81) 593 (19) >99%
rs5082 T/IC 159460307 UPSTREA  T2D 1442 1796 (63) 1066 (37) >99% 1.03 0.591 0.408¢%
M (0.93-1.14)
NG 1603 1963 (62) 1199 (38) >99%
aSNP alleles are shown as major/minor. #Please refer to Methods section for details. $imputed SNPs.
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Table 2: Association of APOA2 SNPs with quantitative traits in
French Caucasian control subjects.

Trait n Mean + SD rs6413453 rs5085 rs5082
BMI 1437 2437 £0.09 0.682 0.806  0.075
GLYO 1400 521 +0.02 0.820 0.401 0.687
INSO 843  50.01 £ 1.17 0.632 0.280  0.450
TG 1311 1.12+£002 0.178 0.713 0.404
CHOL_TOT 1318 5.94 +£0.03 0.509 0249  0.026
HDL 792 1.58 £ 0.01 0.658 0.171 0913
APOAI 1427 1.68 £ 0.0l 0.169 0219 0.778
APOB 1425 1.1 £0.01 0.829 0518 0.121
WEIGHT 1191 66.14£0.33 0.049 0.389  0.603
WHR 1164 0.84 £ 0.00 0.932 0.341 0.029

Association testing of APOA2 SNPs was carried out by ANOVA using
SPSS (15.0). All traits were log transformed prior to correction for
age, sex and BMI by linear regression, as appropriate. Trait means are
presented anti-logged and P-values are reported without correction
for multiple testing. BMI: body mass index; GLYO: fasting glucose;
INSO: fasting insulin; TG: triacylglycerol; CHOL_TOT: total
cholesterol; HDL: high-density lipoprotein-cholesterol; APOAI:
apolipoprotein A-I; APOB: apolipoprotein B; WHR: waist-hip ratio.

and has been implicated in the regulation of lipid metab-
olism and insulin sensitivity.

Three HapMap phase II tag SNPs suffice to cover the com-
mon variation spanning APOA2 and genotyping of these
variants demonstrated no association with type 2 diabe-
tes. However, we cannot rule out the possibilities that dis-
tal common variants or rare APOA2 variants may be
associated with type 2 diabetes. The quantitative trait
association for the APOA2 variant rs5082 with total cho-
lesterol levels was consistent with the physiological role of
apoA-II; however, the strength of the association was mar-
ginal, as were the remaining, weaker associations with
other continuous traits.

Meta-analysis of our data with DIAGRAM [20] consor-
tium data, which was a mixture of directly genotyped and
imputed SNPs (Table 1), corroborated our findings of no

http://www.biomedcentral.com/1471-2350/10/13

association with type 2 diabetes. It was also welcome to
note that the data from imputed SNPs were in this context
indistinguishable from that of the directly genotyped var-
iants.

Conclusion

Using a case-control cohort of over 3,000 subjects, we
tested HapMap phase II tag SNPs that capture the com-
mon variation spanning the APOA2 genomic locus for
association with type 2 diabetes, but failed to find any evi-
dence supporting a contribution of this locus to type 2
diabetes susceptibility. This finding was confirmed in a
combined analysis of more than 12,000 subjects.
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Table 3: Distribution of quantitative trait values grouped by genotype for significant association results.

Genotypes (n)

rs5082 T TC cc P

CHOL_TOT (mM) 5.88 + 0.97 5.95 + 0.92 6.10 + 1.01 0.026
(506) (600) (185)

WHR 0.841 + 0.091 0.843 + 0.092 0.855 + 0.092 0.029
(455) (529) (153)

rs6413453 cc cT T

WEIGHT (kg) 66.02 % 11.60 66.10 + 11.52 70.38 + 8.63 0.049
(905) (229) (13)

Association testing was carried out by ANOVA comparison of trait means between genotype groups using SPSS (15.0). All traits were transformed
prior to correction for age, sex and BMI by linear regression. The quantitative trait values displayed are the anti-logged trait means * SD.
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Additional material

Additional file 1

Additional tables 1 and 2. Word document containing a a table listing
the genotype counts for each SNP and a tabular representation of the LD
structure across the locus.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2350-10-13-S1.doc]

Additional file 2

Forest plot graphical summary of the meta-analysis for SNP
rs6413453. Published data from the DIAGRAM [20] GWAS meta-anal-
ysis were combined with our data by pooling of log-transformed odds ratios
with the inverse variance method using R (2.5.1) [23] software.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2350-10-13-S2.pdf]

Additional file 3

Forest plot graphical summary of the meta-analysis for SNP rs5085.
Published data from the DIAGRAM [20] GWAS meta-analysis were
combined with our data by pooling of log-transformed odds ratios with the
inverse variance method using R (2.5.1) [23] software.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2350-10-13-S3.pdf]

Additional file 4

Forest plot graphical summary of the meta-analysis for SNP rs5082.
Published data from the DIAGRAM [20] GWAS meta-analysis were
combined with our data by pooling of log-transformed odds ratios with the
inverse variance method using R (2.5.1) [23] software.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2350-10-13-54.pdf]
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