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The prefrontal cortex (PFC) constitutes a large part of the human central nervous
system and is essential for the normal social affection and executive function of
humans and other primates. Despite ongoing research in this region, the development
of interactions between PFC genes over the lifespan is still unknown. To investigate
the conversion of PFC gene interaction networks and further identify hub genes, we
obtained time-series gene expression data of human PFC tissues from the Gene
Expression Omnibus (GEO) database. A statistical model, loggle, was used to construct
time-varying networks and several common network attributes were used to explore the
development of PFC gene networks with age. Network similarity analysis showed that
the development of human PFC is divided into three stages, namely, fast development
period, deceleration to stationary period, and recession period. We identified some
genes related to PFC development at these different stages, including genes involved
in neuronal differentiation or synapse formation, genes involved in nerve impulse
transmission, and genes involved in the development of myelin around neurons. Some
of these genes are consistent with findings in previous reports. At the same time, we
explored the development of several known KEGG pathways in PFC and corresponding
hub genes. This study clarified the development trajectory of the interaction between
PFC genes, and proposed a set of candidate genes related to PFC development, which
helps further study of human brain development at the genomic level supplemental
to regular anatomical analyses. The analytical process used in this study, involving
the loggle model, similarity analysis, and central analysis, provides a comprehensive
strategy to gain novel insights into the evolution and development of brain networks in
other organisms.

Keywords: human PFC, gene network change, time-varying graph, loggle model, hub gene

Abbreviations: PFC, Prefrontal cortex; loggle, Local Group Graphical Lasso Estimation; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GEO, Gene Expression Omnibus; BBS2, Bardet-Biedl syndrome type 2; FOXO, forkhead box O; CR,
caloric restriction; CNSI, CompNet neighbor similarity index; CV, cross-validation.
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INTRODUCTION

The prefrontal cortex (PFC), covering the front part of the
frontal lobe, receives input from multiple regions of the brain
for information processing (Fuster, 2001; Hathaway and Newton,
2019), and is a key area for studying the development and
mechanisms of decline of the human brain. It plays important
roles in emotional and social behavior, coordinating complex
cognitive behavior, expression, and decision-making (Fuster,
2003; Fellows, 2007). PFC development is greatly shaped by
gene expression, which is dynamically regulated across a person’s
lifespan (Jaffe et al., 2014). By mapping the key features
of the developmental trajectory of PFC gene expression, not
only can the dynamic development of brain function be
revealed, but also our understanding of the mechanisms that
drive cellular responses can be promoted (Shaw et al., 2008;
Molnár et al., 2019).

Since it is obviously impossible to perform biopsies from
the same area of an individual’s brain multiple times during
growth to generate time-series genetic data, in the past few
decades, researchers have evaluated the developmental trajectory
of the forehead from the perspectives of neuropsychology,
neuroimaging, and cell physiology (Diamond and Doar, 1989;
Case, 1992; Luciana and Nelson, 1998; Anderson et al., 2001).
It is generally believed that the neuro-physiological development
of the forehead experiences a pattern of first increasing and
then decreasing to a steady state. For example, Shaw et al.
(2008) simulated the changes in the cerebral cortex by combining
longitudinal neuroanatomical imaging data with cross-sectional
data. They found that the developmental trajectory of the
frontal cortex was cubic, that is, it increases first and then
gradually decreases to a steady state (Shaw et al., 2008). With
the advancement of science and technology, researchers have
constructed time-series genetic data from a single biopsy of
multiple individuals and characterized similar developmental
trajectories at the genetic level, but only explored this based
on the expression level of individual genes (Kolb et al., 2012;
Wruck and Adjaye, 2020). For example, Liu et al. (2012) used
unsupervised hierarchical clustering to cluster the PFC genes and
found that the expression levels of genes related to neuronal
activity show a trend of rising then decreasing throughout the
lifespan. Although previous studies clearly observed age-related
changes in PFC development from the anatomical structure and
individual gene expression levels, the generation of cell diversity
during human brain development requires precise regulation
between genes (Moreau et al., 2013; Wang and Wang, 2019).
The temporal dynamics of this intergenic interaction is yet
to be delineated.

As a statistical tool, network analysis can help us fully
understand the internal complex systems, rather than just
individual genes functioning along (Chandrasekaran and
Bonchev, 2016). However, network graphs created with time-
varying data may change over time. If simply integrating a
static network at different time points for dynamic analysis
(Faisal and Milenković, 2014), one may not make full use of
the advantages of time series data, hence may not be able to
capture the complex dynamic biological phenomena on the

time axis (Androulakis et al., 2007). Moreover, the integration
of time series data will bring a large calculation burden (Zhang
et al., 2010; Yang and Peng, 2018). To cope with the challenge
of time-series data, some methods have been developed based
on the Gaussian Graphic Model (GGM) (Drton and Perlman,
2004) to estimate time-varying graphs (Le et al., 2009; Kolar and
Xing, 2013; Gibberd and Nelson, 2014, 2015) while assuming
that the covariance matrices change smoothly over time; this
facilitates understanding and explanation of the interaction of
network nodes. Among them, the Local Group Graphical Lasso
Estimation (loggle) (Yang and Peng, 2018) model proposed
by Yang and Peng, not only effectively uses the neighborhood
information by using a local group-lasso-type penalty, but also
saves computational time by using a blockwise fast algorithm and
pseudo-likelihood approximation. It has advantages over other
time-varying graph models using fused-lasso-type penalties
which estimate the piecewise constant to identify the jump
points [e.g., TESLA (Ahmed and Xing, 2009), TVGL (Hallac
et al., 2017), GFGL (Gibberd and Nelson, 2017)]. The successful
application of the loggle model in the work of Yang and Peng
(2018) illustrates how direct interactions between stocks evolved
over time under the influence of the global financial crisis.

In this work, we apply the loggle model to a time-series
gene expression data set to construct PFC time-varying gene
interaction networks, since the model fits the biological realm
of PFC development. We quantify the development trend of the
PFC gene network through network global attribute indicators
such as network diameter. We further apply network similarity
analysis to describe the development stage of PFC, so as to
identify hub genes at different stages using the central analysis.
We also apply the loggle model to evaluate the development
of several KEGG pathways in PFC. The identification of the
changes of gene networks in human PFC can provide novel
insights into human brain development and function. The hub
genes identified in different development stages provide specific
candidate targets for further biological validation.

MATERIALS AND METHODS

Data
Human PFC Time-Series Gene Expression Data
The time-series gene expression data on the human PFC were
downloaded from the GEO database1 with Gene Expression
Omnibus accession number GSE30272. This data set records
269 RNA samples from stages from fetus development to elderly
(14 gestational weeks to 80 years), after removing subjects with
severe neurological or psychiatric conditions. These samples
were obtained from post-mortem human brain PFC gray matter
tissue homogenates and subjected to a series of processes such
as RNA extraction and quality control. The log2 intensity
ratio was normalized after background correction, and the log2
ratio was further adjusted to reduce the impact of systematic
noise after performing surrogate variable analysis. Readers are
referred to the paper by Colantuoni et al. (2011) for a detailed

1http://www.ncbi.nlm.nih.gov/geo
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description of the data source and processing procedures.
After probe annotation and data cleaning, a time-series gene
expression matrix of 17,150 × 269 was generated for further
statistical analysis.

Initial Feature Selection
Considering data noise and the complexity of the algorithms
that would be used to construct a time-varying graph, we first
performed feature screening to filter out potential noise and
reduce the data dimensionality. In this work, we considered the
following two options for feature screening to obtain genes that
carry important information.

(i) Calculate the variance for each gene and select the top 300
genes to construct the time-varying network graphs. The purpose
of this is to explore the development of networks constructed
with genes showing high variation in PFC throughout the
lifespan, or changes in the interactions between the dominant
genes at different developmental stages of PFC.

(ii) Select genes based on known KEGG pathways. The
purpose of this is to explore the development trends of several
known pathways in the PFC throughout the lifespan. In this
study, we chose five pathways related to the development of PFC
function by searching the literature. A list of the pathways is
shown in Table 1, together with the pathway entry and name,
the number of genes in the pathway, and the number of genes
mapped to the pathway in the original gene expression data set.
A total of five systems related to PFC or sensitive to age changes
are involved, namely, signal transduction (hsa04068), immune
system (hsa04611), nervous system (hsa04728), aging (hsa04211),
and development and regeneration (hsa04360).

Age Grouping
We built the time-varying network by dividing the sample into
nine age periods based on the age information provided by
the original data (Colantuoni et al., 2011), that is, fetus (14–20
gestational weeks), infant (0–6 months), child (1–10 years), 10s
(10–20 years), 20s (20–30 years), 30s (30–40 years), 40s (40–
50 years), 50s (50–60 years), and 60s (60 years or older). The
distribution of the number of time points (samples) in each age
group is shown in Figure 1.

Estimating Time-Varying Graphs With the
Loggle Model
This study aims to characterize the developmental pattern of
inter-gene interactions over time in the human PFC region and

TABLE 1 | Selected pathway information.

Pathway
entry

Pathway name # of genes in
the pathway

# of genes
mapped to the

pathway

hsa04728 Dopaminergic synapse pathway 131 123

hsa04211 Longevity regulating pathway 89 80

hsa04360 Axon guidance pathway 181 171

hsa04611 Platelet activation pathway 124 110

hsa04068 FoxO signaling pathway 131 118

FIGURE 1 | Number of time points (samples) in each age group.

identify hub genes involved in development. Accordingly, we
first used the loggle model to build and understand PFC time-
varying network graphs. In particular, the loggle model uses the
local group-lasso penalty to minimize locally weighted negative
log-likelihood function to reasonably combine the information of
adjacent time points to ensure the progressive change of the graph
structure. Then, a blockwise fast algorithm and pseudo-likelihood
approximation were used to solve the “computational disaster”
problem. The PFC time-varying graphs were constructed using
the loggle package in R. To make the work self-contained, we here
briefly describe how to construct the time-varying network graph
via the loggle model. More technical details can be found in the
paper by Yang and Peng (2018).

Local Group Graphical Lasso Estimation
Suppose X (t)= (X1 (t) ,X2 (t) , . . . ,Xp (t))T is a p-dimensionalg
time-series random vector at time t∈[0, 1], which obeys a
multivariate Gaussian distribution Np

(
µ (t) ,

∑
(t)
)
. We used

{xk} (k∈{1, . . . , N}) to indicate the observation at time tk(0 =t1
= ... = tk = ... tN = 1), where N represents the sample size.
For simplicity,we centered the observations xkby subtracting
the estimated mean µ̂(tk) from xk so that each xkis drawn
independently from Np

(
0,
∑

(t)
)
.

We next estimated the precision matrix �(t) · (�(t) =
6−1(t)) to construct the graph edge set. The loggle model
assumes the smoothness of the graphical topology, and obtains
the estimated precision matrix �̂(t) at the kth time point by
combining the locally weighted negative log-likelihood function
with the local group lasso penalty (Ming and Yi, 2006):

L(�k) :=
1√∣∣Nk,d

∣∣6i∈Nk,d

[
tr(�(ti)6̂(ti))− log |�(ti)|

]

+λ6u6=v

√
6i∈Nk,d�uv(ti)2, (1)

where Nk,d = {i ∈ I : |ti − tk| ≤ d} is the time index with the
center tk and neighborhood width d;

∣∣Nk,d
∣∣ is the cardinality of

Nk,d; �k = {�(ti)}i∈Nk,d is a set of precision matrices with �uv(ti)

representing the (u, v)-th element in �; 6̂(ti) = 6N
j=1ω

tj
h(t)xjx

T
j is

the kernel estimate of the covariance matrix, with ω
tj
h(t) =
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kh(tj−t)
6N
j=1kh(tj−t)

as the weight and Kh(·) = K(·/h) as a symmetric

non-negative kernel function with bandwidth h.

Model Fitting and Optimization
The model uses the alternating directions method of multipliers
(ADMM) algorithm (Boyd et al., 2010) to solve the convex
optimization problem for objective function (1). Unfortunately,
the ADMM algorithm involves eigen-decomposition, which can
take a long time when the data dimensionality is large. To solve
the “computational disaster” problem, the algorithm introduces
a fast blockwise algorithm (Witten et al., 2011; Danaher et al.,
2014) and a pseudo-likelihood approximation (Meinshausen and
Bühlmann, 2006; Peng et al., 2009a,b) to the objective function.

Specifically, the p variables are completely separated into
multiple non-overlapping blocks by the following necessary and
sufficient condition after suitable permutation; then, the ADMM
algorithm is applied to each block to speed up the computation
and reduce the calculation time from O(p3) to 6L

l=1O(p3
l ). In

addition, the pseudo-likelihood approximation can speed up the
calculation efficiency by changing the problem of estimating
the sparse pattern of the precision matrix to estimating the
sparsity pattern of the regression coefficients. Further, the paired
group lasso penalty (Friedman et al., 2010) is used to ensure the
symmetry of the edge selection.

Parameter Adjustment
When learning the loggle model, there are three parameters
involved: the kernel bandwidth h; the neighborhood width d,
which controls the smoothness of the graph over time; and the
sparsity parameter λ, which controls the degree of graph sparsity.
The tuning parameters are learned by cross-validation (CV) at
each age period. For this purpose, data are divided into training
and validation sets. The CV score on the jth validation set at time
tk is defined as:

CVj(tk;λk, dk, h) = tr(�̂rf
−(j)(tk; dk, λk, h)6̂(j)(tk))

− log
∣∣∣�̂rf
−(j)(tk; dk, λk, h)

∣∣∣ (2)

The K-fold CV score at time tk is defined as CV
(
tk; ;λk, dk, h

)
=∑K

j=1 CV j
(
tk; ;λk, dk, h

)
.The smallest CV score corresponds to

the optimal combination of parameters (h, λk, dk).At the same
time, the “majority vote” procedure cv.vote (Peng et al., 2009b)
was introduced to effectively reduce the false discovery rate.The
algorithm flow involved in the loggle model is shown in Figure 2.

Parameter Setting
Given the nine time points, we performed a threefold CV to
determine the tuning parameters h, d, and λ of the graph at each
time point. We initialize the range of h, d, and λ . Let datj (j =
1, . . . 9) index the data in the jth time point. Each time, we set one
of the three sets in (dat1, dat4, dat7), (dat2, dat5, dat8), and (dat3,

dat6, dat9) as the validation set, and the rest as the training set.
The training set is used to estimate the correlation matrix of the
graph model, and the validation set is used to calculate the cross-
validation score. For a given h, we estimate �(tk;λk, dk, h) based

on the training set and calculate CV-score with the validation set.
The loggle model assumes that data measured at different time
points are independent and observations are made on a temporal
grid, which makes the CV setting in this application valid (Yang
and Peng, 2018). The early grid search stop threshold is 8; that is,
the grid search stops when the number of edges exceeds 8p where
p is the number of variables. The threshold for cv.vote is set to 0.8;
that is, by fitting the model in each training set, only the edges that
appear in at least 80% of these models are retained.

Comparison With Other Models
We further compared the performance of loggle with two
existing special models of loggle, namely, kernel and invar. kernel
introduces a kernel estimate 6̂(t) into the likelihood function
(Zhou et al., 2010) and by setting the parameter d = 0, but the
model ignores the potential smoothness of the graph. invar is
performed to estimate �(tk) by using the global group lasso
penalty (Wang and Kolar, 2014) with d = 1; thus, the generated
graphs do not change across the entire time domain.

Global Network Properties
Observing different network properties can provide valuable
insights into the redistribution of genes within biological
networks as well as the evolution of biological network structures.
We used several common network properties to explain the trend
of change of the network topology: number of nodes, number of
edges, network diameter, network density, and exclusive edges.

The network diameter represents the maximal distance
(shortest path) among all of the distances calculated between each
pair of nodes in a network (Scardoni and Laudanna, 2012), that
is, D = maxi,j δmin(i, j), where δmin(i, j) represents the shortest
path between nodes i and j. A “small” network diameter indicates
that nodes in the network are closely connected and the graph is
compact. In particular, comparing network diameters at different
time points can predict network development in a timely manner
(Scardoni and Laudanna, 2012).

The network density shows the sparseness or density of the
graph based on the number of connections per node set, and is
defined as d(G) = 2|E|

|V|(|V|−1) . The exclusive edge metric indicates
that some edges belong to a certain network and do not appear in
the rest of the network (Kuntal et al., 2016).

Network Similarity Analysis
Considering that nine different time points will likely generate
different networks, we calculated the similarity between networks
and merged similar networks into groups. Based on this, we
analyzed the development of PFC at different stages. This
analysis used the CompNet neighbor similarity index (CNSI)
to measure the similarity between two compared networks.
CNSI measures the similarity of each pair of nodes by
comparing the degree of overlap between the first neighbors
of the nodes between two networks. A cumulative overall
similarity score for all nodes is calculated to specify similarities
between two compared networks (Kuntal et al., 2016), that

is, CNSI = 6N
i=1

f Ani∩f
B
ni

f Ani∪f
B
ni

, where ni represents the i-th node of

the two compared networks, and f Ani and f Bni refer to the
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FIGURE 2 | The main algorithm flow chart involved in the loggle model.

first neighbor of the i-th node in the corresponding two
compared networks.

Central Analysis
Many known biological networks, such as signaling network,
contain very few high-degree nodes but many low-degree ones,
and nodes with very high degree play a central regulatory
role (such as TP53) (Evans et al., 2019). Changes in some
important nodes not only affect nodes adjacent to them, but
also affect the topology of the entire network (Scardoni and
Laudanna, 2012). To find important genes in human PFC
tissue, we further calculated the degree of nodes to perform a
central analysis. Degree, corresponding to the number of nodes
directly connected to a given node V (the number of directly
connected edges), namely, the first neighbors (Scardoni and
Laudanna, 2012), is expressed as Cd(i) = deg(i). A high-degree
node is called a “hub,” and removing such a node affects the
network topology and further leads to disturbances in biological
systems (Pavlopoulos et al., 2011). The degree calculation was
performed in Cytoscape and is displayed with the node size
corresponding to its value. Figure 3 shows a flow chart of the
main methods and processes used for exploring the development
of PFC in this study.

RESULTS

Comparisons of Loggle, Kernel, and
Invar
We first create a gene expression heat map to visualize the age
distribution of gene expressions (see Figure 4). A quick glance
at the heat map reveals that gene expressions are significantly
disturbed (up- or downregulated) in the early stage of the
life cycle. From fetus to infant stage, we see a noticeable
change in gene expressions. After infant, genes expressions are
relatively stable until 60s, and genes clustered together show
a relatively smoothed expression pattern. Even from fetus to
infant stage, some genes show gradually decreased or increased
expressions with gradually fading color in red and green. As

the loggle model assumes the smoothness of the graphical
topology, the smoothed gene expression patterns across the
life span provide empirical evidence to support the loggle
model. As a comparison, we also fit the data with the kernel
and invar model.

Figure 5 shows the change in the number of edges of the time-
varying network fitted by the three models over time. Table 2
reports the average number of edges and the cross-validation
results. We can see that loggle and kernel have fewer average
edges, while invar has more edges. In addition, from Figure 5,
we can see that the PFC time-varying graph constructed by
the invar model does not change throughout the lifespan, so
it cannot reflect the changes in the relationship between genes.
Since the time-invariant network fitted by the invar model has
the same parameters at each time point, no specific CV score can
be obtained in this analysis. In contrast, the PFC time-varying
graph constructed by the loggle and kernel models captures the
developmental pattern over time. The network structure is more
complex (e.g., has more edges) during the early stage and then
gradually falls into a stationary state, which is consistent with the
human prefrontal cortex developmental pattern. Unfortunately,
the kernel model has a slight decline in the infant stage, which is
contrary to the current understanding of PFC development (the
human brain grows at an incomparable rate in the early stages
of life) (Liu et al., 2012; Teffer and Semendeferi, 2012). Since
the kernel model ignores the smoothness of the graph structure
over time, it did not capture the peak of PFC development (early
stages of life) when describing the PFC time-varying network.
In general, two criteria need to be considered when determining
using loggle or kernel: (1) Does the model assumption fit the
biological nature of the data well? and (2) Is there a mathematical
criterion to determine which method to apply? For (1), loggle
appears to better capture the peak of PFC development (child).
For (2), the CV score can be used to decide which model
fits the data better. In this application, loggle has smaller CV
score, hence is preferred than kernel, although the CV score
difference is not very significant. In summary, the time-varying
graph fitted by the loggle model is more suitable to describe
the changes of PFC gene interaction with age, and to identify
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FIGURE 3 | Detailed procedure for investigating the developmental pattern of human PFC gene interaction networks and hub genes.

the peak period of PFC development. Supplementary Table 1
shows the result of the parameter selection of the loggle model
at each age stage.

Development of Human PFC
Time-Varying Network Graph
Hereafter, we focus on the time-varying graph fitted by the
loggle model to further analyze the development of the human
PFC gene expression network over time. The time-varying
graph of the gene interaction network fitted by this model
is shown in Figure 6. For the list of edges corresponding to
each age group network, please refer to the Supplementary
Materials. The trends of change of the number of nodes and
the number of edges of the corresponding network are shown
in Figure 7A. It is observed that, from the fetus stage to
the child stage, with increasing age, the complexity of the
PFC gene interaction network begins to increase gradually,
peaking in the child stage. During this time, the number of
edges of the network is also much higher than the number
of nodes (see Figure 7A). Compared with the case at older

ages, the inner edge of the network is more complicated. This
demonstrates that most of the genes in the PFC region are
very active and complexly regulated during this time period,
in which promotes the rapid development of PFC. After that,
the number of edges decreases rapidly between 10 and 20 years
old (child stage to the 10s), and the number of active nodes
also decreases. This shows that the development rate of PFC
gradually slows down. After the 10s, the numbers of edges
and nodes gradually plateau, and the edge composition inside
the network is simplified. This indicates that the development
speed gradually decreases. It tends to be stable after the 20s.
Moreover, after the 50s, it breaks the stability and the number
of edges and nodes in the network show a slight downward
trend again (Supplementary Table 1). Thus, the development
of the PFC time-varying network model presents a cubic trend,
with rapid development in early life, a trend of moderate
growth in middle age, and then a slight decline later in life.
This proves the continuous long-term changes of the PFC gene
expression network, echoing the findings of a previous report
(Teffer and Semendeferi, 2012).
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FIGURE 4 | PFC global gene expression changes over time. Each row of the heatmap represents a gene, and each column represents a sample. Each small grid
represents the expression of a gene in the sample, with red and green representing relatively low and high expression, respectively. Different colored bars at the top
of the graph indicate different age groups to which the sample belong, as shown in the legend on the top right corner.

To illustrate the changes in the network topology in more
detail, we calculated several global network properties. As seen
in Figure 7B, in the early stage of life (fetus to the 10s), the
network diameter is large and the network density is low. After
that, the network diameter gradually decreases. Interestingly, the
network density then gradually increases in the 10s, although
there are slight fluctuations. This implies that the time-varying
network graph of PFC is relatively sparse in early life and
gradually becomes denser with aging, resulting in a reduction in
the robustness of the network. In addition, compared with the
late period, there are more exclusive edges in the first four stages
of life, and the number of exclusive edges in the child period is
the highest, which further indicates that this is a period of rapid

development of human PFC. During this period, some unique
biological processes occur to promote the development of PFC.

We further analyzed the similarity between the networks of the
nine age periods using the CNSI indicator (see section “Materials
and Methods). As shown in Figure 7C, the similarity between the
networks corresponding to the two periods of fetus and infant
is the highest (0.78), followed by infant and child (0.69). The
corresponding hierarchical clustering tree (Figure 7D) aggregates
these three periods into one category. A closer look at this bubble
chart also reveals that the similarity between the 20s and the 30s
is also very high (0.6), and the tree diagram puts them in the
same cluster. The similarity among the 40s, 50s, and 60s is also
high, and their distances in the tree are also short. In contrast,
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FIGURE 5 | Number of edges vs. age period (x-axis). Different line types represent different models.

TABLE 2 | List of average # of edges and cv.score using different method.

Method Average # of edge cv.score

loggle 224.2 −309.64

kernel 183.9 −302.77

invar 442.0 –

the similarity between the 10s and other networks is low, and the
dendrogram places 10s in separate clusters.

Based on these results and previous studies (Teffer and
Semendeferi, 2012; Molnár et al., 2019), we divided the
development of PFC into three stages, namely, fast development
period (fetus, infant, child), deceleration to stationary period
(10s, 20s, 30s), and recession period (40s, 50s, 60s). Central
analysis was performed separately to identify hub genes at these
three different stages.

Hub Genes Accompanying the
Development of Human PFC
According to the above development analysis of the network,
three developmental stages were considered to identify hub genes
(Figure 8). From Figure 8A, we can see that the hub genes in the
fast development period of PFC are as follows: STK32B, CX3CL1,
and BACH2 in the fetus stage; STK32B, PCSK1, and NPPA in
infant; and IPCEF1, STK32B, and RGS4 in child. The hub genes
in the deceleration to stationary period of PFC development
(Figure 8B) are as follows: EVI2A and TF in the 10s, SLC31A2
and TF in the 20s, and GJB6 and TF in the 30s. Finally, the hub
genes in the recession period of PFC development (Figure 8C)
are as follows: SLC31A2, GJB6, and PLLP in the 40s; SLC31A2,
CLDN10, and PLLP in the 50s; and CLDN10, GJB6, and PLLP in
the 60s. Interestingly, we found that some genes are consistently
identified as hub genes at different age periods within the same
stage. For example, the gene STK32B is consistently identified as
a hub gene at the three age periods during the fast development
stage, the gene TF functions consistently as a hub gene in the
deceleration to stationary period, and the same applies for the
gene PLLP in the recession period. This indicates the importance
of these genes in the development of the human PFC gene

network. The biological functions associated with most of them
provide further detailed information for discovering biological
functions involved in PFC development with age.

We further extracted the subnetworks involving the hub
genes at different developmental stages (see Supplementary
Figure 1). As shown in the figure, it is clear that within each
of the three developmental periods, the subnetworks connecting
the hub genes are largely preserved, showing homogeneity
within each developmental stage, while subnetworks show large
heterogeneity between different stages. This implies that the
difference in brain function at different developmental stages
may be due to the difference in network connectivity, supporting
the importance of network connectivity in brain development
revealed by Oldham et al. (2006).

Development of Five Known Pathways in
PFC and the Identification of Hub Genes
Here, we selected five pathways related to brain function (see
Table 1 for details) to see the developmental trend in PFC over
time. The parameter selection results by loggle are shown in
Supplementary Table 2. Using the parameters, we constructed
network graphs and the network development trends are shown
in Figure 9.

From Figure 9 we can see that, as age increases, the number of
network edges in these five pathways gradually decreases. From
the fetus to the child stage, the network size of these pathways
remains largely stable, meaning that most genes involved in these
pathways are mostly active in the PFC region during this time
period. Then, from the 10s stage to the 30s, the numbers of edges
and genes in all pathways gradually decrease; thus, development
gradually slows down and eventually remains relatively stable
after the 30s. Among the pathways, the pathway hsa04360 (Axon
guidance pathway) has the most nodes and edges, with the
fastest change from child to 30s. Among the five pathways,
the Axon guidance pathway is most sensitive to age changes,
followed by three pathways: the Dopaminergic synapse pathway
(hsa04728), the Platelet activation pathway (hsa04611), and the
FoxO signaling pathway (hsa04068). These three pathways not
only have similar numbers of nodes and edges in PFC, but also
the rates of change in the declining period are similar, and the
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FIGURE 6 | Display of networks corresponding to the nine age periods built with the 300 selected genes. Nodes represent genes and connections between nodes
indicate interactions between genes. Genes without connections were removed from the network display for more clear visualization.

numbers of edges in the stationary period are also similar. In
contrast, the Longevity regulating pathway (hsa04211) has the
fewest nodes and edges, the slowest rate of change in the declining
period, and the lowest number of edges in the final stationary
stage. The results provide evidence that these pathways are highly
active during the fast development stage and are abolished with
the slowing down of PFC development.

We further explored the hub genes of these pathways at the
fast development period (fetus, infant, and child), as shown
in Figure 10. We found that the hub genes of each pathway
during this period are nearly unchanged. Among them, the
hub genes for the Dopaminergic synapse pathway (hsa04728)
are PRKCB and GNG7; for the Longevity regulating pathway
(hsa04211) are IGF1 and PRKAB2; for the Axon guidance
pathway (hsa04360) are LRRC4C and PARD6G; for the Platelet
activation pathway (hsa04611) are TLN2 and RASGRP2; and for

the FoxO signaling pathway (hsa04068) are CCNB1 and PRKAB2,
while one additional gene SMAD3 is shown in the child stage. We
also performed a central analysis of the other two developmental
stages, the declining stage (10s, 20s, and 30s) and the stable stage
(40s, 50s, and 60s). Owing to limits of space, we placed the
results in Supplementary Material. Please see Supplementary
Figures 2, 3 for more details.

DISCUSSION

In this work, to decipher the dynamic temporal development
trajectory of PFC region in human brain, we conducted a
comprehensive network analysis using transcriptomics data.
The loggle model was used to reconstruct the developmental
trajectory of the time-varying network graph of gene interaction,
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FIGURE 7 | Network topology change (A) shows the numbers of edges and nodes included in the network at different ages (B) represents the specific edge (left
y-axis), network diameter (left y-axis), and network density (right y-axis) in the network corresponding to each age period (C) shows a bubble chart of a similarity
matrix generated based on the CNSI. Larger bubbles indicate higher similarity of the corresponding two networks (D) is a hierarchical clustering tree dendrogram
generated based on the similarity matrix.

and the global network attribute index is used to quantify
the network changes. At the same time, the development of
PFC was divided into three stages by similarity analysis, and
hub genes at different developmental stages were identified.
In addition, several known KEGG pathways related to brain
function were chosen for analysis to further demonstrate the
development trend of PFC.

The Evolution of Time-Varying Graphs
Reveals the Developmental Pattern of
Human PFC
Owing to its functional properties, development of the human
brain usually continues for a long time, starting with the fetus
and continuing through adolescence. PFC is one of the last
brain regions to mature (Fuster, 2002; Sushil et al., 2013).
Studies have demonstrated from histological and cognitive
perspectives that the developmental characteristics of PFC
exhibit rapid development in early childhood, decelerate in
adolescence, and then gradually reach a mature and stable

state in adulthood (Teffer and Semendeferi, 2012), after
which a change to a destructive manner occurs in old age
(Salthouse, 2009).

Although the macro-level PFC development model has been
widely accepted, owing to technological limitations, the trend of
development at the gene interaction level has not been clearly
described. To fill this gap, in our study, we used time-series gene
expression data to construct the developmental pattern of PFC
at the molecular level by estimating the time-varying network
graphs. We found that, from the fetus to child stages, PFC
experiences fast development and most genes are active during
this period. This is due to the increase in the number of neurons
in the entire cortex as the size of the brain increases and changes
in microstructures such as synapses occur throughout childhood
(Teffer and Semendeferi, 2012). The density of neurons in the
frontal lobe does not peak until later childhood. This period
is a critical period for the development of PFC function: 0–6
years old is a critical period for sensory, motor and language
development (Marsh et al., 2008); working memory may begin to
develop after 8 months (Diamond and Doar, 1989; Fuster, 2001),
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FIGURE 8 | Identification of hub genes throughout the lifespan in PFC development (A) shows the fast development period of PFC evolution, namely, fetus, infant,
and child; (B) shows that the evolution of PFC gradually declined to a stable period, that is, 10s, 20s, and 30s; (C) demonstrates the destructive recession period in
PFC evolution, namely, 40s, 50s, and 60s. A larger node size in the graph corresponds to a higher node degree. Nodes with the highest degree are considered to be
hubs and are placed in the network center.

and cognitive ability related to recognition memory and basic
planning skills appears after 5 years old (Hathaway and Newton,
2019); after 6 years old, cognitive development dominates.
According to Anderson et al. (2001), the fast development of
logical reasoning capabilities that rely on cognitive functions
also occurs between the ages of 6 and 9. Thus, training during
the rapid development of PFC is very important for future
mental development. After that, the development speed drops
dramatically. This period is accompanied by a decrease in the
volume of gray matter, a corresponding increase in the volume
of white matter, and a decrease in synaptic density (Masliah et al.,
1993). The frontal executive function may continue to develop
during this period and continue into adulthood (Grafman, 1994).

After the age of 20, it tends to be stable, and its development
is basically maintained at a low level. After the age of 50, a
destructive decline occurs, which may be due to a decrease in
brain capacity, loss of synapses, and a decline in cognitive ability
(Salthouse, 2009). Unsurprisingly, the trend of PFC development
coincides with the cubic trajectory mentioned by Lenroot and
Giedd (2006). The development of PFC shows continuous and
long-term changes throughout the lifespan. Many studies have
reported that PFC is most sensitive to changes in aging (Jernigan
et al., 2001), which may be closely related to the function of
this area, such as in age-related learning, working memory,
and other cognitive functions (Salat et al., 1999; Veluw et al.,
2012).
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FIGURE 9 | The development of the time-varying networks over different age
periods. The y-axis shows the number of edges at each developmental stage
fitted by the loggle model.

Hub Genes at Different Stages Reflect
the Development of Different Functions
of PFC
We attempted to elucidate the mechanism driving the
development of PFC by performing a central analysis in three
stages based on developmental trends; as a result, we identified
several hub genes. Hub genes involved in the development of
PFC during its fast development phrase are as follows: STK32B,
CX3CL1, BACH2, PCSK1, NPPA, IPCEF1, and RGS4. Several of
these hub genes play specific roles in neuronal differentiation or
synapse formation. For example, the gene STK32B is upregulated
during the fetus period and then enters a suppressed state.
This gene encodes a protein involved in synaptic plasticity,
learning, memory, and neurodegeneration, and is a key factor
in the transmission of information between cells (Temtamy
et al., 2008). Therefore, the upregulation of STK32B may be
related to the development of early cognitive function and
synapse formation in PFC. This is not the first time this gene
has been found to be expressed in the human cortex (Ciuculete
et al., 2018). The genes CX3CL1 and PCSK1 are involved in the
formation of synapses, with CX3CL1 encoding a chemokine that
is highly expressed in dendritic cells (Gunner et al., 2019), which
is upregulated after birth and participates in the development of
PFC neurons and synapses. The discovery of this gene during
PFC development overlaps with the findings of a previous study
(Wruck and Adjaye, 2020). The gene IPCEF1 is expressed in
the brain and reported to be involved in nerve injury-induced
changes in membrane receptor trafficking (Guan et al., 2009).
This gene has been repeatedly reported in human brain tissue
(Sunkin et al., 2012). In this data analysis, we found that this
gene is downregulated in the early stage of PFC development
and its expression gradually increases with aging. The gene
RGS4 has been shown to be involved in neuron differentiation
and neurite growth (Pallaki et al., 2017). An animal test by
Huang et al. (Huang et al., 2018) showed that RGS4 deficiency
in the prefrontal cortex may be related to schizophrenia-related

behaviors. In short, our analysis results indicate that these
genes play a key role in the formation of synapses and other
microstructures during the critical period of PFC development,
thereby affecting the development of human cognitive functions
such as storage, planning or execution.

The hub genes involved in the slowing down to a stable
period of PFC development are as follows: EVI2A, SLC31A2,
TF, and GJB6. These genes are related to the conduction of
nerve impulses and the electrophysiological balance of cell
membranes. The function of the EVI2A gene is related to
transmembrane signaling receptor activity. Mladinov et al.
(2016) reported that this gene is differentially expressed in
the dorsolateral and medial orbitofrontal cortex of patients
with schizophrenia. The other three genes are involved in the
transmembrane transport of different substances. Among them,
the protein encoded by the gene TF mediates the transport of
iron ions, balances iron levels in the body, and participates in
myelination and remyelination of the central nervous system
(Carden et al., 2019). It has been shown that dysfunction of
this gene is related to Parkinson’s disease (Si et al., 2018).
Finally, GJB6 is regulated by glucocorticoids in the brain to
provide energy and maintain the supply of nutrients to the brain
(Lu et al., 2018).

The hub genes involved in the late stage of PFC are as follows:
SLC31A2, GJB6, PLLP, and CLDN10. These genes play active
roles in maintaining the structural integrity of the nerve system
during PFC decline. For example, gene PLLP has been shown
to encode myelin structural proteins, and to be involved in the
development of myelin around neurons and maintaining the
integrity of the myelin structure (Yaffe et al., 2015). Hamacher
et al. (2001) reported the isolation of PLLP in mammalian brain,
and noted that the mutated product of this gene may be involved
in Bardet–Biedl syndrome type 2 (BBS2).

By exploring the expected interactions between hub genes
and other genes in each subnetwork, we found that although
hub genes at different age periods are changing, the subnetworks
connecting hub genes within the same developmental period
are largely preserved (see Supplementary Figure 1). There
is large homogeneity of network connectivity within each of
the three developmental periods, but large heterogeneity across
different developmental stages. The genes that directly interact
with STK32B are involved in a variety of tissue differentiation
and developmental functions and nerve conduction, for example,
regulating cell development and differentiation (CSRP2) (Wang
et al., 2017), involved in the excitability of neurons in spinal
cord and brain tissue (GLRA2) (Wegner et al., 2012), extracellular
matrix remodeling and Migration (CCBE1) (Mesci et al., 2017),
regulation of neuronal migration (SRGAP1) (Kutys and Yamada,
2014), regulation of signaling pathways involved in development
and cell growth (RSPO3) (Chen et al., 2018), and axon growth
(C1orf187) (Riyadh et al., 2014). The genes that directly interact
with TF are involved in cell-to-cell communication and neuro-
related diseases, such as the completion of myelin sheath
and the maintenance of cell-to-cell communication (MOG)
(Tea et al., 2019), neuregulin (ERBB3) (Kiavue et al., 2020),
participating in schizophrenia (EVI2A) (Mladinov et al., 2016),
and promote the formation of nodules in the peripheral nervous
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FIGURE 10 | Central analysis of networks corresponding to the fast development stage (fetus, infant, and child) for the five pathways. A larger node corresponds to
a larger node degree. Hub genes with large node degree values in each network are placed in the center of the network.
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system (GLDN) (Maluenda et al., 2016). The genes that directly
interact with PLLP are involved in cell-to-cell communication
and neurological-related diseases, such as the completion and
maintenance of myelin sheath (MOG), the ion transporter
(SLC31A2) (Schweigel-Röntgen, 2014), and Parkinson’s disease
(DBNDD2) (Kim et al., 2006).

Most of the genes that are pivotal at different stages of
PFC development related to brain function development and
related diseases, have been evaluated in previous studies; but
for some of them there is no clear connection to human
brain development. This requires further experimental analysis,
although this is beyond the scope of the present study. In
summary, our analysis shows that, during the fast development
period of PFC, the hub genes mainly regulate the proliferation
and differentiation of neurons and the development of synapses.
In the stable period of PFC development, the hub genes
mainly maintain the stability of PFC in the human brain by
maintaining nerve impulses and electrophysiological balance.
Finally, during the stage of decline of PFC, the hub genes mainly
function to combat the degradation of nerve fibers. This also
illustrates the microstructure involved in the development of PFC
throughout the lifespan.

Pathways Regulate PFC Development
Through Hub Genes
The five chosen pathways experience changes along with the
development of human PFC. Among them, the Axon guidance
pathway is the most sensitive to aging throughout the lifespan.
It is well known that axons are an important component
of neurons and play an important role in the development
of the human cerebral cortex. During the critical period
of human cerebral cortex development, the Axon guidance
pathway is highly developed. As the number of neurons
increases until the PFC develops completely, with aging, the
synapses in the frontal lobe begin to be pruned and decline
(Masliah et al., 1993), nerve function declines, and synaptic
incapacitation occurs. This overlaps with the results of another
study describing that synapse-related pathways decline with age
(Wruck and Adjaye, 2020). As a pathway directly related to
PFC development, this pathway may regulate the development
of PFC mainly through the LRRC4C and PARD6G genes
(Figure 10). The gene LRRC4C has been reported to be
involved in the regulation of axon development and synaptic
development, and its deficit can cause neurodevelopmental
disorders (Maussion et al., 2016). In the case of the gene
PARD6G, it was found to be involved in synaptic modification
(Marques et al., 2016).

For the Dopaminergic synapse pathway, Platelet activation
pathway, and FoxO signaling pathway. As a neuromodulator,
dopamine (DA) plays a vital role in the normal cognitive
processes of PFC (Seamans and Yang, 2004). The hub genes
PRKCB and GNG7 may play important roles in this pathway.
The protein encoded by the PRKCB gene is involved in a
variety of cellular signaling pathways, and it was found in mouse
experiments that this kinase may also be involved in regular
neuronal function and endocrine regulation, which are related

to emotional response behavior (Hayashi et al., 2017). Regarding
the hub gene GNG7, it was found to be involved in motor
control between dopamine-mediated striatum neurons (Sasaki
et al., 2013). The brain is one of the regions of the body with
an abundance of blood. It is thus unsurprising that the Platelet
activation pathway develops in parallel with PFC. Our analysis
showed the roles of the hub genes TLN2 and RASGRP2 in linking
this pathway with PFC development. The hub gene TLN2 is
thought to be involved in atherosclerosis (von Essen et al., 2016).
The RASGRP2 gene encodes the main signaling molecule in
platelets, and mutations in this gene affect thrombus formation
and cause severe bleeding (Canault et al., 2014). The forkhead
box O (FOXO) transcription factor provides protection for nerve
cells during oxidative stress (Maiese et al., 2007). Our analysis
revealed that the hub genes PRKAB2, SMAD3, and CCNB1
play key roles in the regulation of PFC development in the
FoxO signaling pathway. The three genes are mainly involved
in the positive regulation of AMPK activity (Nagy et al., 2018),
signal transduction (Ma et al., 2019), and cell cycle control
(Fang et al., 2014).

The Longevity regulated pathway showed the slowest pattern of
change among the five pathways. The hub genes involved in the
Longevity regulated pathway are IGF1 and PRKAB2. The proteins
encoded by these two genes are involved in the caloric restriction
(CR) pathway (Barzilai et al., 2012) and the positive regulation
of AMPK activity (Nagy et al., 2018), establishing the connection
between the pathway and PFC development.

Our research combines the time-varying networks
constructed by the loggle model with traditional network
analysis (e.g., similarity analysis, centrality analysis), revealing
the characteristics of normal human brain development patterns,
and expanding our knowledge of the spatio-temporal event in
human brain development. However, the current study does
have some limitations. Due to the computational limitation of
the algorithm, we can only select a limited number of genes for
analysis. The algorithm needs to be further improved to include
more gene data. Owing to the specificity of the tissue site, the
current gene level analysis of the human cerebral cortex is almost
entirely dependent on the examination of post-mortem tissue
and the data are not from a cohort study. In addition, we hope
to integrate other omics data such as miRNA, DNA methylation,
and proteomics data into the network analysis, to obtain a more
comprehensive picture of PFC development. We plan to pursue
these issues in future work.
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Faisal, F. E., and Milenković, T. (2014). Dynamic networks reveal key players in
aging. Bioinformatics 30, 1721–1729. doi: 10.1093/bioinformatics/btu089

Fang, Y., Yu, H., Liang, X., Xu, J., and Cai, X. (2014). Chk1-induced CCNB1
overexpression promotes cell proliferation and tumor growth in human
colorectal cancer. Cancer Biol. Ther. 15, 1268–1279. doi: 10.4161/cbt.29691

Fellows, L. K. (2007). Advances in understanding ventromedial prefrontal function:
the accountant joins the executive. Neurology 68, 991–995. doi: 10.1212/01.wnl.
0000257835.46290.57

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Applications of the Lasso and
Grouped Lasso to the Estimation of Sparse Graphical Models, Technical Report,
Stanford University.

Fuster, J. (2003). “Anatomy of the prefrontal cortex,” in The Prefrontal Cortex, ed.
J. Fuster (Arcueil: John Libbey Eurotext), 1–10.

Fuster, J. M. (2002). Frontal lobe and cognitive development. J. Neurocytol. 31,
373–385.

Fuster, J. N. M. (2001). The prefrontal cortex–an update: time is of the essence.
Neuron 30, 319–333. doi: 10.1016/s0896-6273(01)00285-9

Gibberd, A. J., and Nelson, J. D. B. (2014). “High dimensional changepoint
detection with a dynamic graphical lasso,” in Proceedings of the 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence.

Gibberd, A. J., and Nelson, J. D. B. (2015). Regularized estimation of piecewise
constant gaussian graphical models: the group-fused graphical lasso. Statistics
26, 623–634.

Gibberd, A. J., and Nelson, J. D. B. (2017). Regularized estimation of piecewise
constant gaussian graphical models: the group-fused graphical lasso. J. Comput.
Graph. Stat. 26, 623–634. doi: 10.1080/10618600.2017.1302340

Grafman, J. (1994). “CHAPTER 8 – Neuropsychology of the prefrontal cortex,” in
Neuropsychology, ed. D. W. Zaidel (San Diego, CA: Academic Press), 159–181.
doi: 10.1016/b978-0-08-092668-1.50014-4

Guan, X., Zhu, X., and Tao, Y. X. (2009). Peripheral nerve injury up-regulates
expression of interactor protein for cytohesin exchange factor 1 (IPCEF1)
mRNA in rat dorsal root ganglion. Naunyn Schmiedebergs Arch. Pharmacol.
380, 459–463. doi: 10.1007/s00210-009-0451-7

Gunner, G., Cheadle, L., Johnson, K. M., Ayata, P., Badimon, A., Mondo, E., et al.
(2019). Sensory lesioning induces microglial synapse elimination via ADAM10
and fractalkine signaling. Nat. Neurosci. 22, 1075–1088. doi: 10.1038/s41593-
019-0419-y

Hallac, D., Park, Y., Boyd, S., and Leskovec, J. (2017). “Network Inference via
the time-varying graphical lasso,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. August
2017. (Halifax, Canada), 205–213.

Hamacher, M., Pippirs, U., Khler, A., Müller, H. W., and Bosse, F. (2001).
Plasmolipin: genomic structure, chromosomal localization, protein expression

Frontiers in Genetics | www.frontiersin.org 15 November 2020 | Volume 11 | Article 574543

https://www.liwenbianji.cn/ac
https://www.frontiersin.org/articles/10.3389/fgene.2020.574543/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.574543/full#supplementary-material
https://doi.org/10.1073/pnas.0901910106
https://doi.org/10.1207/s15326942dn2001_5
https://doi.org/10.1207/s15326942dn2001_5
https://doi.org/10.1146/annurev.bioeng.9.060906.151904
https://doi.org/10.2337/db11-1300
https://doi.org/10.2337/db11-1300
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1084/jem.20130477
https://doi.org/10.1084/jem.20130477
https://doi.org/10.1007/s12035-019-1519-0
https://doi.org/10.1007/s12035-019-1519-0
https://doi.org/10.1016/0278-2626(92)90061-p
https://doi.org/10.1016/j.csbj.2016.02.001
https://doi.org/10.1093/carcin/bgy140
https://doi.org/10.1093/carcin/bgy140
https://doi.org/10.1016/j.jpsychires.2018.03.008
https://doi.org/10.1038/nature10524
https://doi.org/10.1111/rssb.12033
https://doi.org/10.1002/dev.420220307
https://doi.org/10.1093/biomet/91.3.591
https://doi.org/10.1002/humu.23750
https://doi.org/10.1093/bioinformatics/btu089
https://doi.org/10.4161/cbt.29691
https://doi.org/10.1212/01.wnl.0000257835.46290.57
https://doi.org/10.1212/01.wnl.0000257835.46290.57
https://doi.org/10.1016/s0896-6273(01)00285-9
https://doi.org/10.1080/10618600.2017.1302340
https://doi.org/10.1016/b978-0-08-092668-1.50014-4
https://doi.org/10.1007/s00210-009-0451-7
https://doi.org/10.1038/s41593-019-0419-y
https://doi.org/10.1038/s41593-019-0419-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-574543 November 10, 2020 Time: 17:41 # 16

Wang et al. Time-Varying Network Analysis

pattern, and putative association with Bardet-Biedl syndrome. Mamm. Genome
12, 933–937. doi: 10.1007/s00335-001-3035-5

Hathaway, W. R., and Newton, B. W. (2019). Neuroanatomy, Prefrontal Cortex.
Treasure Island, FL: StatPearls Publishing LLC.

Hayashi, T., Shibata, H., Kurihara, I., Yokota, K., and Itoh, H. (2017). High
glucose stimulates mineralocorticoid receptor transcriptional activity through
the protein kinase C β signaling. Int. Heart J. 58, 794–802. doi: 10.1536/ihj.
16-649

Huang, M. W., Lin, Y. J., Chang, C. W., Lei, F. J., Ho, E. P., Liu, R. S., et al.
(2018). RGS4 deficit in prefrontal cortex contributes to the behaviors related
to schizophrenia via system xc(-)-mediated glutamatergic dysfunction in mice.
Theranostics 8, 4781–4794. doi: 10.7150/thno.25189

Jaffe, A. E., Shin, J., Collado-Torres, L., Leek, J. T., and Weinberger, D. R.
(2014). Developmental regulation of human cortex transcription and its clinical
relevance at single base resolution. Nat. Neurosci. 18, 154–161. doi: 10.1038/nn.
3898

Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C.,
Bonner, J., et al. (2001). Effects of age on tissues and regions of the cerebrum
and cerebellum. Neurobiol. Aging 22, 581–594. doi: 10.1016/s0197-4580(01)00
217-2

Kiavue, N., Cabel, L., Melaabi, S., Bataillon, G., Callens, C., Lerebours, F.,
et al. (2020). ERBB3 mutations in cancer: biological aspects, prevalence and
therapeutics. Oncogene 39, 487–502. doi: 10.1038/s41388-019-1001-5

Kim, J. M., Kyu-Hwa, L., Yeo-Jin, J., Jung-Hwa, O., So-Young, J., In-Sung, S., et al.
(2006). Identification of genes related to Parkinson’s disease using expressed
sequence tags. DNA Res. 13, 275–286.

Kolar, M., and Xing, E. P. (2013). Estimating networks with jumps. Electron. J. Stat.
6, 2069–2106. doi: 10.1214/12-ejs739

Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., and Gibb, R. (2012).
Experience and the developing prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A.
109, 17186–17193.

Kuntal, B. K., Dutta, A., and Mande, S. S. (2016). CompNet: a GUI based tool for
comparison of multiple biological interaction networks. BMC Bioinformatics
17:185. doi: 10.1186/s12859-016-1013-x

Kutys, M. L., and Yamada, K. M. (2014). An extracellular-matrix-specific GEF-GAP
interaction regulates Rho GTPase crosstalk for 3D collagen migration. Nat. Cell
Biol. 16, 909–917. doi: 10.1038/ncb3026

Le, S., Mladen, K., and Xing, E. P. (2009). KELLER: estimating time-varying
interactions between genes. Bioinformatics 25, 128–136.

Lenroot, R. K., and Giedd, J. N. (2006). Brain development in children and
adolescents: insights from anatomical magnetic resonance imaging. Neurosci.
Biobehav. Rev. 30, 718–729. doi: 10.1016/j.neubiorev.2006.06.001

Liu, X., Somel, M., Tang, L., Yan, Z., Jiang, X., Guo, S., et al. (2012). Extension
of cortical synaptic development distinguishes humans from chimpanzees and
macaques. Genome Res. 22, 611–622. doi: 10.1101/gr.127324.111

Lu, Y., Zhang, R., Wang, Z., Zhou, S., Song, Y., Chen, L., et al. (2018). Mechanistic
effect of the human GJB6 gene and its mutations in HaCaT cell proliferation
and apoptosis. Braz. J. Med. Biol. Res. 51:e7560.

Luciana, M., and Nelson, C. A. (1998). The functional emergence of prefrontally-
guided working memory systems in four- to eight-year-old children.
Neuropsychologia 36, 273–293. doi: 10.1016/s0028-3932(97)00109-7

Ma, X., Das, N. K., Castillo, C., Gourani, A., Perekatt, A. O., Verzi, M. P., et al.
(2019). SMAD family member 3 (SMAD3) and SMAD4 repress HIF2alpha-
dependent iron-regulatory genes. J. Biol. Chem. 294, 3974–3986. doi: 10.1074/
jbc.ra118.005549

Maiese, K., Chong, Z. Z., and Shang, Y. C. (2007). “Sly as a FOXO”: new paths
with Forkhead signaling in the brain. Curr. Neurovasc. Res. 4, 295–302. doi:
10.2174/156720207782446306

Maluenda, J., Manso, C., Quevarec, L., Vivanti, A., Marguet, F., Gonzales, M., et al.
(2016). Mutations in GLDN, encoding gliomedin, a critical component of the
nodes of ranvier, are responsible for lethal arthrogryposis. Am. J. Hum. Genet.
99, 928–933. doi: 10.1016/j.ajhg.2016.07.021

Marques, E., Englund, J. I., Tervonen, T. A., Virkunen, E., Laakso, M., Myllynen,
M., et al. (2016). Par6G suppresses cell proliferation and is targeted by loss-of-
function mutations in multiple cancers. Oncogene 35, 1386–1398. doi: 10.1038/
onc.2015.196

Marsh, R., Gerber, A. J., and Peterson, B. S. (2008). Neuroimaging studies of
normal brain development and their relevance for understanding childhood

neuropsychiatric disorders. J. Am. Acad. Child. Adolesc. Psychiatry 47, 1233–
1251. doi: 10.1097/chi.0b013e318185e703

Masliah, E., Mallory, M., Hansen, L. A., Deteresa, R. M., and Terry, R. D. (1993).
Quantitative synaptic alterations in the human neocortex during normal aging.
Neurology 43, 192. doi: 10.1212/wnl.43.1_part_1.192

Maussion, G., Cruceanu, C., Rosenfeld, J. A., Bell, S. C., Jollant, F., Szatkiewicz,
J., et al. (2016). Implication of LRRC4C and DPP6 in neurodevelopmental
disorders. Am. J. Med. Genet. Part A 173, 395–406. doi: 10.1002/ajmg.a.38021

Meinshausen, N., and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the lasso. Ann. Stat. 34, 1436–1462. doi: 10.1214/
009053606000000281

Mesci, A., Huang, X., Taeb, S., Jahangiri, S., Kim, Y., Fokas, E., et al. (2017).
Targeting of CCBE1 by miR-330-3p in human breast cancer promotes
metastasis. Br. J. Cancer 116, 1350–1357. doi: 10.1038/bjc.2017.105

Ming, Y., and Yi, L. (2006). Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc. 68, 49–67. doi: 10.1111/j.1467-9868.2005.
00532.x

Mladinov, M., Sedmak, G., Fuller, H. R., Babic Leko, M., Mayer, D., Kirincich,
J., et al. (2016). Gene expression profiling of the dorsolateral and medial
orbitofrontal cortex in schizophrenia. Transl. Neurosci. 7, 139–150.

Molnár, Z., Clowry, G. J., Šestan, N., Alzu’Bi, A., Bakken, T., Hevner, R. F.,
et al. (2019). New insights into the development of the human cerebral cortex.
J. Anat. 235, 432–451. doi: 10.1111/joa.13055

Moreau, M. P., Bruse, S. E., Jornsten, R., Liu, Y., and Brzustowicz, L. M. (2013).
Chronological changes in MicroRNA expression in the developing human
brain. PLoS One 8:e60480. doi: 10.1371/journal.pone.0060480

Nagy, S., Maurer, G. W., and Hentze, J. L. (2018). AMPK signaling linked to
the schizophrenia-associated 1q21.1 deletion is required for neuronal and
sleep maintenance. PLoS Genet. 14:e1007623. doi: 10.1371/journal.pgen.100
7623

Oldham, M. C., Horvath, S., and Geschwind, D. H. (2006). Conservation and
evolution of gene coexpression networks in human and chimpanzee brains.
Proc. Natl. Acad. Sci. USA 103, 17973–17978. doi: 10.1073/pnas.0605938103

Pallaki, P., Georganta, E. M., Serafimidis, I., Papakonstantinou, M. P.,
Papanikolaou, V., Koutloglou, S., et al. (2017). A novel regulatory role of
RGS4 in STAT5B activation, neurite outgrowth and neuronal differentiation.
Neuropharmacology 117, 408–421. doi: 10.1016/j.neuropharm.2017.
02.012

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., and Bagos,
P. G. (2011). Using graph theory to analyze biological networks. BioDataMining
4:10.

Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009a). Partial correlation estimation by
joint sparse regression models. J. Am. Stat. Assoc. 104, 735–746. doi: 10.1198/
jasa.2009.0126

Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D. Y., Pollack, J. R., et al.
(2009b). Regularized multivariate regression for identifying master predictors
with application to integrative genomics study of breast cancer. Ann. Appl. Stat.
4, 53–77. doi: 10.1214/09-aoas271

Riyadh, M. A., Shinmyo, Y., Ohta, K., and Tanaka, H. (2014). Inhibitory effects of
draxin on axonal outgrowth and migration of precerebellar neurons. Biochem.
Biophys. Res. Commun. 449, 169–174. doi: 10.1016/j.bbrc.2014.05.013

Salat, D. H., Kaye, J. A., and Janowsky, J. S. (1999). Prefrontal gray and white
matter volumes in healthy aging and Alzheimer disease. Arch. Neurol. 56:338.
doi: 10.1001/archneur.56.3.338

Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiol.
Aging 30, 507–514. doi: 10.1016/j.neurobiolaging.2008.09.023

Sasaki, K., Yamasaki, T., Omotuyi, I. O., Mishina, M., and Ueda, H. (2013). Age-
dependent dystonia in striatal Ggamma7 deficient mice is reversed by the
dopamine D2 receptor agonist pramipexole. J. Neurochem. 124, 844–854. doi:
10.1111/jnc.12149

Scardoni, G., and Laudanna, C. (2012). Centralities Based Analysis of Complex
Networks. London: IntechOpen.

Schweigel-Röntgen, M. (2014). The families of zinc (SLC30 and SLC39) and copper
(SLC31) transporters. Curr. Top.Membr. 73, 321–355. doi: 10.1016/b978-0-12-
800223-0.00009-8

Seamans, J. K., and Yang, C. R. (2004). The principal features and mechanisms
of dopamine modulation in the prefrontal cortex. Progr. Neurobiol. 74, 1–58.
doi: 10.1016/j.pneurobio.2004.05.006

Frontiers in Genetics | www.frontiersin.org 16 November 2020 | Volume 11 | Article 574543

https://doi.org/10.1007/s00335-001-3035-5
https://doi.org/10.1536/ihj.16-649
https://doi.org/10.1536/ihj.16-649
https://doi.org/10.7150/thno.25189
https://doi.org/10.1038/nn.3898
https://doi.org/10.1038/nn.3898
https://doi.org/10.1016/s0197-4580(01)00217-2
https://doi.org/10.1016/s0197-4580(01)00217-2
https://doi.org/10.1038/s41388-019-1001-5
https://doi.org/10.1214/12-ejs739
https://doi.org/10.1186/s12859-016-1013-x
https://doi.org/10.1038/ncb3026
https://doi.org/10.1016/j.neubiorev.2006.06.001
https://doi.org/10.1101/gr.127324.111
https://doi.org/10.1016/s0028-3932(97)00109-7
https://doi.org/10.1074/jbc.ra118.005549
https://doi.org/10.1074/jbc.ra118.005549
https://doi.org/10.2174/156720207782446306
https://doi.org/10.2174/156720207782446306
https://doi.org/10.1016/j.ajhg.2016.07.021
https://doi.org/10.1038/onc.2015.196
https://doi.org/10.1038/onc.2015.196
https://doi.org/10.1097/chi.0b013e318185e703
https://doi.org/10.1212/wnl.43.1_part_1.192
https://doi.org/10.1002/ajmg.a.38021
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1038/bjc.2017.105
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/joa.13055
https://doi.org/10.1371/journal.pone.0060480
https://doi.org/10.1371/journal.pgen.1007623
https://doi.org/10.1371/journal.pgen.1007623
https://doi.org/10.1073/pnas.0605938103
https://doi.org/10.1016/j.neuropharm.2017.02.012
https://doi.org/10.1016/j.neuropharm.2017.02.012
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1214/09-aoas271
https://doi.org/10.1016/j.bbrc.2014.05.013
https://doi.org/10.1001/archneur.56.3.338
https://doi.org/10.1016/j.neurobiolaging.2008.09.023
https://doi.org/10.1111/jnc.12149
https://doi.org/10.1111/jnc.12149
https://doi.org/10.1016/b978-0-12-800223-0.00009-8
https://doi.org/10.1016/b978-0-12-800223-0.00009-8
https://doi.org/10.1016/j.pneurobio.2004.05.006
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-574543 November 10, 2020 Time: 17:41 # 17

Wang et al. Time-Varying Network Analysis

Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N.,
et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex.
J. Neurosci. 28, 3586–3594. doi: 10.1523/jneurosci.5309-07.2008

Si, Q. Q., Yong-Sheng, Y., Yan, Z., Qing, T., Li, Z., and Kezhong, Z. (2018). Plasma
transferrin level correlates with the tremor-dominant phenotype of Parkinson’s
disease. Neurosci. Lett. 684, 42–46. doi: 10.1016/j.neulet.2018.07.004

Sunkin, S. M., Lydia, N., Chris, L., Tim, D., Gilbert, T. L., Thompson, C. L., et al.
(2012). Allen brain atlas: an integrated spatio-temporal portal for exploring the
central nervous system. Nucleic Acids Res. 41, D996–D1008.

Sushil, S., Arain, M., Rais, A., Nel, W., Johal, L., Sandhu, R., et al. (2013).
Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 9, 449–461.

Tea, F., Lopez, J. A., Ramanathan, S., Merheb, V., and Brilot, F. (2019).
Characterization of the human myelin oligodendrocyte glycoprotein antibody
response in demyelination. Acta Neuropathol. Commun. 7:145.

Teffer, K., and Semendeferi, K. (2012). Human prefrontal cortex: evolution,
development, and pathology. Progr. Brain Res. 195, 191–218.

Temtamy, S. A., Aglan, M. S., Valencia, M., Cocchi, G., and Ruiz-Perez,
V. L. (2008). Long interspersed nuclear element-1 (LINE1)-mediated deletion
ofEVC,EVC2,C4orf6, andSTK32B in Ellis–van Creveld syndrome with
borderline intelligence. Hum. Mutat. 29, 931–938. doi: 10.1002/humu.20778

Veluw, S. J., Sawyer, E. K., Clover, L., Cousijn, H., Jager, C., Esiri, M. M., et al.
(2012). Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s
disease: a relationship with IQ. Brain Struct. Funct. 217, 797–808. doi: 10.1007/
s00429-012-0381-x

von Essen, M., Rahikainen, R., Oksala, N., Raitoharju, E., Seppälä, I., Mennander,
A., et al. (2016). Talin and vinculin are downregulated in atherosclerotic
plaque, tampere vascular study. Atherosclerosis 255, 43–53. doi: 10.1016/j.
atherosclerosis.2016.10.031

Wang, J., and Kolar, M. (2014). Inference for sparse conditional precision matrices.
arXiv [Preprint].

Wang, S. J., Wang, P. Z., Gale, R. P., Qin, Y. Z., and Ruan, G. R. (2017). Cysteine
and glycine-rich protein 2 (CSRP2) transcript levels correlate with leukemia
relapse and leukemia-free survival in adults with B-cell acute lymphoblastic
leukemia and normal cytogenetics. Oncotarget 8, 35984–36000. doi: 10.18632/
oncotarget.16416

Wang, W., and Wang, G. Z. (2019). Understanding molecular mechanisms of the
brain through transcriptomics. Front. Physiol. 10:214. doi: 10.3389/fphys.2019.
00214

Wegner, F., Kraft, R., Busse, K., Härtig, W., Ahrens, J., Leffler, A., et al.
(2012). Differentiated human midbrain-derived neural progenitor cells express
excitatory strychnine-sensitive glycine receptors containing α2β subunits. PLoS
One 7:e36946. doi: 10.1371/journal.pone.0036946

Witten, D. M., Friedman, J. H., and Simon, N. (2011). New insights and faster
computations for the graphical lasso. J. Comput. Graph. Stat. 20, 892–900.
doi: 10.1198/jcgs.2011.11051a

Wruck, W., and Adjaye, J. (2020). Meta-analysis of human prefrontal cortex reveals
activation of GFAP and decline of synaptic transmission in the aging brain. Acta
Neuropathol. Commun. 8:26.

Yaffe, Y., Hugger, I., Yassaf, I. N., Shepshelovitch, J., Sklan, E. H., Elkabetz, Y.,
et al. (2015). The myelin proteolipid plasmolipin forms oligomers and induces
liquid-ordered membranes in the Golgi complex. J. Cell Sci. 128, 2293–2302.
doi: 10.1242/jcs.166249

Yang, J., and Peng, J. (2018). Estimating time-varying graphical models. J. Comput.
Graph. Stat. 29, 191–202. doi: 10.1080/10618600.2019.1647848

Zhang, W. F., Liu, C. C., and Yan, H. (2010). Clustering of temporal gene expression
data by regularized spline regression and an energy based similarity measure.
Pattern Recognit. 43, 3969–3976. doi: 10.1016/j.patcog.2010.07.011

Zhou, S., Lafferty, J., and Wasserman, L. (2010). Time varying undirected graphs.
Mach. Learn. 80, 295–319. doi: 10.1007/s10994-010-5180-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wang, Wu, Fang, Sa, Li, Cao and Cui. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 17 November 2020 | Volume 11 | Article 574543

https://doi.org/10.1523/jneurosci.5309-07.2008
https://doi.org/10.1016/j.neulet.2018.07.004
https://doi.org/10.1002/humu.20778
https://doi.org/10.1007/s00429-012-0381-x
https://doi.org/10.1007/s00429-012-0381-x
https://doi.org/10.1016/j.atherosclerosis.2016.10.031
https://doi.org/10.1016/j.atherosclerosis.2016.10.031
https://doi.org/10.18632/oncotarget.16416
https://doi.org/10.18632/oncotarget.16416
https://doi.org/10.3389/fphys.2019.00214
https://doi.org/10.3389/fphys.2019.00214
https://doi.org/10.1371/journal.pone.0036946
https://doi.org/10.1198/jcgs.2011.11051a
https://doi.org/10.1242/jcs.166249
https://doi.org/10.1080/10618600.2019.1647848
https://doi.org/10.1016/j.patcog.2010.07.011
https://doi.org/10.1007/s10994-010-5180-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Time-Varying Gene Network Analysis of Human Prefrontal Cortex Development
	Introduction
	Materials and Methods
	Data
	Human PFC Time-Series Gene Expression Data
	Initial Feature Selection
	Age Grouping

	Estimating Time-Varying Graphs With the Loggle Model
	Local Group Graphical Lasso Estimation
	Model Fitting and Optimization
	Parameter Adjustment

	Parameter Setting
	Comparison With Other Models
	Global Network Properties
	Network Similarity Analysis
	Central Analysis

	Results
	Comparisons of Loggle, Kernel, and Invar
	Development of Human PFC Time-Varying Network Graph
	Hub Genes Accompanying the Development of Human PFC
	Development of Five Known Pathways in PFC and the Identification of Hub Genes

	Discussion
	The Evolution of Time-Varying Graphs Reveals the Developmental Pattern of Human PFC
	Hub Genes at Different Stages Reflect the Development of Different Functions of PFC
	Pathways Regulate PFC Development Through Hub Genes

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


