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Abstract

The pathogenesis of natural scrapie and other prion diseases remains unclear. Examining transcriptome variations in
infected versus control animals may highlight new genes potentially involved in some of the molecular mechanisms of
prion-induced pathology. The aim of this work was to identify disease-associated alterations in the gene expression profiles
of the caudal medulla oblongata (MO) in sheep presenting the symptomatic phase of natural scrapie. The gene expression
patterns in the MO from 7 sheep that had been naturally infected with scrapie were compared with 6 controls using a
Central Veterinary Institute (CVI) custom designed 4x44K microarray. The microarray consisted of a probe set on the
previously sequenced ovine tissue library by CVI and was supplemented with all of the Ovis aries transcripts that are
currently publicly available. Over 350 probe sets displayed greater than 2-fold changes in expression. We identified 148
genes from these probes, many of which encode proteins that are involved in the immune response, ion transport, cell
adhesion, and transcription. Our results confirm previously published gene expression changes that were observed in
murine models with induced scrapie. Moreover, we have identified new genes that exhibit differential expression in scrapie
and could be involved in prion neuropathology. Finally, we have investigated the relationship between gene expression
profiles and the appearance of the main scrapie-related lesions, including prion protein deposition, gliosis and spongiosis. In
this context, the potential impacts of these gene expression changes in the MO on scrapie development are discussed.
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Introduction

Scrapie is a transmissible progressive neurodegenerative disease
that occurs naturally in sheep and goats and constitutes one of the
most widely studied models of transmissible spongiform enceph-
alopathies (I'SE) [1], a disease class that includes bovine
spongiform encephalopathy (BSE) in cattle and human pathologies
such as Creutzfeldt-Jakob disease and Kuru [1,2,3,4]. A hallmark
of all these diseases is the accumulation of an insoluble and
protease-resistant isoform of the host-encoded prion protein (PrP),
termed PrP*. According to the prion hypothesis, PrP* is the
principal component of the infectious particle, which is called a
prion [3].

The neuropathology of prion diseases is characterized by the
appearance and accumulation of PrP® in the brain, spongiform
degeneration, neuronal loss, and the activation of glial cells
[6,7,8,9,10,11,12,13].

Intensive research has aimed to investigate the relationship
between the accumulation of prion protein PrP*, activation of

@ PLoS ONE | www.plosone.org

microglia and astrocytes and the pathology of prion disease (e.g.,
neuronal loss) [12,13,14,15]. Although several attempts have been
made to understand the molecular events of these diseases
[16,17,18], the precise molecular and cellular mechanisms that
underlic prion discase pathogenesis, and even the role of PrP® in
host species, remain unknown.

The pathogenesis of scrapie is strongly influenced by genetics,
and certain PrP polymorphisms are associated with individual
susceptibility [19,20,21,22]. However, genes other than PRNP
(Prion Protein) are also thought to be involved in the pathogenesis
of prion diseases [23,24].

The identification of genes that are differentially expressed
during prion infection may help identify novel risk genes and assist
in the discovery of the abnormal intracellular or intercellular
pathways that are responsible for the pathogenesis of prion
diseases. Several functional genomics studies performed in
experimental scrapie-infection animal models have indicated that
several genes are misregulated in the advanced phase of the
infection [25,26,27,28,29,30]; these results are not surprising
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because the disease is preceded by neuronal loss and is usually
fatal. Only a limited number of ovine genomics and expression
analysis tools and data are available, and thus far, no study has
focused on the “whole genome” expression (transcriptome)
variation in natural scrapie sheep.

The objectives of the present study were to identify the
differentially expressed genes in the brains of scrapie-symptomatic
sheep using a CGVI custom designed 4 x44K microarray platform
and to analyze any possible relationship between scrapie-related
neuropathological changes and the transcriptional activities of the
identified genes.

Gene Expression Profiling and Prion Association

Results

Scrapie-related lesions

The neuropathological features of scrapie were evaluated in the
medulla oblongata tissue of 6 control and 7 clinical scrapie-
infected sheep. Spongiosis, PrP> deposition and GFAP immuno-
reactivity were consistent with the features of classical scrapie [31].
PrP%¢ deposition and spongiosis were only detected in the affected
animals (Figure 1). Particular medullary nuclei in the obex, such as
the nucleus dorsal motor of the vagus, the spinal tract of the
trigeminal nerve and the solitary tract nucleus, were severely
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Figure 1. Quantitative values of PrP°¢ deposition, Glial fibrillary acidic protein expression as a marker for astrocytes and
spongiform degeneration is shown as the mean = standard error (A). Black bars: control sheep; grey bars: scrapie-infected sheep. Significant
differences were determined using Student’s t test (**P<0.01). PrPsc staining in control (B) and scrapie medulla oblongata sample (C). GFAP staining
in control (D) and scrapie medulla oblongata sample (E). Haematoxilin/Eosine staining in control (F) and scrapie medulla oblongata sample (G).

doi:10.1371/journal.pone.0019909.g001
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Figure 2. Condition trees of clustering analysis. The hierarchical
cluster analysis (Euclidean distance clustering algorithm) was performed
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using PermutMatrix [100] and 148 genes that differed significantly and
had a known function. Each colored bar represents a gene. The color
represents the level of expression, and the sample information is listed
across the top. The gene names are indicated. Note the distinct patterns
of altered gene expression between the positive and control animals.
doi:10.1371/journal.pone.0019909.9002

affected in the infected group. The low level of spongiosis observed
in the control animals was an artifact due to the method of analysis
(Image]). Even with the high variability observed in the scrapie
group, the differences between the groups were statistically
significant (P<<0.01).

A generalized increase in the expression of the astroglial marker
glial fibrillary acidic protein (GFAP) was observed in the brains of
the scrapie-affected sheep (P<<0.01). Hyperplasia and hypertrophy
of the stellate GFAP-positive cells, consistent with reactive
astrogliosis, was observed in the medulla oblongatas of the affected
sheep.

Identification of genes in the medulla oblongata that are
differentially expressed in natural scrapie

Transcriptome profiles in the medullae of sheep affected by
scrapie and controls were obtained using the Central Veterinary
Institute (CVI) custom 4 x44K microarray, containing a custom
eArray probe design from the earlier sequenced ovine tissue
cDNA libraries supplemented with all of the currently available
transcripts from the NCBI/EBI databases and with probes
available from the Agilent ovine catalog. A total of 300 probe sets
displayed statistically significant differences between the control
and scrapie groups that were equal to or greater than a 2-fold
change. Genes from Ouis aries are relatively poorly annotated, but
after BLAST searches to publicly available databases, it was
possible to identify a set of 148 known genes (Table S1) from the
complete set of 300 differentially expressed genes. The micro-
array data have been deposited in the array express and are
accessible through accession no. E-MTAB-532. To determine the
gene ontology (GO) categories of the deregulated genes in the
scrapie condition, we used DAVID Bioinformatics Resources
2008 [32,33] (NIAID/NIH, USA). Based on the GO analysis, 93
genes had known functions; 40 genes were upregulated (43%),
and 53 genes were downregulated (57%). The functional group
with the highest number of regulated genes was the ion binding-
related genes (15 genes), followed by the nucleotide binding-
related genes (11 genes), the structural molecule activity genes (8
genes), the immune system-related genes (7 genes) and the ion
transport-related genes (5 genes) (Table S1).

The significance of each GO term was also evaluated using an
enrichment analysis, which calculates the significance of each
cluster based on the proportion of differentially expressed genes
that contributes to the respective cluster. The only significantly
(P<<0.05) deregulated cellular component GO term was the one
corresponding with extracellular region proteins, including 24
deregulated genes (15.4% of the total modified known genes) with
P=1.0x10"" of which 11 are extracellular matrix components
(P=1.7x1077). Six GO terms related to molecular function were
significantly ~deregulated: calcium ion binding (9 genes,
P=9.8x10"%, growth factor binding (4 genes, P=3.0x1077),
extracellular matrix structural constituent (3 genes, 6.3x1072),
SMAD binding (3 genes, 3.7x1077), carboxylic acid binding
(3 genes, 4.8x107?) and platelet derived growth factor binding
(2 genes, P=2.8x107%. After clustering analysis, the animals
studied were grouped according to their disease condition

(Figure 2).
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Validation of gene expression profiling by quantitative
RT-PCR

To confirm the results of the microarray, we carried out
quantitative RT-PCR using SYBR Green assays on a selected
number of targets. For validation, we chose three upregulated
(calpain 6 [CAPNG], galanin 1 [GALAI] and pancreatitis associated
protein 1[PAPI]) and three downregulated (collagen 1 alpha 2
[COL1AZ], collagen 3 alpha 1 [COL3A41] and melatonin receptor
1b [MTNRIB]) genes that had previously been reported to be
associated with prion and other neurodegenerative diseases
[34,35,36,37,38,39,40].

The quantitative RT-PCR analyses confirmed the microarray
expression results (Figure 3). Differences between the control and
scrapie groups were statistically significant for each of the 6 genes
analyzed (P<<0.05).

Identification of neuropathology-related genes

To identify the relationship between gene expression profiles and
scrapie neuropathology, a Mixed Model approach was performed
using the Gene Expression Analysis with Mixed Models (GEAMM)
software [41]. The program analyzes the continuous effect of
scrapie related lesions, measured as Prp* deposition, GFAP
immunostaining and spongiosis, on individual gene expression.
GEAMM vl1.4 gives the probability of the regression coeflicient
obtained between gene expression and the scrapie lesions. As the
reliability of microarray experiments is optimal for fold changes
values higher than 1.7, we developed this analysis with genes whose
expression was modified at a level equal to or higher than this
proportion. We identified 357 probe sets whose expression was
related to PrP* deposition and 12 related to astrocytosis. Any probe
was related with spongiosis. After BLAST searching, these probes
corresponded to 98 genes, of which 94 could be linked to prion
deposition and 4 could be linked to astrocytosis. Gene ontology
analysis revealed genes mainly related to protein and ion binding
and hydrolase activity in the association study. A list of known genes
whose expression is highly correlated with PrP%° deposition and
GFAP expression is indicated in Figure 4.

Gene Expression Profiling and Prion Association

Validation of neuropathology-associated genes

In addition to the previously described 6 genes that were used to
validate the array results, 5 additional genes were chosen for
validation using quantitative RT-PCR, of which two, glutathione
peroxidase 1 [GPXI] and metallothionein 2A [MT24], were
associated with prion deposition, one, pleiotrophin [PTN], was
associated with GFAP expression, and two, coactosin-like 1
[COTLI] and N-acetylgalactosaminidase alpha [NAGA], were
associated with prion deposition and GFAP expression. The genes
were selected based on their known function in the brain or their
association with other neurodegenerative diseases. Linear regres-
sion was calculated between the normalized expression values of
these genes and prion deposition, GFAP immunoreactivity and
spongiosis scores/rates. Four of the 6 genes previously analyzed for
array validation (COLIA2, MTNRIB, PAPI and CPN6) also
displayed significant associations with prion deposition. Therefore,
these genes were also included in the validation regression analysis.
Table 1 indicates the posterior probability values of linear
regression between the chosen genes and the neuropathology.
The previously established associations were confirmed in 7 of the
9 analyzed genes.

Discussion

The neuropathology of prion disease is characterized by an
accumulation of the pathological form of the prion protein,
spongiform changes and reactive gliosis [42]. Although the lesion
pattern of these diseases has been described in great depth, the
precise mechanisms regulating these processes remain unknown.
Genomic approaches show an extraordinary potential to uncover
the molecular basis of complex mechanisms and to discover new
biomarkers. A number of genomic analyses of brain tissue from
rodent-adapted models of prion diseases (including CJD, scrapie
and BSE) have been performed [25,26,27,28,29,30]. However,
there are fewer studies focused on the study of mRINA profiles in
natural human CJD [43], bovine BSE [44] or ovine scrapie [45].
We present here for the first time the genomic expression
variations of natural scrapie, using samples from natural

Real-time qPCR confirmation of microarray results
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Figure 3. Relative mRNA levels. Indicated by fold change versus controls, the expression levels of the selected genes analyzed by microarray (grey
bar) and quantitative RT-PCR (black bar) in the scrapie medulla oblongata are shown.

doi:10.1371/journal.pone.0019909.g003
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PrP*® deposition
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Function PROBE ID Protein Accession Probability (afr';y] Slope of regression

catalytic activity A_70_P005411 isoform cra_a NP_001069580.1 1.91E-04 30 002442 [
A_70_P020866 gamma-indugible protein 30 NP_001094721.1 8.56E-04 23 I 0o
CUST_349_PI398851701  alpha-n. NP_001119817.1 1.67E-15 18 001231
A_70_P058871 alpha-n-acetylgalactosaminidase precursor NP_001119817.1 3.40E-09 17 W 001094
A_70_P038041 haptoglobin precursor CBJ23333.1 456E-08 48 I 00353
A_70_P038831 lecithin-cholesterol acyltransferase NP_001156040.1 568E-05 20
A_70_P050106 cathepsin h NP_001029557.1 2.07E-04 24
A_70_P046896 ca++ cardiac fast twitch 1 NP_001069235.1 3.33E-04 26
A_T0_P010336 serine carboxypeptidase 1 precursor protein NP_001039374.1 4.65E-04 22

hydrolase activity A_T0_P058491 ectonucleotide pyrophosphatase phosphodiesterase 1 ABI36805.1 9.43E-04 20
A_70_P017831 choline kinase isoform cra_b XP_002699448.1 121E-03 18
A_70_P030551 cathepsin z NP_001071303.1 2.25E-03 18
A_70_P018251 folate receptor 1 P02702.2 3.43E-03 3.0
A_70_P016686 beta-mycsin heavy chain DAA25710.1 4.04E-03 18 Il 001245
A_T0_P0O37211 dual specificity phosphatase 1 DAA1B042.1 5.33E-03 24 -v.02027 [
A_70_P029876 dead (asp-glu-ala-asp) box polypeptide 31 NP_001095356.1 B.44E-03 1.8 o300 [l
A_70_P007861 ca++ ubiquitous NP_001107626.1 8.28E-03 18 Il oouss
A_T0_P070246 prostaglandin reductase 1 DAA26494 1 3.25E-05 20 001715 [
A_70_P029451 nuclear receptor subfamily 4 group a member 1 NP_001069379.1 5.72E-05 24 -0.02264
A_T0_P0B2376 trm1-like protein DAAZ0877.1 1.49E-04 24 -0.02226
A_70_P048851 amyloid beta a4 protein XP_002920111.1 1.54E-04 2.0 001902 [
A_70_P030486 nuclear receptor subfamily 4 group a member 1 XP_002752535.1 163E-04 25 002567 [
A_70_P028061 sphingosine kinase 1 XP_876032.3 1.890E-04 17 M oo
A_70_P009666 metallothionein 2a* NP_001068508.1 1.90E-04 22 Il 001473
A_70_P038048 carbonic anhydrase 3 NP_001029609.1 2 86E-04 18 00129 [l

ion binding A_T0_P057981 gata binding protein 3 NP_001084335.1 521E-04 58 [ EIEES
A_T0_P017891 lymphocyte cytosolic protein 1 (I-plastin) XP_001929180.1 7.22E-04 1.9 - 0.01457
A_70_P021121 thrombospondin 4 XP_002916261.1 7.52E-04 2.7 -o02348 [
A_70_P029801 fibulin 2 XP_002697177.1 B.OOE-04  -2.4 00192 [
A_70_P043078 gem interacling protein DAA28291 1 2.12E-03 20 - 0.01361
A_T0_P029716 fibulin 5-like XP_002697177.1 2.72E-03 29 ey |
A_70_P006536 o-6-methylguanine-dna meth fi XP_001249418.2 3.96E-03 2.2 -0.01972
A_70_P025151 topoisomerase i arginine serine-rich NP_001179507.1 6.18E-03 1.8 puroy |
A_70_P00B136 procollagen- -oxoglutarate 5-dioxygenase 1 precursor XP_001491381.1 6.72E-03 23 Il oo

molecular transducer A_T0_P050231 transient receptor potential cation subfamily member 2 NP_001019664.1 2.58E-04 1.7 01176

activity A_70_P035981 triggering receptor expressed on myeloid cells 2 NP_001073048.1 1.99E-03 24 0.01981
A_70_P052426 cd84 molecule XP_5881364  477E-03 26 I 001599
A_T0_P029428 eukaryolic translation initiation factor 4e binding protein 1~ NP_001071361.1 3.73E-05 18 Il ooti01
A_70_P033191 eukaryotic translation initiation factor subunit 3 ASPJITA 2.36E-04 -1.8 ooess I

nucleic acid binding A_70_P059536 splicing arginine serine-rich 5 BAD93041.1 1.17E-03 18 -0.01506
A_70_P0BB541 reverse transcriptase-like AAI26683.1 420E03  -43 -002s62 (NI
A_T0_P028571 reverse transcriptase-like CAA10770.1 7.17E-03 -3.0 002285 [
A_70_P015916 sterol o-acyltransferase 1 XP_5474452  3.35E-05 22 I o.01883
A_70_P037148 peroxisomal acyl-coenzyme a oxidase 3 NP_0010967068.1 2.39E-04 1.7 -0o1435
A_T0_P046281 and tetratri de repeat containing 4  NP_001099089.1 2 61E-04 21 0.01763
A_T0_P031876 tetratricopeptide repeat domain 21b DAA32684.1 5.14E-04 27 0022; [

other A_70_P009466 phosphoserine aminatransferase 1 XP_0028199351 123E-03 18 Il oow72
A_T0_P0623886 phosphoinositide 3-kinase regulatory subunit 4 NP_001093784.1 3.00E-03 1.7 -o.o130: [
A_70_P009476 member ras oncogene family NP_001095636.1 5.11E-03  -2.1 oo1e0s [
CUST_5724_PI375351158  regenerating islet-derived 3 gamma* NP_001033103.1 9.07E-03 76 I 00053
A_T0_P046516 calpain 6* NP_001179160.1 3.40E-03 5.1 I 00351
CUST_480_PI396851701  melatonin receptor 1b° XP 6070953 266604 -7 -0043s3 [N
A_7T0_P016121 coactosin-like 1* XP_001112723.1 7.50E-13 17 I o016
A_70_P058931 glutathione peroxidase 1* NP_776501.1 2.40E-08 2.0 Il o037
A_70_P017906 pleiotrophin AAID2713 1 501E-07 -18 oos22 [l
CUST_7801_PI375351158  fk506-binding protein 15 XP_002689981.1 3.55E-06 1.7 0.01058
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“Genes chosen for validation by quantitative RT-PCR

Figure 4. Relationship between gene expression profiles and scrapie histopathological lesions. A selection of genes whose expression
was significantly related to PrP*¢ deposition and glial fibrillary acidic protein expression grouped by their function is shown. Probe ID, accession
numbers of proteins encoded by these genes and probability of the slope of regression between histopathological lesions and gene expression
obtained using a Mixed Model approach are shown.

doi:10.1371/journal.pone.0019909.9004
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symptomatic scrapie-affected sheep, and the correlation with
scrapie-associated neuropathology.

To identify the differentially expressed genes in natural scrapie,
we applied a global analysis of the overall transcriptome response
in caudal medulla oblongata tissue from natural scrapie-affected
sheep in a terminal stage of the clinical disease. This analysis was
performed using the CVI custom 4 x44K oligo-DNA microarray
platform containing 13 k 60-mer oligos representing previously
sequenced clones from a custom normalized cDNA library of
sheep Peyer’s Patch, tonsil and brain, supplemented with all
publicly available transcripts from NCBI/EBI databases (unpub-
lished data).

Statistical analysis identified 300 significantly changed probes
having that met the threshold of a 2-fold change of expression
compared to controls. These 300 probes could be linked to 93
genes with a known function based on gene ontology (GO)
analysis. In accordance with previous reports [26,46], the genes
identified in this study were included in the following major
groups: secreted extracellular proteins, lysosomal proteases,
defense and immune response-related proteins and signal
transduction-related genes.

The following four genes were previously described in other
studies related to gene expression alteration in brains of murine
scrapie: insulin-like growth factor binding protein 5, early growth
response 1, ATPase Ca++ transporting cardiac muscle and
aldehyde dehydrogenase [26,30,47]. The directions of these gene
expression changes were in accordance with the changes observed
in our study.

In previous studies, the ApoE protein has been proposed as a
biomarker for prion diseases [48,49,50,51] in addition to its role in
the Alzheimer’s disease pathway [52,53]. Several studies have also
reported the involvement of many members of the apolipoprotein
gene family (dpodl, Apod4, ApoCl, ApoC2, ApoC3 and ApoD) in
transmissible spongiform encephalopathies [26,30,54,55]. Al-
though the expression of these genes was not modified in our
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Table 1. Confirmation of the association results for 9 genes using quantitative RT-PCR and linear regression.
PRION RELATED GENES
Gene b FC

Microarray qRT-PCR Microarray qRT-PCR
CAPN6 0.03451** 0.008486* 5.1%* 3.99*
COLIA2 —0.0435%** —0.007667* —4.4%* —5.25%*
COTL1 0.0116*** 0.00913** 1.7%* 1.64*
GPX1 0.0137*** 0.00967** 2.0%* 2.14**
MT2A 0.01479*** 0.00950*** 2.3*%* 1.97%**
MTNR1B —0.0325*** —0.009857* —7.7** —12.22%
PAP1 0.04053** 0.007388 7.6** 9.79*%
NAGA 0,01094*** 0.01496** 1.8%* 1.66**
GLIOSIS RELATED GENES
Gene b FC

Microarray qRT-PCR Microarray qRT-PCR
coTL1 0.01319% 0.00913* 1.7%% 1.64*
NAGA 0.01398** 0.01496** 1.8% 1.66**
PTN —0.01233* —0.0090 —1.8%* —1.52%
Slope values (b) and association probabilities (* P<0.05; ** P<0.01, *** P<<0.001) for microarray and RT-PCR data. Gene expression changes in scrapie medullae
indicated by the fold change (FC) obtained with microarray (grey bar) and RT-PCR data (black bar) and their statistical significance (* P<0.05; ** P<0.01, *** P<<0.001).
doi:10.1371/journal.pone.0019909.t001

study, the ApoC4 (apolipoprotein C-IV) gene was upregulated in
our scrapie samples. ApoC4 is normally primarily expressed in the
liver and is involved in lipoprotein metabolism. The role of ApoC4
in the brain remains unclear, but it is thought to be involved in
nerve growth, regeneration and neuronal repair. Our results
indicate that this gene, a member of a family previously associated
with TSEs, may also participate in scrapie-associated neuropa-
thology and/or repair.

The microarray data also indicated a 5-fold increase in the
expression of a gene similar to bovine calpain 6. This
overexpression was confirmed by quantitative RT-PCR. Calpains
are a family of calcium-activated intracellular cysteine proteases
that are involved in many physiological events, such as proteolysis,
apoptotic cell death, and necrosis [56,57]. In agreement with our
results, perturbations in the activity of other members of the
calpain family (e.g., calpain 1) have been associated with the
neuropathological processes contributing to Alzheimer’s disease
[58,59].

Galanin (GALAI) overexpression has also been reported in
Alzheimer’s disease [34,35], and it has been demonstrated that an
increase of this neuropeptide impairs cognitive function [39]. In
our study, the expression of GALAI showed 7- and 1l-fold
increases according to the microarray and qRT-PCR analyses,
respectively. This is the first time that the overexpression of this
gene has been associated with prion diseases, suggesting a possible
role of GALAI in some of the behavior alterations reported in
scrapie [60].

The pancreatitis-association protein I (PAPI) gene displayed
high upregulation in the medullac of scrapie-affected sheep,
according to both microarray and qRT-PCR data. Although
PAPI is an inflammatory protein that is specifically overexpressed
in pancreatitis [61], it is elevated in the ileal Peyer’s patch of lambs
during the early phase of scrapie infection [62]. Moreover, the
intervention of PAP1 in very early stages of Alzheimer’s disease
has been reported [38]. Our results confirmed the participation of
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PAPI in scrapie pathogenesis, not only in the early phases of the
diseases but also in the clinical stage.

The expression of the melatonin receptor 1B (MTNRIB) gene
was highly downregulated in the medullae of affected animals.
This finding is in agreement with the neuroprotective activities of
melatonin described in Alzheimer’s disease [63,64]. Consequently,
the decrease in MTNRIB gene expression could contribute to the
brain damage observed in scrapie-affected brainstems.

Variations in the gene expression of different collagens have also
been reported in Alzheimer’s disease. Although increased levels of
collagen XXV promote an Alzheimer’s-like disease in mice [65],
the upregulated expression of collagen VI in neurons of
Alzheimer’s disease brains may represent a protective mechanism
[66]. In our results, three types of collagen (COLIA2, COL3A1 and
COLI1241) exhibited downregulation in sheep with natural scrapie
and might be related to the loss of their neuroprotective role.

Changes in the extracellular matrix (ECM) have been
previously described in prion diseases [15,67], but until now,
specific studies based on collagen changes in the ECM have not
been performed. Overall, collagens are not abundant in the ECM
of the brain, but they are present in the vascular basement
membrane [68]. The area studied includes a circumventricular
organ, the area postrema, which is a structure rich in different
collagen types and one of the entrances of the prion to the brain
[69]. Further studies will be necessary to clarify the effects of prion
infection on the synthesis of collagens.

Most microarrays reports have focused on comparisons
between healthy and scrapie tissues [28,29,30]. However, when
we analyze tissues from animals naturally infected with scrapie,
the degree of lesion for each individual can be very different, even
for animals included in the same group (healthy or scrapie
affected). These differences could influence the individual
expression profiles. In the present study, we aimed to investigate
the effect of prion-related lesions on gene expression, which
would contribute to the knowledge of the molecular mechanisms
of scrapie neuropathology. Immunohistochemical and hematox-
ylin-eosin image quantification of PrP% deposition, GFAP
immunostaining and spongiosis could be considered continuous
effects. We used the GAMM vl.4 software [41] to perform a
Mixed Model Analysis using a Bayesian approach that allowed
the establishment of associations between gene expression data
and prion deposition, gliosis and spongiosis. The spongiosis,
PrP* deposits and generalized reactive gliosis observed in the
medulla oblongatas of scrapie-affected animals in the present
study were in accordance with previous descriptions of classical
scrapie [31,70,71,72,73] and support the hypothesis that Prp5°
deposition elicits a responsive glial cell proliferation and the
appearance of spongiotic lesions [15,74,75,76]. The increase of
GFAP in affected animals was in accordance with the microarray
experiment results, in which the GFAP gene was upregulated in
scrapie medullae with a 1.7-fold change (data not shown in Table
S1 because only genes with a FC>2 are represented). The
mechanisms associated with the expression of GFAP in scrapie-
affected medullae, along with the molecules involved in prion
deposition or spongiform degeneration, remain unclear. The
association between gene expression changes and these processes
could contribute to the knowledge of their molecular pathways.

In contrast to the scrapie vs. healthy comparison study, most of
the genes that displayed highly significant associations with scrapie
neuropathological lesions are new candidate markers and have not
been previously linked to prion diseases. This method allowed us
to identify genes that could be related to prion-specific processes
without the need for a high and significant difference between the
controls and the infected animals. The association study revealed a
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high number of genes that are associated with prion deposition in
the medulla oblongata. From these, the genes that showed the
highest association probability were mainly involved in protein,
nucleic acid and ion binding and hydrolase activity. Coactosin-like
protein (CLP) shares significant homology with coactosin, an F-
actin binding protein from Dictyostelium discoideum [77]. CLP mRNA
is widely distributed throughout the tissue and is expressed at high
levels in the placenta, lung, kidney, and peripheral blood
leukocytes and at low levels in the brain, liver and pancreas
[78]. Altered levels of structural proteins have been observed in
neurological disorders using proteomic assays [79,80,81]. For
example, increases of coactosin-like protein 1 (COTLI) have been
reported in a proteomic analysis in Parkinson’s disease that was
proposed to be associated with a structural reorganization of
parkinsonian substantia nigra [82]. In agreement with this, we
identified a positive association between the expression of this gene
and the levels of prion deposition and GFAP immunoreactivity,
along with a significant overexpression in scrapie medullae (FC:
1.76) that suggests a role for this structural protein in different
neuropathological processes.

Oxidative stress has been proposed to play an important role in
the pathogenesis of prion discase [83]. PrPY plays an important
role in anti-oxidative defense, and its deficiency increases
susceptibility to oxidative stress [84]. Glutathione peroxidase is
one of the major antioxidant enzymes in the detoxification of
hydrogen peroxide [85,86]. The brain is considered to have lower
GPx-1 activity compared with other tissues [85]. This enzyme is
abundant in activated microglia and is present at low levels in most
neurons [85]. In vitro studies have indicated that the lack of GPx/
enhances the toxicity of the amyloid beta-peptide [87]. GPx-I
positive microglia are increased in Parkinson’s disease and
dementia with Lewy bodies, and it has been proposed that GPx-
I can participate in a cellular process to enzymatically degrade
concentric Lewy bodies [88]. In accordance with that finding, we
observed a positive association between the expression of this gene
and prion deposition and a significant overexpression of GPx-1 in
scrapie medullae (FC: 2.03). The role of this protein in prion
diseases has not been previously investigated. Further analysis,
including immunohistochemical determination of GPx-/ in scrapie
brains or in vitro studies, would be necessary to elucidate a
possible neuroprotective role of this enzyme in prion diseases.

Metallothioneins are a group of metal-binding proteins found in
a variety of eukaryotic and prokaryotic species [89,90]. The mouse
MT I and II genes are coordinately regulated by metals,
glucocorticoids and inflammatory stress signals [91]. It has been
shown that the gene coding for MT II is overexpressed in the
brains of scrapie-infected hamsters [92,93], mice [94] and BSE-
affected medulla oblongata [90]. Immunoreactivity for MT II has
been detected consistently in the astrocytes of BSE cases [90]. The
labeling for this protein has also been reported in natural scrapie
[15], particularly in the brain stem and thalamus, not only in
astrocytes and amoeboid-shaped glial cells but also in neuronal
perykaria. In accordance with this finding, we observed a
significant overexpression of the metallothionein 2A (MT2A) gene
in scrapie medullae (Table 1), which was positively associated with
prion deposition but not with GFAP immunostaining.

N-acetylgalactosaminidase alpha (NAGA) cleaves alpha-N-
acetylgalactosaminyl moieties from glycoconjugates. Mutations in
NAGA have been identified as the cause of Kanzaki disease, which
may involve neurologic complications in the CNS and peripheral
nervous system [95]. In the present study, we observed a slight but
significant increase of NAGA expression in scrapie medullae and a
positive association between the expression of this gene and both
prion deposition and astrogliosis. To our knowledge, this is the first
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time that modifications in this gene have been reported in prion
diseases.

In conclusion, our genomic analysis allowed the identification of
new genes involved in the neuropathology of natural scrapie in the
medulla oblongata and the confirmation of genes that were
previously described as biomarkers of other neurodegenerative
diseases, such as Alzheimer’s and Creutzfeldt-Jakob disease in
humans. Likewise, as recently reported [96,97], our findings
confirm the depth of the relationship between scrapie and other
neurodegenerative diseases. In addition, our association analysis
contributes to the knowledge of the molecular mechanisms
underlying the pathogenesis of prion diseases. Further studies of
the cellular localization of the proteins coded by these differentially
regulated genes are necessary to establish the specific and thus far
unknown roles of these markers in TSE pathogenesis. In addition,
the study of the expression of identified genes in other brain areas,
as well as in preclinical scrapie infected animals, could contribute
to the knowledge of their role in the disease.

Materials and Methods

Ethics Statement

This study was carried out in strict accordance with the
recommendations for the care and use of experimental animals of
the University of Zaragoza, in accordance with law (R.D. 1201/
2005). The protocol was approved by its Committee on the Ethics
of Animal Experiments (Permit Number: P102/08).

Animals

A total of 13 Rasa Aragonesa female sheep (aged 3-5 years)
were included in this study. Seven of the animals exhibited clinical
signs of scrapie, and the diagnoses were made by third eyelid
biopsies [60] and confirmed using the rapid test (TeEsE, Bio-Rad)
and immunohistochemistry to detect PrP* using the 6H4
monoclonal antibody [72]. We would like to emphasize that all
of the sheep (n=7) were in the terminal stage of the disease. This
characterization was carried out following previously reported
criteria [60], taking into account the presence of the clinical signs
associated with the disease. Moreover, all of the animals belonged
to flocks that had been previously characterized as scrapie-affected
flocks and were located in different geographical areas. The
animals were genotyped for PRNP polymorphisms as previously
reported [98], and the sheep chosen for this study displayed the
ARQ/ARQ genotype, which is the most susceptible genotype in
this ovine breed [98]. The control animals (n = 6) were all female,
belonged to the same breed, were a similar age (3 to 5 years old)
and had identical PRNP genotypes (ARQ/ARQ). They were
selected from flocks located in areas free of scrapie. The presence
of prion protein was confirmed by immunohistochemical methods
and western blotting [72].

Tissue collection and RNA isolation

Animals were sacrificed by intravenous injection of sodium
pentobarbital and exsanguination, and the necropsy was per-
formed immediately. Physical examination of the scrapie and
control animals did not reveal any other pathological signs. The
samples were rapidly preserved and processed according to
established guidelines regarding safety. Because the lesion pattern
in scrapie is bilateral, one half of the caudal medulla oblongata,
including the obex, was snap-frozen in liquid nitrogen prior to
long-term storage at —80°C until RNA extraction. The other half
was formalin-fixed and paraffin-embedded for further histopath-
ological analysis. Total RNNA was isolated from a tissuemizer
disrupted medulla oblongata in duplicate using TRIzol® (Invitrogen
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AG), followed by a phenol and chloroform extraction and subjected
to a purification step with the NucleoSpin®RNA clean-up kit
RNAII (Macherey-Nagel GmbH & Co. KG). The quality of the
total RNA was assessed using the RNA 6000 Nano Assay kit and the
2100 Bioanalyzer (Agilent Technologies). The Agilent 2100 Expert
software was used to estimate the RNA integrity number (RIN)
index for each sample. The RIN provides a numerical assessment of
the integrity of RNA that facilitates the standardization of the
quality interpretation. Only high quality RNA samples with an RIN
number equal to or higher than 7 were further processed for
microarray analysis.

Histology and prion immunohistochemical detection

A histopathological study of the medulla oblongata at the level
of the obex was performed in HE-stained slices (one from each
individual control and each positive animal).

Immunohistochemical (IHC) studies were performed on
adjacent sections. Positive and negative controls (omission of
primary antibodies in the control and scrapie slides) were
performed for every antibody.

Prion protein detection was performed following pretreatment
as previously described [99]. Briefly, sections were pretreated with
98% formic acid and hydrated, autoclaving to enhance antigen
retrieval. After proteinase K digestion (Roche, 4 g/ml), the
sections were incubated with blocking reagent (DAKO) for
10 min to block endogenous peroxidase activity. Next, sections
were incubated with the monoclonal primary antibody 142 (R-
Biopharm, dilution 1:500) at RT for 30 min. Sections were
processed with endogenous peroxidase blocking. The enzyme-
conjugated polymer Envision (DAKO, 30 min) was used as the
visualization system and DAB (DAKO, 10 min) as the chromogen.
Sections were counterstained with hematoxylin.

Astrogliosis was evaluated based on glial fibrillary acidic protein
(GFAP) immunostaining, as previously described [15,16]. Briefly,
after heat-induced epitope retrieval pretreatment with citrate
buffer (pH 6.0), the sections were incubated for 1 h at RT with the
rabbit polyclonal anti- GFAP antibody (DAKO, dilution 1:400). In
routine immunoreactions, omission of the primary antibodies in
control and scrapie slides served as negative controls.

The preparations were examined with a Zeiss Axioskop 40
optical microscope (Carl Zeiss AG) and a 40X magnification
objective lens (Carl Zeiss AG). The images were captured with a
digital camera (AxioCam MRc), Zeiss AG) that was coupled to
the microscope and a computer and were analyzed using the
Image] 1.4.3.67 image-analysis software package (Psion Image,
NIH) to determine the arcas occupied by PrP* deposition,
astrogliosis and spongiosis. For the evaluation of IHC and HE
slides, captured images were opened in NIH Image/Image] to
evaluate the indices of positivity using the area method. The total
area occupied by brown markers (PrP and GFAP) or by white
spaces (spongiosis) was estimated by setting a “threshold” using the
thresholding tool for selection of these areas and the positive IHC/
HE index for that image was calculated. Significant differences
between the control and scrapie groups were detected using the
Student’s ¢ test.

Custom sheep oligo-DNA microarray

CVI custom 4x44K microarrays were used. They contained
custom eArray designed 60-mer probes on previously sequenced
normalized and subtracted cDNA libraries of ovine Peyers Patch,
obex and tonsil, supplemented by the publicly available Ouvis Aries
transcripts from NCBI/EBI databases and by the Agilent Ovis Aries
transcript catalog. All of the arrays were printed using Sureprint
technology (Agilent Technologies).
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Preparation of labeled cDNA and microarray
hybridization

All of the procedures for the preparation of labeled cRNA
probes and subsequent Genechip hybridizations were performed
according to the Agilent Technologies One-Color Microarray-
Based Gene Expression Analysis guidelines (http://www.home.
agilent.com). First, cDNA was synthesized using 1 pg total RNA as
the template and T7 Promoter Primer of Agilent One-Color RNA
Spike-In (Quick Amp Kit, One-Color, Agilent Technologies).
cDNA was then transcribed and labeled using T7 RNA
Polymerase and cyanine 3-CTP. Finally, labeled cRNAs were
cleaned up using Qiagen’s RNeasy mini spin columns.

The samples were then hybridized to CVI-Agilent custom
4x44K chips. All of the hybridizations were carried out for 17 h at
65°C and 6 rpm. The chips were then washed and incubated with
wash buffers following the manufacturer’s protocol and scanned
using the GenePix 4200AL Scanner (Axon Instruments) in
conjunction with GenePix Pro 6.0 software.

Hybridizations of each sample were performed in duplicate,
resulting in 14 microarrays for clinical scrapie animals and 12 for
negative control animals.

Microarray Data Analysis

The hybridization data were extracted with the feature
extraction 9.5.3.1 image analysis application (Agilent Technolo-
gies) before processing with GeneSpring GX 10.0.2 (Agilent
Technologies). Intensity values of the chips were normalized using
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the 75th percentile method and the expression values were
calculated. The global medulla oblongata gene expression profiles
from clinical scrapie infected animals were compared to the
negative controls. Furthermore, only genes with a Student’s ¢ test
P-value=0.05 and a 2-fold change as the lower limit were selected.
These genes were clustered by their Euclidean distance coefficient
using the Permutmatrix software [100]. A BLAST search of the
GenBank database was performed to identify the genes that were
similar to the differentially expressed probes. Molecular functions
of the genes were classified according to Gene Ontology (GO),
using on-line functional annotation of DAVID Bioinformatics

Resources 2008 [32,33] (NIAID/NIH, USA).

Relationship between neuropathology and gene
expression

The relationship between neuropathological lesions and gene
expression was performed using a Mixed Model Analysis under a
Bayesian approach by the Gene Expression Analysis with Mixed
Models (GEAMM) software [41].

The statistical model assumed the following Bayesian likelihood
of logarithm of gene expression data provided by the oligo-DNA
microarray:

p(yla,b,R)~N(Xa+ch,I®QR),

where a is the array effect and & is the vector regression slope
associated with the numerical valuation of the neuropathological
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Table 2. Genes analyzed by quantitative real-time PCR.
Gene Primer sequence Size (bp) Accession number
Genes to analyse CAPN6 F: TGCAGAACCCCCAGTACATCTT 81 NM_001192231.1%*
R: TGCGCAGGTCCTTTTGCT
COL1A2 F: GCCTAGCAACATGCCAATCCT 72 NM_174520.2**
R: CGCGTGGTCCTCTATCTCCA
COL3A1 F: CGACCAAGAATTAGACTGCCCC 82 NM_001076831.1%*
R: GGGAGCTGTTGGAGGCTGT
COTL1 F: CAAGTTCGCCCTCATCACATG 104 NM_001046593.1%*
R: CGAAATTCTGCACCACCTCCT
GALA1 F: CTTCTCGGACCACATGCCAT 97 EF192581.1*
R: GCCGGGCTTCGTCTTCAG
GPX1 F: GGGCATCAGGAAAACGCC 81 NM_174076.3**
R: GTTGGGCTCGAACCCGC
MT2A F: TCCTGCAGCTGTGCTGGCT 65 NM_001040492.1**
R: CAGCTCTTCTTGCAGGAGGGAC
MTNR1B F: TCCGGAACGCAGGTAACCT 95 NM_001130938.1*
R: GAAGATGGCCGCAAGGGT
NAGA F: TCTCAAGGAGAAATCCCACATTG 71 NM_001046349.1**
R: AGAAGACGATGGCGCTGG
PAP1 F: AGCTGCCTCCACTCCACATG 81 NM_001038014.1*
R: TCAGGCAGGAGAGCAGCATC
PTN F: TCCAAAATGCAGACTCCACAGTAC 51 NM_173955.1**
R: AGCTGCAAATTTTCGACGTTG
Primers (F: Forward and R: Reverse) used for gene amplification, amplicon size and GenBank accession numbers of the sequences used for primer design.
*Ovine cDNA.
**Bovine cDNA.
doi:10.1371/journal.pone.0019909.t002
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changes (¢: prion deposition, spongiosis or astrogliosis). Moreover,
X is the incidence matrix that relates the array effects to the
logarithm of gene expression data (y). Finally, R is the matrix of
residual (co)variances with probe-specific residual variance and
null residual covariances. Prior distributions were assumed to be
flat for a, b and R. A more detailed description of the statistical
procedure was presented by Casellas et al. (2008) [41].

The Bayesian analysis was performed using a Gibbs sampler
approach [101] with a single chain of 500,000 iterations after
discarding the first 50,000. The results with a posterior probability
below 0.01 for a regression slope associated with a neuropatho-
logical lesion greater (or lower) than zero were selected.

Real-time quantitative PCR

We performed quantitative real-time RT-PCR (qRT-PCR) to
confirm the expression of 6 genes that were expressed at a level
higher or lower than three times in the scrapie group compared to
controls in the oligo-DNA microarray expression analysis, and 8
genes that displayed the highest significance in the Mixed Model
Analysis. The PCR primer sequences used for quantification of the
genes encoding CAPNG (calpain 6), COL1AZ2 (collagen Ia), COL3A1
(collagen IIla), GALAI (galanin 1), MTNRIB (melatonin receptor
1B), PAPI (pancreatitis associated protein 1), COTLI (coactosin-
like 1), GPXI (glutathione peroxidase 1), M7T24 (metallothionein
2A), PTN (pleiotrophin) and NAGA (N-acetylgalactosaminidase,
alpha) are indicated by Table 2. The quantitative PCR assays were
designed using Primer Express 2.0 software (Applied Biosystems)
to select appropriate primer sequences from known sheep or
bovine sequences. Whenever possible, the exon—exon border was
considered when designing the primers to prevent the amplifica-
tion of genomic DNA in the PCR reaction. Complementary DNA
(cDNA) was synthesized from 1 pg of each RNA using random
hexamer primers with the Superscript First Standard Synthesis
System for RT-PCR (Invitrogen). Retrotranscription with and
without enzyme was performed to confirm the elimination of any
remaining DNA.

PCR reactions were performed using SYBR® Green (PE
Applied Biosystems) assays. PCR amplification was performed in
an ABIPrism fast 7500 Sequence Detection System (PE Applied
Biosystems). All of the RT-PCR reactions were run in triplicate
with total reaction volumes of 10 pl, using 10-20 ng of cDNA as
template and 300 nM as the final concentration of primers.
Universal conditions were used, with an initial 10 min activation
and denaturation step at 95°C, followed by 40 cycles of 15 s at
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95°C and 30 s at 60°C. The baseline and threshold for Ct
calculation were set automatically with the ABI-Prism 7500
software Version 2.0.1. The levels of gene expression were
determined using the comparative Gt method.

To improve the normalization accuracy, the geometric mean of
three housekeeping genes was used to calculate the normalization
factor (NF), which was used to normalize the expression level of
each gene in each sample [102]. The NF was calculated from the
GAPDH, G6PDH and RPL32 expression data. These genes are
the three most stable reference housekeeping genes in sheep
medulla oblongata and have been used as internal references for
expression studies in scrapie [103]. Primers and PCR conditions
for the amplification of these housckeeping genes have been
previously described [103,104].

Quantitative results obtained from qRT-PCR assays are
expressed as fold change. Student’s ¢ test analyses were used to
determine whether the differences observed between groups were
statistically significant (P<0.05) for the 6 differentially expressed
genes, and a linear regression was performed to confirm the
relationship observed in the 8 genes chosen after Mixed Model
Analysis.

Supporting Information

Table S1  List of differentially expressed genes in natural Scrapie
medulla oblongata and their associated functions based on GO
analysis. Only those genes with FC>2 and a known GO term are
shown. References for differentially expressed genes previously
reported in other TSEs. *Genes chosen for validation by
quantitative RT-PCR.
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