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Abstract: The aim of this work was to study the crystallization kinetics and melting behaviour of
polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide
nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-
isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents
ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation
of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic
nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility
of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its
interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced
by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the
1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both
polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation
activity and activation energy were calculated to support these findings. The nucleation effect of
INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when
evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced
PLA-based nanomaterials that show great potential for ecological and biomedical applications.

Keywords: TMDCs-WS2; PLLA; Nylon 11; nanomaterials; morphology; crystallization; melting

1. Introduction

As research areas, biopolymer science and technology have developed significantly
over the last two decades in order to try and address the increasing environmental concerns
related to the use of traditional petroleum-based polymers [1–3]. Among the various types
of polymer matrices used in the processing of structural biocomposites, thermosetting types
are the most commonly employed. In this category, the bioderived and biodegradable
aliphatic polyester poly (lactic acid) (PLA) is one of the most widely developed and
adopted [2]. These materials have in common good biodegradability, renewability and
reasonably good mechanical properties and they are easily processed using a standard
methodology. The good biocompatibility and bioresorbablity of PLA permit it to be applied
for many interesting applications within the pharmaceutical and medical fields, such as in
tissue engineering, pharmaceuticals, injury management and drug delivery systems [4]. In
addition, the high strength and melting temperature of PLA enable it to be applied as an
engineering plastic [2]. By varying the molecular weight and stereochemical composition
(L-L, D-D, meso), PLA can possess a Young’s modulus as high as 3 GPa and tensile strength
in the range of 50–70 MPa. However, in spite of its many desirable properties, PLA has
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poor toughness and crystallizability and a low heat distortion temperature, highlighting
some of the main challenges that limit its commercial viability [2,3,5–7].

In order to rectify some of these deficiencies and extend the application range of
PLA, it can be modified via chemical copolymerization, polymer blending or nanocom-
posite technology. Chemical copolymerization is a very effective way of modifying the
properties of homopolymers, and a variety of commercially important copolymers have
been achieved via a macromolecular design, as well as chemical copolymerization. In con-
trast to chemical copolymerization, selection of the appropriate blends produced through
physical blending process represents an economic and convenient way of modifying the
properties of homopolymers. In the case of PLA, it has been mixed with a wide range of
polymers (e.g., polypropylene (PP), poly(methyl methacrylate) (PMMA), poly (butylenes
succinate adipate) (PBSA) and nylon 11 [5–7]) to generate different properties. Correct
tuning of the polymer properties can guarantee that the desired performance of the blends,
in terms of toughness, modulus, impact strength, crystallization behaviour, thermal sta-
bility, etc., is attained for a particular application. In particular, PLA/nylon 11 blends
represent a good option to obtain materials with improved thermomechanical properties
compared to neat PLA. Nylon 11 is a bio-based polymer derived from castor oil with
excellent thermal stability and high elongation at break and impact strength [7]. However,
compatibilization is generally required for these incompatible polymer blends to exhibit
the desired properties. The conventional approach to compatibilizing polymer blends is via
the use of copolymers, as this is an efficient means to achieve good blend compatibility [8].
However, the lack of commercial availability of specific copolymers and the fact that they
must first be synthesized prior to blending is one of their limitations [8]. Incorporation of
nanoparticles in order to modify polymers’ interfacial properties and phase morphologies
represents another very promising route for the compatibilization of PLA-based blends.
In this case, the presence of nanoparticles not only improves the compatibility between
the PLA and the blend components but also generates high-performance materials that
combine the advantages of the individual polymers within the blend and additionally the
benefits of the nanoparticle. Several reviews have been written on the subject and provide
a broad overview of PLA-based materials and their properties, demonstrating their many
advantages for use within the ecological and biomedical fields [2,3,8,9].

Many promising PLA nanocomposite materials containing synthetic and natural
nanoparticles have been developed. For example, carbon nanotubes (CNTs) are a type
of anisotropic one-dimensional nanoparticle that have attracted considerable attention in
terms of their beneficial effects on the physical properties of PLA. CNTs have also been
added along with natural fibres, forming novel PLA composites suitable for various struc-
tural applications. In particular, different types of CNTs with specific and unique functional
groups have been selected to interact specifically with the hydroxyl groups of cellulose
natural fibres and to modify the fibres’ surfaces [10]. With halloysite nanotubes (HNTs), it
is possible to design tailored multifunctional materials for use in biomedicine, packaging,
corrosion protection and restoration of cultural heritage [11]. For example, Lisuzzo et al.
reported coating halloysite nanotubes with chitosan via electrostatic interactions, which
proved to be a more feasible strategy to obtain drug delivery systems with tuneable proper-
ties [12]. Numerous other potential applications rooted in the compatibility of the nano-bio
interface of polymer-HNTs are emerging in the areas of bio-scaffolding, drug delivery and
antibacterial treatment [13].

Various methods to enhance the rate of crystallization of PLA have been investigated,
as even the fastest crystallizing PLAs are considered slow when compared to many con-
ventional thermoplastics. To this extent, layered transition metal dicalcogenide (TMDC)
nanostructures with multidimensional structural anisotropy (0D-IF, 1D-INT and 2D), most
notably those of molybdenum and tungsten disulfides (MoS2, WS2), are fundamentally
and technologically intriguing for their versatile properties and applications [14–17]. The
increasing popularity of TMDCs WS2 andMoS2 over their carbon equivalents is attributed
to their low toxicity, biocompatibility [18–21], relative ease of processing and low cost [22].
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In addition, their unique mechanical and tribological properties make them especially
appealing as multifunctional platforms for mimicking structural reinforcement for polymer
nanocomposites, lubrication, catalysis, rechargeable batteries, solar cells, electronics [14–17]
and, more recently, antiballistic applications [23]. Coupled with these remarkable properties,
IF and INT-WS2 nanoparticles demonstrate great potential for improving the crystallization
rate of PLLA [24,25]. In particular, it was found that the addition of a low concentration of
WS2 inorganic nanotubes (0.1 wt.%) into PLLA increased its crystallization temperature
(Tc) by up to 17 ◦C and enabled it to crystallize at a cooling rate as fast as 10 ◦C/min [24].
However, the incorporation of WS2 nanosheets into the biopolymer matrix in fact slows
down the rate of PLLA crystallization due to the inactive nucleating role of the 2D-WS2 [26].
The explanation for this is that the surface of the WS2 nanosheets cannot easily absorb the
PLLA chain segments, which in turn greatly hinders crystal growth. Many studies over the
years have demonstrated that the size, shape and volume fraction of the additive, as well
as other factors, all influence the crystallization processes of confined polymer systems [3].
Understanding the origins of enhanced and retarded crystallization in nanocomposite poly-
mers, including the dynamic mobilities of the different constituents, remains an extremely
difficult task [27–29].

Hybrid ternary blends comprising two polymers and one inorganic nanofiller are
increasingly being studied as a response to various industrial concerns [30]. The object of
the current research is to analyse the role of INT-WS2 in the morphology, crystallization
and melting behaviour of melt-processable PLLA/nylon 11/INT-WS2 nanocomposites.
In terms of commercial applicability, melt processing is the most economically attractive
method for producing polymer blend nanocomposites because it is scalable, versatile and
environmentally friendly.

2. Experimental Section
2.1. Materials and Processing

Poly(L-lactic acid) (PLLA) and nylon 11 were purchased from Goodfellow Ltd.
(Huntingdon, UK). Multiwall WS2 1D nanotubes (INT-WS2) with diameters of 30–150 nm
and lengths of 1–20 µm were obtained from NanoMaterials Ltd. (Yavne, Israel) [24]. All
materials were prepared according to the procedure used in our previous work [31]. Briefly,
the binary and ternary blend systems of PLLA and nylon 11, with or without INT-WS2,
were dispersed in a small volume of ethanol (HPLC grade, Sigma-Aldrich Química SL,
Madrid, Spain) and homogenized by mechanical stirring and ultrasonication for approxi-
mately 15 min. Subsequently, the dispersion was dried in vacuum at 60 ◦C under a pressure
of about 70 mbar for 24 h. The binary (PLLA/nylon 11) and ternary (PLLA/nylon11/INT-
WS2) blend systems were designated as 80/20, 60/40, 40/60, 20/80, 80/20-INT, 60/40-INT,
40/60-INT and 20/80-INT, where the numbers indicate the weight percentages of PLLA
and nylon 11, respectively. The optimum concentration value of INT-WS2 used was
0.5 wt.% [24]. The final mixing took place inside a micro-extruder (Thermo-Haake Minilab
system) operating at 205 ◦C with a rotor speed of 100 rpm and mixing time of 10 min. The
samples were then pressed into films of 0.5 mm thickness in a hot press system using two
heating/cooling plates.

2.2. Characterization Studies

The morphology of the cryogenically fractured film surfaces was characterized using
an ultra-high field-emission scanning electron microscope (FESEM) (SU8000, Hitachi Co.,
Tokyo, Japan). All the micrographs were recorded under high vacuum at an accelerating
voltage of 3 kV.

Thermogravimetric analysis (TGA) was carried out using a TA Instruments Q50
Thermobalance (Waters Cromatografía, S.A., Cerdanyola del Vallès, Spain) under an inert
atmosphere (flow rate = 30 mL/min) at a rate of 10 ◦C/min up to 600 ◦C.

Differential scanning calorimetry (DSC) was performed on a Perkin Elmer DSC7/7700
Differential Scanning Calorimeter (Perkin-Elmer España SL, Madrid, Spain), calibrated with
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indium (Tm = 156.6 ◦C, ∆Hm = 28.45 kJ/kg) and zinc (Tm = 419.47 ◦C, ∆Hm = 108.37 kJ/kg).
Samples with a mass of about 10 mg were encapsulated in standard 50 µL aluminium
pans and then placed within a furnace with nitrogen at a flow rate of 25 mL/min, ready
to be tested. For the non-isothermal crystallization and melting studies, the samples were
first heated to 225 ◦C and then held at this temperature for 5 min to erase any thermal
history. Crystallization of the samples was carried out by cooling, at a rate ranging from
1 to 20 ◦C/min, from 225 to 40 ◦C, followed by heating at 10 ◦C/min over the temper-
ature interval from 40 to 225 ◦C. The crystallization/melting enthalpy of PLLA in the
blend nanocomposites was calculated by considering the weight fraction of PLLA in the
nanocomposites. The degree of crystallinity of PLLA and nylon 11 in the PLLA/nylon
11/INT nanocomposites was estimated using the theoretical heat of fusion of 100% crystal-
lized PLLA and nylon 11 (93 J/g [32] and 189 J/g [33], respectively).

3. Results
3.1. Morphology

The morphology of polymer blend nanocomposites is governed by thermodynamic
and/or kinetic effects, as well as the localization of the nanoparticles. For example, when the
nanoparticles reside at the interface between two polymers, coalescence can be suppressed
and/or interfacial tension reduced, which in turn affects the material’s final properties,
such as its mechanical and thermal properties [30,31].

Figure 1 shows SEM micrographs of the cryogenically fractured surface morphologies
of the melt-processed PLLA/nylon 11 blends. For the 80/20 PLLA/nylon 11 mixture a
distinct two-phase morphology was formed, with the minor nylon 11 phase dispersed
evenly within the PLLA matrix.
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Figure 1. High-resolution SEM micrographs of the PLLA/nylon 11 blends.

An increase in the nylon 11 ratio caused the mean diameter of the PLLA/nylon
11 blend domains to also increase. When the PLLA content was ≤60 wt.%, the phase
morphology was reversed and the PLLA phase became dispersed within the nylon 11.
Furthermore, addition of 0.5 wt.% INT-WS2 led to a dramatic reduction in the size of the
polymer domains for both the PLLA- and nylon 11-rich blends, as shown in Figure 2,
and also improved the compatibility of the two phases. Increasing the magnification to
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20,000× revealed the variation in the interface of the PLLA and nylon 11 in the PLLA/nylon
11-INT nanocomposites (e.g., 80/20-INT and 20/80-INT). All these observations suggest
that the INT-WS2 nanoparticles are uniformly dispersed at the nanoscale without evidence
of aggregates or agglomerates, verifying the effectiveness of the melt extrusion process.
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inserts are regions with higher magnification (×20 k), highlighting the WS2 inorganic nanotubes and
the PLLA–nylon 11 interface.

3.2. Crystallization Behaviour

DSC has been widely used to analyse the crystallization behaviour of PLLA-based
materials. It has been found that nylon 11 can crystallize more rapidly and at a higher
crystallization temperature than PLLA when it was present within the blend [24,34]. As
such, during the cooling segment, nylon 11 separates and crystallizes first. Consequently,
any modification to the PLLA/nylon 11 domain interface can potentially influence the
phase separation, crystallization rate and final crystal morphology of the polymer blends.
Figure 3 shows the DSC thermograms for PLLA, nylon 11, the PLLA/nylon 11 blends
and the PLLA/nylon 11-INT blends obtained during non-isothermal crystallization at
various cooling rates ranging from 1 to 20 ◦C/min, corresponding to temperature changes
that are found habitually in industrial applications. As can be seen, the crystallization
peaks of each of the polymer components became wider and shifted to lower temperatures
with increasing cooling rates. This indicates that, at lower cooling rates, the polymer
blend components spend longer within the temperature range in order to obtain sufficient
mobility in their segments and for crystallization to occur. In particular, it was found
that the crystallization peak temperature (Tp) of PLLA was almost undetected at high
cooling rates, demonstrating that the crystallization of neat PLLA is very slow. When the
ratio of nylon 11 within the blend increased, the PLLA crystallization exotherms shifted
to higher temperatures and demonstrated a considerable increase in enthalpy (i.e., the
percentage of crystallinity: PLLA = 0%, 80/20 = 14.2% and 60/40 = 31.9% at cooling rate of
20 ◦C/min). These effects can be more clearly observed in Figure 4, in which the values
of the crystallization temperatures of the PLLA/nylon 11 blends are plotted as a function
of cooling rate and composition. Pure PLLA and nylon 11 crystallize at approximately
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109 ◦C and 171 ◦C, respectively, at a cooling rate of 1 ◦C/min. The crystallization exotherm
associated with PLLA could be clearly observed for the blends at the same cooling rate,
except for the composition with only 20 wt.% PLLA. In contrast, the apparent exotherm
for nylon 11 could be clearly observed at low PLLA concentrations (≤20 wt.%) at cooling
rates ranging from 1 to 20 ◦C/min. The presence of nylon 11 in the blends influenced
the crystallization temperature of PLLA, which showed an increase, with the largest
difference being observed at a composition of around 40 wt.% nylon 11, indicating that
nylon 11 accelerated the melt-crystallization process of PLLA. This nucleating effect on
PLLA, resulting from the presence of a second crystallizable polymer, such as PVDF,
has been previously reported [31]. The interface between the two phases reduces the
surface free energy, facilitating crystal nuclei formation via heterogeneous nucleation. In
addition to PDVF crystallization, phase separation can bring about the molecular ordering,
alignment, and/or orientation of the PLLA chains at the PLLA/PVDF domain interface via
interdiffusion, further aiding crystal embryo development [31].
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In contrast, in this case, PLLA caused a decrease in the crystallization temperature
of nylon 11 (Figure 4). Both PLLA and nylon 11 are crystallizable and, in this case, PLLA
acted as an amorphous fraction (in the molten state), while nylon 11 crystallized. As a
consequence of this, crystallization was retarded as PLLA could not act as a solid substrate
to help the primary nucleation of the nylon 11. Moreover, the primary nucleation density
of nylon 11 was reduced by migration of the nuclei from the nylon 11 phase to the molten
phase due to the thermodynamic tendency. These facts played a key role in the variation in
the crystallization behaviour of nylon 11 within the PLLA/nylon 11 blends, as the cooling
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rate varied under non-isothermal conditions for the melt (e.g., 20/80, Figure 3), as well as
due to the absence of the apparent exotherms for 40/60 blend systems.
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Figure 4. Variation in the PLLA/nylon 11 blends’ crystallization temperatures with (a) cooling rate
and (b) composition.

It is well-known that the crystallization of polymer blend nanocomposites is complex
and affected by a variety of factors, including temperature, cooling rate, flow-induced
deformation and the presence of a second polymer component, as well as the size, shape
and volume fraction of the additive nanoparticles [27,29,30]. Understanding the dynamics
of these systems, including the mobilities of the different constituents, remains an extremely
a difficult task, despite the wide-ranging research interest in them [29]. Another important
feature that should be considered in the study of the crystallization behaviour of these
ternary blend systems under dynamic conditions (Figure 5) is that the addition of INT-WS2
to PLLA/nylon 11 induced an increase in the crystallization temperature of PLLA and
nylon 11, with the increase being higher than 9 ◦C for the neat PLLA and about 3 ◦C for
the neat nylon 11. To be able to compare this change in the PLLA/nylon 11-INT blends,
a graph of Tp vs. the concentration of nylon 11 and PLLA is presented (Figure 6). It
can be seen that there was a noticeable development in the crystallization temperature
of PLLA when a low cooling rate was employed (i.e., 1 ◦C/min) and when only 20 wt.%
of nylon 11 was added, with the temperature increasing from 109.2 ◦C to 118.5 ◦C. It
can also be observed that, when the concentration of nylon 11 was further increased, no
significant change in Tp could be observed and, obviously, the crystallization temperature
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was lowered with increased cooling rates. This is also observed for the nylon 11, although
it seemed to be less dependent on the concentration of PLLA. The presence of INT-WS2
caused an increase in the crystallization temperature of the nylon 11 in the PLLA/nylon
11 blend nanocomposites, with the increase being about 3 ◦C (Tp, ylon 11 = 170.9 ◦C and
Tp, 20/80-INT = 174 ◦C). However, the best enhancement was found for the binary PLLA-
INT, where the Tp of PLLA increases by more than 20 ◦C [24]. This suggests that the
interface between the two phases reduced the surface free energy. Therefore, the nucleation
effect of the INT-WS2 was more dominant in the PLLA/INT nanocomposites than in the
PLLA/nylon 11-INT nanocomposites. This discrepancy was likely related to several factors,
including the formation of the polymer–polymer interface and its surface energy, roughness
and crystalline structure, as well as the filler’s ability to form the critical nuclei [24,31]. All
these results appear to demonstrate that WS2 inorganic nanotubes can initiate nucleation in
both polymeric components within the PLLA/nylon 11-INT blend nanocomposites, with
the effect being more pronounced for PLLA.
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3.3. Nucleation Activity

Dobreba and Gutzow [35,36] introduced a semi-empirical model for the determination
of the nucleation activity (ϕ) of foreign substrates (such as INT-WS2 or another polymer) in
polymer melts using DSC measurements. Nucleation activity is a factor describing how the
work of 3D nucleation decreases with the presence of foreign particles, which are assigned
values varying from 0 to 1, corresponding to extremely active and inert foreign substrates,
respectively. Specifically, the more active the nucleator is, the lower the ϕ value. According
to this model, ϕ can be calculated as follows:

ϕ =
B∗

B
(1)

where B is a parameter for the pristine polymer and B∗ is for the polymer/nucleator system.
B and B∗ can both be experimentally determined from the slope of the following equation:

ln ϕ = A − B(or B∗)

∆T2
p

(2)

where ϕ is the cooling rate, A is a constant, ∆Tp is the amount of supercooling (Tm − Tp),
Tm is the melting temperature and Tp is the crystallization peak temperature. It is clear that,
as the cooling rate increases, Tp shifts to lower temperatures both for the neat PLLA and the
PLLA/nylon 11 blends and nanocomposites. A linear relationship was obtained for each
sample, as can be observed in Figure 7, considering a value of 195 ◦C for the thermodynamic
equilibrium melting temperature of PLLA [24] and 202.8 ◦C for nylon 11 [34]. The values of
B and B∗ were obtained from the slope of the fitted lines, and the nucleation activity (ϕ) was
calculated from this ratio. Thus, the values of ϕ for the PLLA/nylon 11 blends containing
20 and 40 wt.% nylon 11 were calculated to be 0.63 and 0.61, respectively. More importantly,
the addition of INT-WS2 reduced the ϕ values (ϕ80/20-INT = 0.40 and ϕ60/40-INT = 0.61)
compared to PLLA/nylon 11 blends without the added nanofiller, indicating that the
presence of INT-WS2 further accelerated the PLLA crystallization process. The previously
mentioned nucleation effect that led to the increase in crystallization rate for PLLA is
highly important in the case of nylon 11, particularly when evaluating the tendency for
nucleation activity in the PLLA/nylon 11-INT nanocomposites. All nanocomposites had a
reduced nucleation activity factor (ϕ20/80-INT = 0.59, ϕ40/60-INT = 0.59 and ϕ20/80-INT = 0.62)
in comparison to the PLLA/nylon 11 blends (ϕ = 1), which means that they had enhanced
3D nucleation and were active as heterogenous nucleating agents. The trend observed for
ϕ was consistent with the trend seen for the variation in crystallization temperature for
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nylon 11 in the PLLA/nylon 11-INT blends, implying that INT-WS2 is an active nucleating
agent for the non-isothermal melt crystallization of PLLA/nylon 11.
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3.4. Crystallization Activation Energy

The activation energy values obtained from the non-isothermal crystallization thermo-
grams of PLLA and its blends and nanocomposites were calculated using the Kissinger
method. This approximation theory determines the activation energy for the transport
of the macromolecular segments to the growing surface, which is determined from the
maximum conversion rate. The corresponding formula is [37]:

ln
ϕ

T2
p
= Constant − ∆E

RTp
(3)

where R is the universal gas constant. The activation energies were calculated using the
slopes of the lines obtained from plots of log ϕ/T2

p vs. 1/Tp (Figure 8). Thus, the values of
∆E for neat PLLA and its blends containing 20, 40 and 60 wt.% of nylon 11 were calculated
to be −159.2, −100.9, −107.6 and −116.4 kJ/mol. Moreover, the presence of both nylon
11 and INT-WS2 increased the activation energy of the PLLA/nylon 11-INT compared to
the PLLA/nylon 11 (∆E80/20-INT = −63.1 kJ/mol and ∆E60/40-INT = −102.9 kJ/mol) blends
without nanoparticles. According to this, the restriction of the transport of the PLLA macro-
molecular segments to the growing surface did not appear to be a limiting factor in the crys-
tallization rate, demonstrating that the nucleation activity of the inorganic nanotubes played
a dominant role in accelerating the crystallization of PLLA. Likewise, the values of ∆E of
nylon 11 experienced a large increase from −369.4 kJ/mol to −94.8 kJ/mol with the addi-
tion of both PLLA and IN-WS2 (∆E20/80-INT = −226.5 kJ/mol, ∆E40/80-INT = −211.4 kJ/mol,
∆E60/40-INT = −94.8 kJ/mol and ∆E80/20-INT = −185.8 kJ/mol). These results agree with the
results for the non-isothermal crystallization kinetics of nylon 11 and confirm the nucleating
activity of the additive, INT-WS2.
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3.5. Melting Behaviour

Melting of biopolymer blend nanocomposites is a very complex process that is heavily
influenced by the conditions under which crystallization occurs [24,31]. The DSC heating
curves for the samples recorded at 10 ◦C/min, subsequent to crystallization from the melt
at different cooling rates as indicated, are shown in Figure 9. It can be observed that the neat
PLLA sample exhibited exothermic peaks attributable to the process of cold crystallization,
which was influenced by the cooling rate and the nylon 11 loading. The appearance of
these exothermic peaks for the samples crystallized at higher cooling rates indicated that
the melt-crystallization process was incomplete. In particular, the cold-crystallization
temperature (Tcc) values of PLLA decreased with the addition of nylon 11 due to the
nucleating effect of nylon 11 on the crystallization of PLLA (e.g., Tcc, PLLA = 109.4 ◦C and
Tcc, 80/20 = 94 ◦C). Moreover, it is interesting to note that the first endothermic peak area
decreased whereas the second endothermic peak area increased with faster rates of cooling.
This implies that the peak at higher temperatures mainly arose from the rearrangement of
the initial crystal morphology (i.e., melting–recrystallization–melting) and that the peak
at lower temperatures represented the melting of the original crystals formed when the
sample was cooled from the melt [24]. The aforementioned results are reasonable because
the time for PLLA to crystallize became shorter with increasing cooling rates. Thus, the
crystals formed during non-isothermal crystallization were not as perfect or stable and,
therefore, recrystallized and were reorganized into more perfect, more stable crystals during
the subsequent heating scan. As such, when high cooling rates were used, the second
endothermic peak grew and became more dominant. The analogous data for the double-
melting peaks versus the cooling rate with nylon 11 concentration, using the presence of
INT-WS2 as a parameter, are shown in Figure 9.

In a similar manner, the cooling rate also influenced the crystallinity of the PLLA
systems. Figure 9 shows the evolution of the PLLA/nylon 11/INT-WS2 nanocomposite
crystallinity (1 − λ)m calculated from the double endothermic curves with different cooling
rates and compositions. As can be seen, the increase in cooling rate progressively reduced
(1 − λ)m, as the polymer chains had less time to organize into crystalline domains with
fewer defects. The previously mentioned nucleation effect of nylon 11 that led to it influ-
encing the melting behaviour of PLLA is highly important, particularly when evaluating
the tendency toward melting crystallinity. In particular, the (1 − λ)m values for the binary
PLLA/nylon 11 blends were higher than those of neat PLLA. For example, the crystallinity
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of PLLA changed from 48–55% to 65–75% when 40% nylon 11 was present and continued to
increment with higher nylon 11 concentrations. Likewise, the (1 − λ)m of the PLLA/nylon
11-INT nanocomposites showed a similar trend as a function of ϕ and exhibited lower val-
ues than the PLLA/nylon 11 blends. These results also confirm that the role of INT-WS2 in
the variation of the (1 − λ)m values for PLLA appears to be less relevant with the presence
of nylon 11. However, in the case of nylon 11, the addition of INT-WS2 to the PLLA/nylon
11 blends induced an increase in the crystallinity values of these components, the increase
being more pronounced for the nanocomposite blends rich in nylon 11 (20/80-INT).
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4. Conclusions

In this work, inorganic nanotubes (INT-WS2) were incorporated into PLLA/nylon
11 blends via simple melt processing, and the morphology, crystallization and melting
behaviour of the resulting nanocomposites were investigated. Additions of nylon 11 and 1D-
TMDCs WS2 were found to be effective as novel routes to producing advanced PLLA/nylon
11 nanocomposites made via the widely used melt process. From the SEM images, it was
observed that the nanofiller was well-dispersed, which helped modify the blend interface
morphology. The temperature and crystallization rate of nylon 11were higher and faster,
respectively, than those of PLLA. Furthermore, it was found that, when blended with PLLA,
there was an important effect on the rate of PLLA crystallization, which increased, and
this in turn was influenced by the cooling rate. In contrast, analysis of the crystallization
behaviour of the second component, nylon 11, showed that its crystallization temperature
decreased in the presence of PLLA. Furthermore, it was found that the incorporated
nanofiller INT-WS2 had a nucleating effect on both the PLLA and nylon 11, although this
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effect was more prominent for PLLA and the PLLA-rich blends, reflected not only by
an increase in the crystallization temperature but also in crystallinity. More importantly,
investigation of the nucleation activity using the Gutzow and Dobreva model revealed
that the addition of 1D-TMDCs WS2 played a fundamental role in the promotion of PLLA
crystallization. In the subsequent heating, the complex endothermic melting peaks for
PLLA and nylon 11 were attributed to a melt-recrystallization mechanism. The developed
crystallinity of PLLA and nylon 11 was found to be influenced by the cooling rate and
composition. These results have considerable practical significance for the technological
processing of PLLA/layered transition metal dichalcogenide (TMDC) nanocomposites.
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