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Abstract

Background: CRISPR-Cas genes are extraordinarily diverse and evolve rapidly when compared to other prokaryotic genes.
With the rapid increase in newly sequenced archaeal and bacterial genomes, manual identification of CRISPR-Cas systems
is no longer viable. Thus, an automated approach is required for advancing our understanding of the evolution and
diversity of these systems and for finding new candidates for genome engineering in eukaryotic models. Results: We
introduce CRISPRcasIdentifier, a new machine learning–based tool that combines regression and classification models for
the prediction of potentially missing proteins in instances of CRISPR-Cas systems and the prediction of their respective
subtypes. In contrast to other available tools, CRISPRcasIdentifier can both detect cas genes and extract potential
association rules that reveal functional modules for CRISPR-Cas systems. In our experimental benchmark on the most
recently published and comprehensive CRISPR-Cas system dataset, CRISPRcasIdentifier was compared with recent and
state-of-the-art tools. According to the experimental results, CRISPRcasIdentifier presented the best Cas protein
identification and subtype classification performance. Conclusions: Overall, our tool greatly extends the classification of
CRISPR cassettes and, for the first time, predicts missing Cas proteins and association rules between Cas proteins.
Additionally, we investigated the properties of CRISPR subtypes. The proposed tool relies not only on the knowledge of
manual CRISPR annotation but also on models trained using machine learning.
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Background

CRISPR-Cas systems provide archaea and bacteria with a nucleic
acid–based adaptive immune system against invading viruses
and plasmids. Mechanistically, the immune response can be di-
vided into 3 stages, namely, adaptation, processing, and interfer-
ence, each carried out by different sets of protein complexes [1].

The universally conserved proteins Cas1, Cas2, and optionally
Cas4 are responsible for the adaptation stage, when a fragment
of invader DNA is excised and stored in the host chromosome
as a spacer in the non-coding CRISPR (clustered regularly inter-
spaced short palindromic repeats) region. The processing and
interference stages are much more mechanistically diverse, us-
ing different sets of proteins, depending on the type of CRISPR-
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Cas system. CRISPR-Cas systems are found in many bacteria and
most archaea and have diversified as much as their host organ-
isms [2].

While the mechanistic principles are similar, with spacers
comprising templates for synthesis of CRISPR interference RNAs
(crRNAs) against the invader, the various types and classes of
CRISPR-Cas systems show some important differences. Class
2 systems use a single multi-domain protein for locating and
cleaving the re-invading nucleic acid, whereas Class 1 systems
use a large multi-subunit complex for the same purpose. Class 2
systems can be further subdivided into types II, V, and VI, which
seem to have evolved independently from each other. Thus, the
respective Cas9, 12, and 13 enzymes that carry out invader cleav-
age rely on diverse mechanisms involving differing nuclease do-
mains [2–4].

Class 1 systems, on the other hand, with types I, III, and IV,
use structurally related proteins to carry out similar functions,
although the protein subunits have diverged considerably. Com-
mon to all Class 1 systems is that Cas7 forms a helical backbone
that spans the length of the tightly bound crRNA. This backbone
is terminated in one end by Cas5, which itself is bound to Cas8
or Cas10 for type I and IV or type III systems, respectively. Type
I systems use Cas8 for the recognition of the protospacer ad-
jacent motif [5], which, along with invader crRNA hybridization,
comprises a signal for recruitment of the Cas3 helicase-nuclease
protein that subsequently digests the invader chromosome [6].
Type III systems, however, use the Cas7 backbone for cleaving in-
vader messenger RNA while the Cas10 HD nuclease cleaves tran-
scribed DNA [7, 8]. Cas10 also synthesizes a signaling molecule
that recruits additional accessory Cas proteins for other func-
tions, such as cell suicide or activation of other defense systems
[8, 9].

The different types of CRISPR-Cas systems are themselves
so diverse that each type can be further subdivided into several
subtypes. Type III, for example, is divided into 4 subtypes III-A, B,
C, and D. While CRISPR-Cas systems of the same subtype encode
similar proteins that occupy the same roles, the proteins have
often diverged beyond the point of recognition by conventional
sequence alignment methods such as BLAST, even within a sub-
type. This level of sequence diversity makes proper identifica-
tion of the found CRISPR-Cas systems very challenging, and the
field has thus far relied upon the gold standard of periodic man-
ual annotations by experts, published once every few years [2,
10, 11]. The annotation involves profile hidden Markov models
(HMM) searches for finding core genes, followed by the inspec-
tion of their neighbourhoods, gauging operonic structures, and
manual BLAST and PSI-BLAST searches [12]. With the increasing
number of genome sequences from uncultured microbes and
metagenomic data, however, manual annotations cannot keep
up and an automated approach is needed that would yield ac-
curacy comparable to that of manual annotation. Furthermore,
research groups working on organisms not yet covered by pub-
lished annotations have thus far made their own manual anno-
tations, leading to inconsistencies in nomenclature and inaccu-
racies in some cases.

There have been numerous attempts at devising computa-
tional pipelines for the identification of different elements of the
CRISPR system, such as CRISPR arrays [13–15] and CRISPR lead-
ers [16]. On the other hand, command line tools and webservers,
usually based on HMM and HMMER [17] or PSI-BLAST [12],
have been proposed for CRISPR subtype prediction. Examples
of such tools are CRISPRdisco [18], CRISPRcasFinder [19], Mac-
syfinder [20], CRISPRone [21], and HmmCas [22]. We found, how-
ever, that the existing tools usually lack the ability to generalize

unseen examples. Additionally, these tools can neither adapt to
an extending repertoire of cas genes, predict possibly missing
proteins, nor learn association rules among proteins.

In this work, we present a machine learning (ML) approach
intending to capture much of the relevant essence of manual an-
notation. It is based on evidence for the different Cas proteins to
be contained in a series of consecutive genes that are part of a
cas cassette and thus represents genomic CRISPR-Cas systems
as cassettes of adjacently encoded proteins. These pieces of evi-
dence are calculated by newly designed sets of HMM models for
each Cas protein, covering the diversity of Cas protein families.
The proposed approach solves the problem of classification of
new systems into types and subtypes. Because our features for
the ML approach correspond to evidence for Cas proteins, we can
determine Cas proteins whose evidence is critical for predicting
a subtype, which corresponds to the concept of signature genes.
We show that our approach correctly identifies known signa-
ture genes for types and subtypes. In addition, our approach is
able to provide more information about the composition of cas-
settes. One application is to predict evidence for Cas proteins
that have been missed in the Cas protein screening. This pro-
vides researchers with hints to search for remote homologs of
the missing Cas proteins, or for new proteins that might replace
the associated function. Furthermore, we are able to learn asso-
ciation rules, which are subsets of proteins being important to
each other, indicating functional modules. As a proof of concept,
when we search for Cas proteins associated with an interfer-
ence protein, our approach finds other interference proteins to
be most important. The more interesting cases undoubtedly in-
volve non-interference proteins, where our tool could correctly
predict a strong association of the ancillary protein Csn2 with
Cas1, consistent with its hypothesized role in adaptation. For
the protein CasR we found that it is associated with different
functional modules in subtypes I-A and I-E, indicating a possi-
ble functional diversity. Thus, the set of protein associations de-
rived in this manner provides a proper resource for researchers
who want to investigate the function of different Cas proteins.

Methods
Data collection and preprocessing

All Cas proteins used in this study were selected from the cur-
rent classified archaeal and bacterial CRISPR-Cas systems [2–4].
We performed an all-against-all sequence similarity comparison
on these data using Fasta [23]. Subsequently, we clustered the
proteins using the Markov Cluster Algorithm (MCL) [24] based on
custom similarity criteria [9, 16]. These criteria consider the size
of the proteins, the length alignment, and the relative locations
of similar regions between the 2 compared proteins. After clus-
tering the protein sequences from a specific Cas protein family,
we generated a multiple sequence alignment using MUSCLE [25].
Next, these alignments were converted to HMM profile models
by using hmmbuild [17]. Except for MCL, all other tools were run
with default parameters.

Throughout the text, each cassette in our training and test
datasets is represented by a tuple consisting of its genomic se-
quence containing all genes of the cassette, and the list of all
annotated Cas proteins. We extracted the genomic sequences
as follows: we took Supplementary Table S7 from Makarova
et al. [2], which contains all gene loci (i.e., genomic positions)
in column “(sub)Type / Coordinates,” and downloaded the se-
quences from NCBI. For the second part, namely, the list of all
Cas proteins, we extracted the genomic sequence for each an-
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notated Cas protein individually, again from the “coordinates”
column, and added 50 bases of context. The associated amino
acid sequences were generated by running the Prodigal tool
v2.6.3 [26] on the respective gene sequences, and stored together
with the Cas annotation from the column “cas gene” in Table S7
from Makarova et al. [2].

To generate the feature vectors, we ran all HMM profile mod-
els using hmmsearch against the sequences of all cassettes. We
selected the cassettes that had a hit for all proteins annotated for
that subtype and used this as training and test set for the classifi-
cation pipeline. Cassettes that had a missing protein were used
instead as an independent test case for our regression models
and the full pipeline.

Classification of Cas cassettes

For this task, we apply ML algorithms onto a finite sample of
CRISPR data to obtain predictive models that are able to classify
Cas cassettes into their respective subtypes using a data matrix
representation (see Results and Discussion). Thus, based on the
finite sample of data, we investigate the application of classifi-
cation algorithms that estimate a function that is able to gen-
eralize the association between a cassette and its subtype. As a
consequence, we intend to use this function to classify new cas-
settes that were not seen during the training phase into their
respective subtypes with a high level of accuracy.

Prediction of missing Cas proteins

We also investigate the problem of predicting (possibly) missing
Cas proteins by estimating their normalized bit scores. For this
problem, we modelled it as follows. Given m Cas proteins, we
filter, for each subtype, its set of l < m proteins (i.e., all Cas pro-
teins whose bit score is >0 for ≥1 cassette of the subtype). Next,
we train l regressors, where the jth regressor, j ∈ {1, ···, l}, pre-
dicts the bit score of the jth Cas protein using the remaining l −
1 proteins as input.

Experimental evaluation of ML algorithms

Three ML algorithms were applied to the preprocessed dataset
to train classification and regression models:

� Classification and Regression Trees (CART) [27], which trains
a predictive model represented by a decision tree. This algo-
rithm can train decision trees for classification (classification
trees) and regression (regression trees) tasks. A decision tree
is composed by a set of interpretable rules extracted from the
training dataset. These rules explain the decisions made by
the model to predict the class or regression value for new,
previously unseen, examples.

� Support Vector Machines (SVM) [28], which trains a binary
classifier represented by a hyperplane that separates exam-
ples from 2 classes with the maximum possible separation
margin. By using kernel functions, an SVM can be applied
to non-linearly separable problems. For multiclass classifica-
tion tasks, a multiclass dataset is usually first decomposed
into several classification binary datasets. SVMs can then be
applied to each binary dataset, and their predictions are com-
bined for a multiclasss classification.

� Extremely Randomized Trees (ERT) [29], which uses an en-
semble of decision trees, where each tree is trained using a
random subset of the original features. Instead of selecting
the best discriminating threshold for each feature considered
for a split, as would be the case for classical decision trees,

ERT chooses a random threshold value. The final predictions
are the average of the predictions of all the decision trees in
the ensemble. We can extract the importance of each fea-
ture in the classification or regression task from the decision
trees in the ensemble. The importance is represented by the
decrease in impurity caused by a node that splits the fea-
ture, weighted by the number of examples contained in such
a node [30], and averaged over all trees of the ensemble.

The model selection and evaluation of predictive models is a
widely studied problem in the ML literature. Several works (e.g.,
[31–33]) investigate the advantages and drawbacks of different
methodologies. On the basis of these previous studies, we use
the nested cross-validation procedure. Given a set of data, the
classical cross-validation approach splits the data into K mu-
tually exclusive and similar sized subsets called folds. Next, at
each iteration, K − 1 folds are used for training an ML model
and the remaining fold for testing it [34, 35]. The nested cross-
validation approach separates the model selection and evalua-
tion steps by using 2 different cross-validation loops: an outer
loop, which splits the data into K1 folds and is used for model
evaluation; and an inner loop, which splits the training data into
K2 folds and is used for model selection. In this article, we set K1

= K2 = 10, and repeat the evaluation procedure 50 times, owing
to the variance of the results when considering different splits
[33]. It is important to mention that, during our experiments,
to guarantee that examples from all classes are present in each
outer fold, we used only classes containing ≥10 examples.

For each cross-validation iteration, we aggregate the pre-
dictions from all folds and calculate a single predictive perfor-
mance evaluation, in order to avoid any averaging problems that
might arise, especially when the dataset is imbalanced [36]. For
the classification experiments, we used the following evaluation
measures: adjusted balanced accuracy score [37, 38], an adapta-
tion of the original accuracy measure that gives higher weights
to examples from smaller classes; and the F-score with macro-
averaging [39], which is the average F-score among all classes.
Both measures treat different subtypes equally. Thus, they do
not favour those with the largest numbers of cassettes. For the
regression experiments, we used the mean absolute error [40],
which is the average absolute difference between the expected
and the predicted target values.

Regarding the model selection step of each ML algorithm
used, we performed a grid search over 20 different hyperparam-
eter combinations, based on the guidelines from the scikit-learn
package [41]. We describe these hyperparameter grids next. For
the CART algorithm, we varied the hyperparameters that deter-
mine the maximum depth of the decision tree and the minimum
number of examples necessary for a node to become a leaf. For
the former, we considered the values in {5, 10, 15, max }, where
max allows the tree to grow as deep as possible. For the latter,
we varied the values in {5, 6, 7, 8, 9}. For the SVM algorithm,
we used a Gaussian kernel, owing to its ability to model nonlin-
ear decision boundaries and its reduced number of hyperparam-
eters when compared with another commonly used nonlinear
kernel, the polynomial kernel [42]. For the cost hyperparameter
C, we considered the values in {1; 10; 100; 1,000}. Regarding the
kernel coefficient γ , we assessed the values in {0.01, 0.1, 1, 10,
100}. Finally, for the ERT algorithm, we varied the ensemble size
using the values in {25, 50, 75, 100}, and the quantity of features
to be considered when performing a split from the set of values
in {25%, 50%, 75%, 100%,

√
m}, where m is the number of known

Cas protein families.
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Results and Discussion
A combined approach to determine Cas proteins and
cassette subtypes

The classification of a subtype is based on the membership for
specific Cas proteins. Thus, any ML-based classification of a cas-
sette requires the detection of the contained Cas proteins as
a first step. While this first step is commonly performed using
HMM, a difficulty arises from the fact that a single Cas protein
family has to be split into different subfamilies owing to the high
evolutionary diversity of their members. Owing to missing val-
ues in the dataset for a family, even the problem of splitting into
different subfamilies is not an easy one. Even further, we have
observed that the splitting of Cas protein families influences the
quality of ML-based subtype classification. This would be quite
obvious if subfamilies of individual Cas protein correlated well
with subtypes. The real situation, however, is more complex,
partially owing to the fact that cassettes are composed in a mod-
ular way, often involving horizontal gene transfer [2, 9].

In brief and as described in more detail below, our classifica-
tion approach takes the bit scores for the contained Cas proteins
as evidence of their membership in the cassette. We use this in-
formation to apply a set of ML algorithms to classify the sub-
types of cassettes. By generating different divisions of subfami-
lies for each Cas protein, we obtain different pieces of evidence
for the contained Cas proteins. Thus, we can investigate which
division is best related to subtype evolution. With this holistic
view of Cas protein and subtype annotation, we can further ex-
amine relations between subtypes and Cas protein membership
and as a result reassess key components of subtypes such as
signature genes.

Detection of Cas proteins by families of HMMer models

Our definition of Cas protein subfamilies is based on cluster-
ing the known sequences of a specific Cas protein family. We
use ∼68,594 Cas proteins as a database, and applied different
cluster criteria. Each cluster characterizes a subfamily, which
is afterwards represented by an HMM model. All models for a
Cas protein are grouped, and the best-matching HMM for each
Cas protein is used to score a new sequence. To cluster the se-
quences, we performed an all-against-all sequence similarity
comparison. Subsequently, we applied the MCL [24] to cluster
the known sequences for a specific Cas protein family according
to their sequence similarities. However, protein sequences can
be clustered in different ways, depending on the cut-off for se-
quence similarity and the requested coverage of the alignment
between 2 sequences. In addition, different hyperparameters for
the MCL clustering algorithm result in different data partitions.
Each partition defines different subfamilies, for which we train
HMM models.

The different clustering approaches thus result in HMM mod-
els for different subfamilies, with varying specificity and sensi-
tivity to detect members of a Cas protein family. We created 5
different collections of HMM models labelled HMM1 . . . HMM5

using different hyperparameter values for the clustering algo-
rithm and distinct threshold values for the all-against-all se-
quence similarity detection (see Methods for details; the number
of models for each Cas protein family is listed in Supplementary
Table S1). For a given Cas protein sequence, we applied all HMM
models that are contained in a specific collection for that pro-
tein family and took the maximum bit score, and zero otherwise.
Non-zero values indicate that the investigated protein sequence

belongs to the Cas protein family defined by the HMMer model
set.

We used different measurements to assess the quality of a
specific division represented by a set HMMi. One quality crite-
rion for a set HMMi is clearly the capability for detecting known
members of Cas proteins. Table 1 shows the sensitivity for the 5
sets HMM1 . . . HMM5 by reporting the number of cassettes found
in each subtype. It is easy to see that the more fine-grained sets,
HMM1, HMM2, and HMM3, clearly detect more Cas proteins than
the less fine-grained sets HMM4 and HMM5.

In our holistic view of Cas protein detection and subtype clas-
sification, however, we also want to understand how the divi-
sion into subfamilies relates to the cassette subtype and thus
influences the subtype classification. For that reason, we show
in Table 1 also as another quality criterion the median accuracy
for correctly predicting the subtype of a cassette when using
the HMMi in an ML-based subtype classification approach as de-
scribed in the next section. The surprising result is that the sen-
sitivity of a specific set HMMi in detecting Cas proteins does not
correlate with the accuracy that is achieved in a subtype classi-
fication using this set HMMi.

A pipeline for CRISPR cassette classification based on
Cas protein evidence

Our classification pipeline for CRISPR cassettes is described in
Fig. 1 and has 5 steps. For each set HMM1 . . . HMM5, we build
a data matrix for classification and regression analysis of cas-
settes as follows. Usually, a CRISPR cassette C is a collection of
Cas proteins and is thus defined as a subset of all known Cas
proteins P (i.e., C ⊂ P). However, when predicting Cas proteins
with HMMer models, this would imply a discretization of the bit
score that would omit the information about the ”evidence” we
have for the prediction. For this reason, we define for each cas-
sette Ci a real vector Xi of length m, where m is the number of
known Cas protein families, containing an entry for each possi-
ble Cas protein. Each element Xij is defined as the best bit score
obtained by P j among all HMM models of its family if it is de-
tectable by the models, and zero otherwise (Fig. 1a). By concate-
nating the vectors obtained for all the n available cassettes, we
obtain a data matrix X ∈ Rn×m

+ (Fig. 1b). In addition, each cassette
is associated with a label that indicates its subtype, according to
the classification provided by [2, 4, 9].

This data matrix, along with the feature vectors and the sub-
type labels for all known cassettes, is our training data for the
subtype classification task. For the evaluation of our classifica-
tion models, we apply a 10-fold cross-validation procedure on
this data matrix. For this, we randomly split the data matrix
X into 10 folds (Fig. 1c), each containing a subset of cassettes
encoded by the associated feature vector. Each vector is anno-
tated (labelled) by its true subtype. For model selection, we per-
form hyperparameter tuning by employing a grid search over
20 hyperparameter combinations and applying an inner cross-
validation loop (Fig. 1d; see Methods for details). After select-
ing and training the best model (Fig. 1e), we have a classifier
that, along with a feature vector with HMM bit scores for all
known Cas protein families, predicts the subtype of new cas-
settes (Fig. 1f and g).

The classification pipeline successfully predicts the
subtype of cassettes

To evaluate the pipeline, we first assessed whether it can suc-
cessfully perform the classification task, i.e., correctly predict
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Table 1. Properties and Quality Measurements for the collections HMM1 . . . HMM5

Parameter HMM1 HMM2 HMM3 HMM4 HMM5

No. models 379 385 416 209 201
No. sequences 14,674 14,674 23,622 16,018 16,018

Sensitivity per subtype
I-A 116 116 117 0 0
I-B 715 715 713 421 421
I-C 629 629 629 612 612
I-D 138 138 137 100 100
I-E 1,114 1,114 1,116 1,069 1,069
I-F 354 354 353 339 339
I-U 136 136 82 8 8
II-A 320 320 331 249 249
II-B 28 28 35 35 35
II-C 327 327 333 328 328
III-A 376 376 364 326 326
III-B 292 292 290 178 178
III-C 93 93 93 83 83
III-D 184 184 186 49 49
IV-A 36 36 36 43 43
V-A 18 18 32 27 27
VI-A 6 6 4 6 6
VI-B 40 40 40 40 40
Total sensitivy 4,922 4,922 4,891 3,915 3,915
Accuracy (median)
ERT 0.9900 0.9898 0.9909 0.9907 0.9907
CART 0.9629 0.9624 0.9636 0.9579 0.9583
SVM 0.9856 0.9856 0.9830 0.9868 0.9868

Sensitivity per subtype indicates sensitivity of set HMMi in detecting Cas proteins, measured by the number of cassettes

found per subtype. Sets HMM1, HMM2, and HMM3 are more fine grained than sets HMM4 and HMM5, which detect fewer Cas
proteins overall. Accuracy indicates median accuracy for the classification of subtypes when using set HMMi with different
ML-approaches to determine the evidence for a Cas protein in a cassette. The quality difference is much lower in the overall
task of subtype classification compared to the task of detecting individual Cas proteins.

the subtype of a cassette. As shown in Fig. 2 for HMM1, the pre-
dictive performances, measured by the adjusted balanced accu-
racy, for CART, ERT, and SVM algorithms are >95% in general.
These high values suggest that, although imbalanced, the cas-
sette subtypes are well defined in the feature space. It is impor-
tant to mention that not all cassettes are complete in the in-
vestigated datasets. Some cassettes are composed only by sub-
sets of the Cas proteins that integrate its subtype definition. In
Supplementary Table S2, we summarize the percentage of cas-
settes that are complete for each subtype, ignoring Cas proteins
that are contained in <5% of the cassettes of each subtype. We
observed in the experimental results that, even though some in-
complete cassettes are present, the 3 classifiers were still able to
capture the relations among the remaining proteins. The results
for the other 4 sets of HMM models, and for the F-score with the
macro averaging measure, were similar and allowed us to draw
similar conclusions (see Supplementary Fig. S1).

To investigate the prediction quality for specific subtypes, we
performed an experiment using the ”one-vs-the-rest” strategy
[34]. Given k different classes, the one-vs-the-rest strategy trains
k classifiers, 1 for each subtype, which learns how to discrim-
inate this subtype (positive class) from the remaining classes
(negative class). In Table 2 we report the average F-scores, after
50 cross-validation repetitions, obtained by the classifiers using
the one-vs-the-rest strategy. It is clearly visible that the k classi-
fiers were able to discriminate each class with a high predictive
performance, in agreement with our previous results. In the case
of SVM, one can use the margin separating positive and nega-
tive data as an additional quality criterion [43]. Again one can

see here a clear separation of SVM scores for the positive and
negative classes (see Supplementary Fig. S2).

The classification pipeline detects signature proteins

Makarova et al. [2] define the presence of unique signature Cas
proteins that characterize most of the investigated CRISPR sub-
types. According to the authors, signatures usually consist of ei-
ther 1 or multiple Cas proteins that co-occur in the same cas-
sette. On the basis of the aforementioned results, we hypothe-
size that the classifiers were able to learn these signature pro-
teins. Because each one-vs-the-rest classifier introduced in the
previous section learned how to discriminate a different sub-
type, we assessed whether it is possible to derive insights about
signature proteins for each class by analyzing each classifier sep-
arately.

We thus propose a new approach to detect signature proteins
for a subtype by determining the importance of a specific feature
(i.e., the evidence for a Cas protein in a cassette) to correctly pre-
dict the subtype in the respective one-vs-the-rest classifier. The
rationale is that Cas proteins that are highly important for dis-
criminating a specific subtype against all others are likely sig-
nature proteins for this subtype. Fig. 3 shows the importance of
each Cas protein (see Methods for definition of feature impor-
tance) in predicting the I-D subtype. As can be seen, the impor-
tance is specifically high for Cas10(d) (respectively Cas3), which
is the signature protein for Subtype I-D (respectively Type I) ac-
cording to Makarova et al. [2]. Overall, we observed that Cas10
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Figure 1 Experimental methodology adopted for this study. (a) Every cassette from our positive set is encoded into a feature vector, which has an entry for each Cas

protein family. Given a specific cassette with known Cas proteins, we apply to each Cas protein sequence all HMMs from the set of HMMs that were generated for that
specific Cas protein. The best bit score is included into the feature vector Xi encoding the ith cassette. (b) This feature vector is stored in the data matrix X, together
with the known subtype. (c) Because the trained model highly depends on the collection of used cassettes, we use the 10-fold cross-validation strategy. Thus, we split
the training set into 10 subsets called folds. We perform 10 runs, where, in each run, 1 of the folds is used for testing and the remaining 9 for selecting and training

the best ML model. (d) For selecting the best ML model, a similar cross-validation strategy is applied to tune 20 hyperparameter combinations that affect the model
predictive performance. Then, in (e), the selected model is trained using the whole training set. Finally, in (f) and (g) we apply the trained model to the respective test
set of the outer fold and evaluate its performance.

and Cas3 account, on average, for >50% of the feature impor-
tance for classifying the I-D subtype.

To investigate the relation between the 2 signature genes for
proteins Cas10 and Cas3 in more detail, we selected the deci-
sion tree obtained by CART for the I-D subtype (Fig. 4). In this
tree, terminal nodes with the blue colour indicate I-D classifica-
tion (positive class), while those with brown colour indicate any
other subtype classification (negative class). As shown in Fig. 4,
Cas10 is the most important protein for identifying I-D, which
is in agreement with Makarova et al. [2], where Subtype I-D is
characterized by the presence of a variant of the Cas10 protein
(instead of a protein from the Cas8 family, which is common for
the other I subtypes) and 2 variants of the Cas3 protein. Inter-
estingly, we need middle to strong evidence for Cas10 and only
weak evidence for Cas3. In the case of weak evidence for Cas10,
we also need weak evidence for both Cas3 and Cas1 in order to
correct the missing 36 examples, albeit in this case the classifica-
tion would not be pure anymore. Overall, it can be observed that
CART was able to correctly model this signature because most
of the nonterminal nodes refer to these proteins, indicating that
they are the most important features in this subtype.

Because the current classification [2] is based only on the in-
terference module, the adaptation-related Cas proteins (Cas1,
Cas2, and Cas4) should not have a high importance for our clas-
sification pipeline. Thus, in another experiment, we removed
these proteins and the processing proteins (Cas6) and tested
the predictive performance of our classification pipeline when
removing this information. The obtained results were similar
to those previously discussed in this section and support our
discussion and main conclusions (see Supplementary Fig. S4),
strengthening the hypothesis that our ML-based approach cap-
tured biologically relevant information.

All the aforementioned examples illustrate how our ML mod-
els are able to learn the protein signatures without any extra
information other than the normalized bit scores and cassette
subtype labels. These results validate our hypothesis and pro-
vide models that are able to automatically categorize new cas-
settes with a high predictive accuracy.

Regression instead of classification learns association
rules

In our next set of experiments, we were interested in answer-
ing the question of whether some Cas proteins tend to co-occur
frequently with other proteins. To answer this question, we hy-
pothesized that they form a functional module. However, be-
cause we have varying information about the evidence for a spe-
cific Cas protein and there is also some redundancy and flexibil-
ity in forming this module, we followed an approach different
from that described in the previous section. We believe that if
a specific Cas protein is frequently associated with other Cas
proteins, it is possible to predict the evidence for this protein
by relying only on the known evidence for the other members
of the functional module. We can confirm this belief by remov-
ing a specific Cas protein from the feature vector and predicting
the “expected” normalized bit score for this protein from the re-
maining feature vector. This amounts to learning a regression
model from known examples.

Association rules can now be inspected by determining again
the important features (i.e., Cas proteins) to predict the correct
evidence for a specific Cas protein. In Table 3, we list the 3 most
important proteins for some target Cas proteins in some sub-
types. In this case, for predicting evidence for Cas10d in Sub-
type I-D, we need the information about Cas3, Cas5, and Cas7.
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Figure 2 Adjusted balanced accuracy obtained for the 50 repetitions of nested 10-fold cross-validation applying ML algorithms to the dataset generated by the HMM1

set. The x-axis corresponds to the classifiers trained by different ML algorithms, represented as boxes with different colors. The y-axis shows the range of adjusted
balanced accuracy values. Outliers are presented as square dots.

Table 2. Mean F-scores for 50 nested cross-validation repetitions us-
ing the one-vs-the-rest strategy and Cas protein set HMM1. The best
results for each subtype are in bold.

Subtype CART SVM ERT

I-A 0.95 0.96 0.98
I-B 0.95 0.98 0.99
I-C 0.98 0.99 1.00
I-D 0.98 0.97 0.99
I-E 0.99 0.99 1.00
I-F 0.95 0.99 1.00
I-U 0.99 0.97 1.00
II-A 1.00 1.00 1.00
II-B 1.00 1.00 1.00
II-C 1.00 1.00 1.00
III-A 0.98 0.98 0.99
III-B 0.97 0.98 0.99
III-C 0.93 0.98 0.98
III-D 0.96 0.97 0.99
IV-A 1.00 1.00 1.00
V-A 1.00 1.00 1.00
VI-B 0.86 0.95 0.96

In agreement with the fact that subtypes are mainly associated
with the interference complex [2], we find that for the interfer-
ence proteins Cas10d, Cas3, and Cse2, the associated proteins
are also interference proteins. For the non-interference proteins
Csn2 and Cas4 in II-A and II-B, not only is Cas9 an interference
and signature protein for Type II, but it is associated with them
as well as the adaptation proteins Cas1 and Cas2. Interestingly,
although Cas9 information is important for Cas4, Cas1 is actu-
ally more significant for Csn2. This is in agreement with the hy-
pothesized role of Csn2 in the adaptation process [44–47].

An interesting case to consider is CasR (also known as
CasRA or Csa3), a transcriptional regulator of CRISPR interfer-
ence and/or adaptation [48, 49]. This protein seems to play dif-
ferent roles in subtypes I-A and I-E and also appears to be asso-
ciated with the different proteins in I-A and I-E (see Table 3, last
2 rows). In I-A, the most important proteins are Csa5, Cas5, and
Cas6, whereas in I-E they are Cas1, Cas7, and Cas8.

The ML approach can handle missing Cas proteins

During our experiments, we left out cassettes that had 1 or more
Cas proteins missing, i.e., without hits in their corresponding
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Figure 3 One-vs-the-rest mean Cas protein importance of ERT for I-D subtype. The x-axis presents different Cas proteins. The y-axis shows the importance of each
Cas protein regarding the decision trees of the ensemble split. The error bars refer to the standard deviation over all trees in the ensemble. Note that the feature

importance is not only related to the classification into the I-D subtype but may also be related to its contribution to classify a cassette into any other subtype. Thus,
some of the proteins in the figure may not be related to I-D but to any other subtype.

Figure 4 Reduced one-vs-the-rest CART for the I-D class (see Supplementary Fig. S3 for full tree). Cassettes that are labelled as Subtype I-D are highlighted in blue,
the others in brown. Each node shows the fractions of class I-D and other cassettes, indicating the purity of the node. The number of cassettes is shown under the

“samples” entry. In each node, we query for evidence of a specific Cas protein, indicated by the score calculated by the HMM family models. As one can see, strong
evidence for Cas10 immediately points to Subtype I-D (top node and right branch). Otherwise, if we have middle evidence for Cas10, we need at least weak evidence
for Cas3 to determine Subtype I-D. Finally, if we have only weak evidence for Cas10, we need at least weak evidence for Cas3 and also for Cas1 to determine Subtype
I-D (left branch). However, the classification is not pure anymore (bottom nodes).
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Table 3. Top 3 most important proteins according to ERT when trying
to predict a target protein across different subtypes

Subtype
Target
protein Most important proteins

I-D Cas10d (Cas3, 0.28), (Cas5, 0.26), (Cas7, 0.17)
I-D Cas3 (Cas11, 0.48), (Cas10, 0.20), (Cas5, 0.11)
I-E Cse2 (Cas7, 0.25), (Cas5, 0.23), (Cas8, 0.19)
II-A Csn2 (Cas1, 0.62), (Cas9, 0.23), (Cas2, 0.15)
II-B Cas4 (Cas9, 0.83), (Cas1, 0.09), (Cas2, 0.08)
I-A CasR (Csa5, 0.28), (Cas5, 0.16), (Cas6, 0.12)
I-E CasR (Cas1, 0.33), (Cas7, 0.25), (Cas8, 0.21)

For the interference proteins Cas10d, Cas3, and Cse2, the other most important
Cas proteins are also interference proteins. For non-interference proteins, other
Cas proteins linked to adaptation, e.g., Cas1 and Cas2, are also important. The
helper protein CasR seems to have different modules associated in I-A and I-E.

HMM models during the preprocessing step (Fig. 1a). Because
these cases often occur in real application scenarios, it is impor-
tant to assess how our ML-based pipeline can handle them. We
observed that most of these cassettes contained only 1 protein
that did not present any hit for the HMM models of its family.
For such, we worked with the cassettes having all proteins an-
notated as ground truth, and removed 1 bit score for a specific
protein. We then learned a model able to predict this bit score
using the evidence information from the remaining proteins.

Specifically, we investigated the performance of predicting
the missing evidence using the previously described regression
approach, trained on all subtypes. The basic idea is that finding
high-quality predicted evidence for a missing protein is a hint
for researchers to perform an in-depth attempt to either anno-
tate the missing protein or to search for new proteins that might
replace the function of the missing protein.

Fig. 5 shows the Cas protein regression results for ERT: the
regressor with the best predictive performance for subtypes I-A
and I-E in the dataset generated by HMM1. Other experimental
results, for different subtypes and datasets, can be seen in Sup-
plementary Figs S5–S9. These results show that the missing pro-
teins are predicted with a high quality. For the core proteins Cas1
. . . Cas10, specifically, the proposed approach has very high pre-
diction rates, showing a strong interdependence between these
core proteins and other Cas proteins important for the subtype.
We also observed that for proteins that are not core Cas proteins
such as CasR, the size of the data basis (i.e., number of known
cassettes for the subtype where this protein occurs) influences
the prediction quality. While this is partially inherent in the ML
approach, it also might indicate a more variable or complex in-
teraction between these proteins and other proteins important
for the subtype.

We also observed that, in general, ERT obtained the best re-
sults for Cas protein regression (see Supplementary Figs S5–S9).
In most cases, ERT presented mean absolute error values <0.05
for the normalized bit score prediction. These results confirm
the relevance of building specific regressors for each Cas protein
inside of a specific subtype for the identification of unknown or
possibly missing Cas proteins, when the label of the cassette of
interest is known.

To assess whether the aforementioned setting would work
on a more global level, we replicated the previous experiment by
training the regressor on the full datasets with all subtypes. Most
of the times, similar results were obtained (see Supplementary
Figs S10–S14).

Next, as a proof of concept, we looked at the cassettes with 1
missing protein that were left out of our experiments and con-
stitute an independent test case (see Methods), and applied our
regression approach to identify the cassettes with a high predic-
tive performance of the evidence for having a specific missing
protein. These cases would be good candidates for missing an-
notations. We found 13 cassettes that predicted a missing DinG
protein, 3 of them with evidence of ≥0.5. By applying an HHblits
[50] search for all open reading frames (ORFs) in the respective
genome of these 3 cassettes, we found an ORF with convincing
homology to DinG proteins in each case (see Fig. 6A for an exam-
ple). Another case was Cas2, when we found 13 cassettes with
a missing Cas2 protein predicted. We again used HHblits on all
ORFs in the genome of the top 3 cassettes and found 1 case with
a convincing Cas2 homology (see Fig. 6B).

Finally, we applied our regressors to the aforementioned test
set, to predict the missing protein annotations, and the clas-
sifiers to predict the subtype for these incomplete cassettes,
which were not included in the training set. Table 4 shows the
classification results for all ML algorithms on this independent
test. In these results, the ERT- and SVM-based classifiers, when
combined with the CART regressor and the more fine-grained
models HMM1 and HMM2, can predict the correct subtype with
high predictive performance, even in the hard case of incom-
plete annotation. The ERT-based classifier can also achieve high
performance when combined with the less fine-grained models
HMM4 and HMM5. However, in these cases, there are fewer sub-
types available because only classes containing ≥10 examples
were included in our experiments (see Methods).

CRISPRcasIdentifier clearly outperforms existing tools

Finally, we assessed the quality of prediction in comparison
with existing tools to assess whether they would be able to
correctly classify cassettes that are not covered by the manual
annotations. This is a typical application scenario, e.g., in the
analysis of cassettes from metagenomic data. For this purpose,
we used CRISPRcasIdentifier with default parameters and com-
pared its performance with 3 command line CRISPR-Cas tools
(CRISPRdisco [18], CRISPRcasFinder [19], and Macsyfinder [20])
and 2 webservers (CRISPRone [21] and HmmCas [22]).

To benchmark these tools we used the most recent and com-
prehensive set of cassettes as listed in the very recent classifica-
tion article [51]. This dataset has 6,098 cassettes extracted from
4,974 archaeal and bacterial genomes, including the following
subtypes: I-A to I-U, II-A to II-C, III-A to III-D, IV-A, V-A, and VI-B.
In Table 5 we present the adjusted balanced accuracy scores and
F-scores with the macro averaging obtained. The inferior results
of HmmCas and CRISPRone can partially be explained by the fact
that they (i) use the existing Cas HMMer models without any en-
hancement and (ii) rely on a concept that is similar to signature
gene for predicting the subtype.

According to Table 5 our tool clearly outperforms the oth-
ers for all measures. Our hypothesis is that the superior results
are due to the generalization capability of ML models. Thus, our
tool is more suitable to handle unseen examples even if they
contain missing proteins. It occurs because it does not rely only
on HMM profile searches but also on the general knowledge ex-
tracted from the training data. It is also important to observe
that CRISPRcasIdentifier not only classifies unseen cassettes but
also tries to predict potentially missing proteins, which, to the
best of our knowledge, is a problem that has not been success-
fully addressed by the existing tools.
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Figure 5 Mean absolute error rates for Cas proteins contained in I-A (a) and I-E (b) subtypes over 50 nested cross-validation repetitions. The x-axis lists the different
Cas proteins that were used as target variables. The y-axis presents the mean absolute error values between the known bit score and the bit score predicted by our
regression approach. In general, missing proteins are well predicted, especially in the case of the core Cas proteins Cas1– Cas7. For other Cas proteins, such as CasR,
the prediction quality varies between I-A and I-E. This is likely due to the higher amount of I-E cassettes in the data basis, indicating a more complex relationship

between CasR and other Cas proteins.

Figure 6 The cassettes with missing proteins. (A) In this genome, we predicted a DinG protein missing in the cassette with evidence >0.5. The HHblits [50] search in

this genome for all ORFs determined 1 ORF 117 nucleotides (nt) upstream of the cassette with a high confidence score for a DinG homology (E-value: 7.6e–22). (B) In the
case of Cas2, the quality of the predicted evidence was lower, between 0.221 and 0.165. Nevertheless, we found 1 ORF with a high confidence score for Cas2 homology
(E-value: 1e–37) 1,006 nt downstream of the cassette.

Table 4. Mean adjusted balanced accuracy for classification on the
independent test set, consisting of cassettes with 1 Cas protein miss-
ing. The best results ≥0.7 are in bold.

Classifier Regressor HMM1 HMM2 HMM3 HMM4 HMM5

CART – 0.50 0.50 0.68 0.48 0.48
CART 0.68 0.68 0.52 0.55 0.55
ERT 0.63 0.63 0.56 0.58 0.58
SVM 0.56 0.56 0.51 0.54 0.54

ERT – 0.63 0.63 0.65 0.74 0.74
CART 0.70 0.70 0.63 0.64 0.63
ERT 0.69 0.69 0.63 0.64 0.65
SVM 0.60 0.60 0.63 0.63 0.62

SVM – 0.50 0.50 0.58 0.64 0.64
CART 0.72 0.72 0.53 0.58 0.58
ERT 0.66 0.66 0.60 0.61 0.62
SVM 0.54 0.54 0.53 0.57 0.57

A dash in the second column means no regression (i.e., only classification) was
used.

Conclusion

In this article we introduced a new ML-based pipeline for the
identification and classification of genomic CRISPR-Cas systems.
To assess the predictive performance of this approach, we con-
ducted an in-depth investigation into the suitability of ML algo-
rithms that are commonly used for this task, by using the nor-
malized profile HMM search bit scores of Cas proteins as input
and classifying cassettes encoding Cas proteins to their respec-

Table 5. Predictive performance of CRISPR-Cas tools for different
measures

Environment Tool

Adjusted
balanced
accuracy

score F-score

Webserver CRISPRone 0.07 0.17
HmmCas 0.05 0.15

Command line CRISPRdisco 0.52 0.63
CRISPRcasFinder 0.48 0.56
Macsyfinder 0.54 0.60
CRISPRcasIdentifier 0.89 0.91

Boldface indicates best results for each measure.

tive subtypes according to the most recent classification [2, 4,
9].

Overall, this work covers 4 different research issues: (i) the
classification of Cas cassettes, (ii) the prediction of normalized
bit scores for missing Cas proteins, (iii) the investigation of the
properties of CRISPR types and subtypes, and (iv) the compari-
son of our new tool to the ones available in the literature. Con-
cerning topic (i), our classification models were able to achieve
very high classification performance, >0.95, in terms of the ad-
justed balanced accuracy score. Thus, they are well placed for
the prediction of CRISPR systems of newly sequenced organ-
isms, or metagenomic data with sufficient read length to cover
the full cassette in 1 contig. In addition, we introduced a new
method for determining signature genes, which are genes most
important for predicting the correct subtype. This approach was
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able to properly learn the known signature genes of CRISPR-Cas
subtypes without any extra information other than the avail-
able gene cassettes and their labels but provides additional in-
formation about the composition of cassettes. In topic (ii), our
regressor models achieved very small deviations between the
expected and predicted normalized bit scores for different Cas
proteins across the different subtypes. This illustrates the use-
fulness of these regressors on new cassettes that have missing
hits for some Cas proteins. A high bit score provides a hint to
researchers to search for more diverged forms of the protein or
to look for proteins that could replace the missing function. The
analysis performed under topic (iii) enabled us to correctly iden-
tify known signature genes and to identify putative functional
modules. Overall, it provided us with a set of association rules
for potential use in more advanced classification scenarios, in
addition to providing insights about the biology of the systems.
Finally, concerning (iv), our tool outperformed 5 other tools from
the literature on the most recent and comprehensive CRISPR
classification dataset published.

Manual annotation is the gold standard when it comes to
classification and identification of genomic CRISPR-Cas systems.
Supporting this process or annotating cassettes as part of an
overall automatic pipeline such as the analysis of metagenomic
data requires a classification approach with a degree of flexibil-
ity that is challenging to model. CRISPRcasIdentifier provides a
boost in classification accuracy when compared to existing tools
because it builds not only on an understanding of the man-
ual annotation process but also on the generalization power of
ML algorithms. We made CRISPRcasIdentifier available for re-
searchers to use with their own data.

Availability of Source Code and Requirements

Project name: CRISPRcasIdentifier
Project home page: https://github.com/BackofenLab/CRISPRcas
Identifier
RRID:SCR 018296
BiotoolsID: crisprcasidentifier
Operating system(s): Platform independent
Programming language: Python
Other requirements: Anaconda, Docker
License: GNU General Public License version 3 (GPLv3)

Availability of Supporting Data and Materials

The data that support the present work are available in several
publications [2–4, 51]. An archival copy of the code and support-
ing data are also available via the GigaScience database, GigaDB
[52].
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