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Abstract

It is well-known fact that various pathogens, including bacteria, virus, and protozoa, induce abortion in humans and
animals. However the mechanisms of infectious abortion are little known. In this study, we demonstrated that Listeria
monocytogenes infection in trophoblast giant cells decreased heme oxygenase (HO)-1 and B-cell lymphoma-extra large (Bcl-
XL) expression, and that their overexpression inhibited cell death induced by the infection. Furthermore, HO-1 and Bcl-XL
expression levels were also decreased by L. monocytogenes in pregnant mice. Treatment with cobalt protoporphyrin, which
is known to induce HO-1, inhibited infectious abortion. Taken together, our study indicates that L. monocytogenes infection
decreases HO-1 and Bcl-XL expression and induces cell death in placenta, leading to infectious abortion.
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Introduction

Listeriosis is caused by gram-positive Listeria monocytogenes. In

humans, this pathogen has the ability to cross the intestinal,

placental, and blood-brain barriers, leading to gastroenteritis,

maternofetal infections, and meningoencephalitis, respectively. A

key feature of the virulence of L. monocytogenes is its ability to avoid

the killing mechanisms of professional and non- professional

phagocytic host cells [1–4]. L. monocytogenes infections in humans

are caused mainly by injection of contaminated food, such as daily

products, raw vegetables, fish, poultry, processed chicken, and beef

[5].

L. monocytogenes induces cell death in vitro and in vivo in various cell

types including hepatocytes [6], lymphocytes [7], and dendritic

cells [8]. Cell death induced by L. monocytogenes is associated with

listeriolysin O, a pore-forming toxin that allows bacteria to lyse the

phagosomal membrane and escape into the cytosol.

In a previous study, we investigated abortion induced by

brucella infections and demonstrated that it was associated with

cell death of placental immune cells, the trophoblast giant (TG)

cells. Furthermore, we found that heme oxygenase (HO)-1

expression inhibited infectious abortions in vivo and cell death in

vitro [9]. HO-1 plays a key role in cytoprotection, anti-oxidation,

and anti-inflammation. Most of the physiological functions of HO-

1 are associated with its enzymatic activity in heme catabolism

[10,11]. In humans, HO-1 deficiency is associated with suscep-

tibility to oxidative stress and an increased pro-inflammatory state,

leading to severe endothelial damage [12]. Mice lacking HO-1

develop progressive inflammatory disease [13] and show enhanced

lipopolysaccharide-induced toxemia [14]. Although the protective

properties of HO-1 have been studied using various inflammatory

models [15–20], the molecular mechanisms, timing, and mode of

HO-1 function during disease remains largely unknown. HO-1

expression is known to be associated with B-cell lymphoma-extra

large (Bcl-XL) expression [21]. Bcl-XL is one of the several anti-

apoptotic proteins that are members of the Bcl-2 family [22].

L. monocytogenes infection causes abortion in pregnant mice [23].

However, the factors involved in abortion induced by L.

monocytogenes infection in these animals remain unknown. In the

present study, we investigated the roles of the anti-apoptotic

factors, HO-1 and Bcl-XL, in abortion induced by L. monocytogenes

infection. HO-1 and Bcl-XL expression was down-regulated by L.

monocytogenes infection or interferon (IFN)-c treatment, leading to

infectious abortion. HO-1 and Bcl-XL overexpression suppressed

this infectious abortion. These results suggest that HO-1 and Bcl-

XL play a critical role in the control of infectious abortion induced

by L. monocytogenes.

Results

L. monocytogenes infection decreased HO-1 and Bcl-XL
expression in TG cells

L. monocytogenes has been shown to infect the placenta and induce

cell death in vitro and in vivo [24–26]. TG cells are placental

immune cells existing in maternal-fetal interface and these cells are

important for maintaining pregnancy [27]. In a previous study, we

demonstrated that HO-1 plays a role in inhibiting cell death

induced by Brucella abortus infection. To investigate the mecha-

nisms through which L. monocytogenes induces cell death in placenta,

we measured HO-1 expression in TG cells. HO-1 was expressed

in TG cells, but its expression decreased on L. monocytogenes

infection (Fig. 1A). Furthermore, HO-1 expression was enhanced

by the HO-1 inducer cobalt protoporphyrin (Co-PP), in a
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concentration-dependent manner (Fig. 1A). No significant differ-

ence was observed in intracellular growth of bacteria between Co-

PP-treated and non-treated TG cells (Fig. 1B, C). These results

indicate that L. monocytogenes infection decreases HO-1 expression.

To investigate the mechanism of HO-1, Bcl-XL expression was

analyzed (Fig. 1A). Bcl-XL, an anti-apoptotic protein induced by

HO-1, belongs to the Bcl-2 family [28,29]. Bcl-XL expression was

enhanced by the HO-1 inducer Co-PP and decreased by L.

monocytogenes infection as well as HO-1. Furthermore, we showed

that this reduction in expression was recovered by Co-PP.

Since an increase in IFN-c due to L. monocytogenes infection was

observed to promote abortion in pregnant mice [30], we

investigated the effect of IFN-c treatment on HO-1 and Bcl-XL

expression in TG cells. HO-1 and Bcl-XL expression in TG cells

decreased significantly in a concentration-dependent manner on

treatment with IFN-c, with the down-regulation being enhanced

further by L. monocytogenes infection (Fig. 2A).

HO-1 and Bcl-XL protect against cell death induced by L.
monocytogenes infection

To examine whether HO-1 and Bcl-XL inhibited cell death,

TG cells were infected with L. monocytogenes with or without Co-PP

treatment and the rate of cell death was determined measuring

mitochondrial membrane potential. Mitochondrial membrane

potential has been used as an indicator of cell death. In this

experimental system, cell death induced cells with low mitochon-

drial membrane potential were detected as unhealthy cells

(Fig. 2B). Treatment with Co-PP inhibited cell death induced by

L. monocytogenes infection in TG cells as compared with untreated

TG cell. In contrast, cell death induced by L. monocytogenes infection

in IFN-c-treated TG cells was enhanced compared to that in

untreated TG cells (Fig. 2B). Treatment with cytochalasin D,

which is known to inhibit L. monocytogenes internalization, was

found to inhibit the death of TG cells by L. monocytogenes infection

compared with non-treated TG cells (Fig. 2B). These results

indicate that internalization of L. monocytogenes decreases HO-1 and

Bcl-XL expression leading to enhancement of cell death.

To confirm the effect of HO-1 and Bcl-XL on TG cell death

following infection with L. monocytogenes, we reduced the amount of

endogenous HO-1 and Bcl-XL by transfecting HO-1-specific

small interfering RNA (siRNA) duplexes into TG cells. After 48 h

of transfection with HO-1-specific siRNA, HO-1 and Bcl-XL

expression levels were no longer detectable, but were not affected

by transfection with b-actin or control siRNA (Fig. 3A). HO-1 or

Bcl-XL knockdown did not induce cell death in TG cells (Fig. 3C).

While L. monocytogenes infection resulted in a slight induction of cell

death in TG cells, HO-1 or Bcl-XL knockdown enhanced cell

death in infected TG cells (Fig. 3C). Bcl-XL overexpression in the

T-Rex system inhibited cell death compared to cells not expressing

the protein (Fig. 3C). There was no significant difference in

bacterial growth between transfected and non-transfected TG cells

(Fig. 3B). These results suggest that HO-1 and Bcl-XL play critical

roles in the inhibition of cell death induced by L. monocytogenes

infections.

Figure 1. Decreased HO-1 and Bcl-XL expression in TG cells infected with L. monocytogenes. (A) TG cells were first treated with Co-PP and
then infected with L. monocytogenes. The infected cells were cultured in 50 mg/ml of gentamicin. After 6 h, HO-1 and Bcl-XL expression was analyzed
by immunoblotting. A representative immunoblot of three independent experiments is shown. (B) TG cells were treated with Co-PP and then
infected with L. monocytogenes. The infected cells were cultured in 50 mg/ml of gentamicin. After 0.5, 2, and 6 h incubation, the infected cells were
washed with PBS and lysed with cold distilled water. CFU were determined by serial dilution on BHI agar plates. (C) L. monocytogenes was deposited
on TG cells by centrifugation at 1506g for 10 min at room temperature, incubated for 6 h, fixed, and stained. The figure shows FITC-labeled bacteria
(green) and Alexa Fluor 594-labeled actin filaments (red) merged images. The left-hand panel shows untreated cells, the center panel Co-PP (9 mg/
ml)-treated cells, and the right-hand panel, cytochalasin D-treated cells.
doi:10.1371/journal.pone.0025046.g001
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Abortion induced by L. monocytogenes infection is
dependent on HO-1 and Bcl-XL expression in the
placenta

Previous studies have reported the presence of HO-1 in the

mammalian placenta and postulated that it has a protective role

during pregnancy [31–33]. We assume that the inhibitory action

of HO-1 and Bcl-XL on cell death leads to a successful pregnancy.

To examine whether HO-1 and Bcl-XL actually block abortion

induced by L. monocytogenes infection, we measured HO-1 and Bcl-

XL expression levels in the placenta of L. monocytogenes-infected

mice. Both HO-1 and Bcl-XL were expressed in the placenta of

mice, with levels being decreased by L. monocytogenes infection

(Fig. 4A). Moreover, injection of L. monocytogenes with Co-PP

restored HO-1 and Bcl-XL expression levels (Fig. 4A). We next

investigated the role of HO-1 and Bcl-XL expression on abortion

induced by L. monocytogenes. Infection of L. monocytogenes induced

abortion in pregnant mice (Fig. 4B). HO-1 and Bcl-XL expression

induced by Co-PP injection blocked abortion in L. monocytogenes-

infected mice (Fig. 4B). There was no significant difference in the

growth of bacteria in livers (Fig. 4C) and placenta (data not shown)

between Co-PP-treated and untreated mice. These results suggest

that abortion induced by L. monocytogenes infection is dependent on

HO-1 and Bcl-XL expression in the placenta.

Discussion

Heme oxygenases (HOs) are heme catabolic enzymes. Heme is

degraded to carbon monoxide, biliverdin, and ferrous ion.

Biliverdin is converted to bilirubin, which is believed to be a

potent anti-oxidant. Three isoforms of HOs have been identified.

HO-1 is an inducible isoform produced in response to various

types of stress, such as oxidative stress, heat stress, endotoxin stress,

hypoxia, heavy metal stress, and cytokine stress [34]. Furthermore,

HO-1 plays a role in cytoprotection, anti-oxidation, anti-

inflammation, and graft acceptance [35–37]. HO-1 is also

down-regulated at the fetal maternal interface during spontaneous

abortion in both humans and mice [33,38–40]. Up-regulation of

HO-1 by Co-PP prevents abortion, while down-regulation by zinc

protoporphyrin increases the chances of abortion [31]. It has been

reported that during pregnancy, all placental cell types are positive

for HOs and that different types of trophoblast cells are important

sources of these enzymes [32,38,40,41]. As we anticipated, HO-1

was associated with infectious abortion. It is well known that

various pathogens, such as Brucella spp., L monocytogenes, Leptospira

spp., Buniyavirus, and Toxoplasma gondii, cause infectious abortion.

However, the mechanisms responsible for infectious abortion

remain unclear. Previously, we reported that HO-1 was associated

with abortion induced by B. abortus infection. B. abortus are gram-

negative, intracellular, and zoonotic bacteria that cause down-

regulation of HO-1 in the placenta leading to abortion. However,

it remains unclear whether HO-1 is a common regulator for

abortion induced by various pathogens. In this study, we used

gram-positive, intracellular, and zoonotic L. monocytogenes to

examine this possibility.

In order to investigate the detailed mechanisms of infectious

abortion induced by L. monocytogenes, we studied TG cells in vitro.

TG cells are immunocompetent cells present in the placenta [42–

44] and play a critical role in implantation and pregnancy [27,42].

HO-1 expression in TG cells was decreased by L. monocytogenes

infection (Fig. 1A) and treatment with IFN-c (Fig. 2A). Further-

more, it is well known that IFN-c is induced by L. monocytogenes

infection in mice [30] and there is evidence that Th1 cytokines,

such as IFN-c, inhibit HO-1 expression resulting in allograft

rejection [37]. These results indicate that Th1 cytokines induced

by L. monocytogenes infection control HO-1 expression.

Although HO-1 appears to play a critical role in the control of

infectious abortion, the mechanisms of this control remain unclear.

We focused on Bcl-XL since HO-1 enhances the expression of this

anti-apoptotic protein [21]. We found that Bcl-XL expression was

enhanced by a HO-1 inducer, Co-PP (Figs. 1A, 4A) and

furthermore that Bcl-XL overexpression prevented cell death

induced by L. monocytogenes infection (Fig. 3C). These results suggest

that Bcl-XL is a key factor that protects placenta cells from injury

induced by L. monocytogenes infection, therecy resulting in

successful pregnancy.

We also observed that HO-1 and Bcl-XL expression was down-

regulated in the placenta of pregnant mice by L. monocytogenes

infection (Fig. 4A), while it was up-regulated by Co-PP and

inhibited infectious abortion (Fig. 4B). These results suggest that

HO-1 and Bcl-XL have critical roles against infectious abortion

induced by L. monocytogenes.

Figure 2. Induction of cell death by L. monocytogenes infection.
(A) TG cells were treated with IFN-c (0, 300, and 1,000 units/ml) for 24 h
and infected with L. monocytogenes for 6 h. HO-1 and Bcl-XL expression
in TG cells was analyzed by immunoblotting. A representative
immunoblot of three independent experiments is shown. (B) Cell death
was determined using the JC-1 Mitochondrial Membrane Potential
Assay Kit. One hundred TG cells per coverslip were examined to
determine the total number of live or dead cells. All values represent
the average and the standard deviation of three identical experiments.
Statistically significant differences compared with the control are
indicated by asterisks (*, P,0.05).
doi:10.1371/journal.pone.0025046.g002
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Although HO-1 and Bcl-XL play an important role to protect cells

from cell death, it is still unknown how HO-1 and Bcl-XL inhibit cell

death induced by L. monocytogenes infection. Caspase-9 is an apoptotic

protein and its activation is inhibited by Bcl-XL [45]. In TG cells,

however, L. monocytogenes infection failed to induce caspase-9 activation

(data not shown). These results may indicate that L. monocytogenes

induces cell death trough alternative pathways involved with Bcl-XL.

In humans, it was reported that L. monocytogenes infects extravillous

trophoblasts (EVTs), and spreads across maternal-fetal barrier [46].

However, there is less information about molecular mechanisms by

which L. monocytogenes passes maternal-fetus barrier. Since tropho-

blast cells such as EVTs in human or TG cells in mouse exists in

maternal-fetal interface, down regulation of HO-1 and Bcl-XL

leading to enhancement of cell death may be a key event for L.

monocytogenes to spread across the barrier.

In conclusion, our results indicate that down-regulation of HO-

1 induced by various pathogens may be a key event in infectious

abortion. Antimicrobial drugs are usually used in the treatment of

listeriosis. However, an increasing number of multidrug-resistant

L. monocytogenes have been reported [47,48]. It is noteworthy that

the HO-1 inducer Co-PP suppressed abortion induced by L.

monocytogenes. Therefore, HO-1 has potential as a putative

therapeutic target in infectious abortion.

Methods

Bacterial strains
L. monocytogenes EGD was maintained as a frozen glycerol stock

and cultured in brain heart infusion (BHI) broth (Becton

Dickinson) or on BHI broth containing 1.5% agar.

Cell culture
Mouse trophoblast stem (TS) cell line was gifted from Dr.

Tanaka [44,49]. TS cells were cultured in TS medium in the

Figure 3. Prevention of cell death by HO-1 and Bcl-XL expression. (A) TG cells were treated for 48 h with either siRNA targeting HO-1, Bcl-XL,
or control siRNA (QIAGEN AllStars Negative Control). Bcl-XL overexpression was achieved by transfecting the cells with pcDNA4/TO-Bcl-XL. HO-1 and
Bcl-XL expression was monitored by immunoblotting. b-actin was used as an internal control. A representative immunoblot of three independent
experiments is shown. (B) TG cells were infected with L. monocytogenes. The infected cells were cultured with media containing 50 mg/ml gentamicin
for 2, 6, and 12 h. The cells were then washed with PBS and lysed with cold distilled water. CFU was determined by serial dilution on BHI agar plates.
All values represent the average and the standard deviation of three identical experiments. (C) Cell death was determined using the JC-1
Mitochondrial Membrane Potential Assay Kit. One hundred TG cells per coverslip were examined to determine the total number of live or dead cells.
All values represent the average and the standard deviation of three identical experiments. Statistically significant differences compared with the
control are indicated by asterisks (*, P,0.05).
doi:10.1371/journal.pone.0025046.g003
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presence of fibroblast growth factor-4, heparin, and mouse

embryonic fibroblast-conditioned medium as described previously

[49]. The TS medium was prepared by adding 20% fetal bovine

serum, 1 mM sodium pyruvate, 100 mM b-mercaptoethanol, and

2 mM L-glutamine to RPMI 1640. To induce differentiation to

TG cells, the cells were cultured in TS medium alone for 3 days at

37uC in a CO2 incubator. The cells were then seeded in a 48-well

(1–26105 per well) or a 12-well (4–86105 per well) tissue culture

plate.

Immunoblotting
The protein samples were separated on a 15% polyacrylamide

gel and transferred to a polyvinylidene difluoride membrane,

which was incubated for 16 h at 4uC with anti-HO-1 rabbit

polyclonal antibody (Stressgen) or anti-Bcl-XL rabbit polyclonal

antibody (Cell Signaling Technology) at a dilution of 1:5000 or

1:1000 in 5% skim milk. The membrane was washed three times

in Tris-buffered saline with 0.02% Tween 20, incubated for

30 min with 0.01 mg/ml horseradish peroxidase-conjugated sec-

ondary antibody, and washed again. The immunoreactions were

visualized using the enhanced chemiluminescence detection

system (GE Healthcare Life Science). The b-actin antibody was

purchased from Sigma.

Efficiency of bacterial replication within cultured cells
L. monocytogenes strains were deposited onto TG cells at a

multiplicity of infection (MOI) of 10 by centrifugation at 1506g

for 10 min at room temperature. To measure the intracellular

replication efficiency, the infected cells were incubated at 37uC for

30 min, washed once with TS medium, and then incubated in TS

medium containing gentamicin (50 mg/ml) for 0.5, 2, 6, and 12 h.

The cells were washed three times with phosphate-buffered saline

Figure 4. Prevention of infectious abortion by HO-1 and Bcl-XL expression. (A) Pregnant mice were infected with 105 cells of L.
monocytogenes in 0.1 ml of saline at day 13.5 of pregnancy with or without Co-PP treatment (5 mg/kg). At day 16.5, the placentas, fetuses, and livers
were removed. HO-1 and Bcl-XL expression in the placenta was analyzed by immunoblotting. A representative immunoblot of three independent
experiments is shown. (B) Survival rates were determined by the presence or absence of a heartbeat in the fetuses. (C) Livers were homogenized in
saline and diluted with PBS. CFU was determined by plating the diluted samples on BHI agar plate.
doi:10.1371/journal.pone.0025046.g004
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(PBS) and lysed with cold distilled water. Colony forming unit

(CFU) was determined by serial dilution on BHI agar plates.

Cytochalasin D (Wako), recombinant IFN-c (Cedarlane Labora-

tories) or Co-PP was added to the TS medium at the indicated

concentrations 2, 16, and 24 h before infection.

Immunofluorescence microscopy
Bacteria were deposited onto TG cells grown on coverslips by

centrifugation at 1506g for 5 min at room temperature and were

then incubated at 37uC for 30 min. The samples were washed

twice with PBS and fixed with 4% paraformaldehyde in PBS for

30 min at room temperature, washed three times with PBS, and

incubated successively three times for 5 min in blocking buffer (5%

bovine serum albumin in PBS) at room temperature. The samples

were permeabilized in 0.2% Triton X-100 and washed three times

with PBS, followed by treatment with 5 mg/ml anti-L. monocytogenes

polyclonal rabbit antibody (Viro Stat) diluted in blocking buffer to

identify intracellular bacteria. After incubation for 1 h at 37uC, the

samples were washed three times for 5 min with blocking buffer,

stained with FITC-labeled goat anti-rabbit IgG (0.01 mg/ml,

Chemicon) in blocking buffer, and incubated for 1 h at 37uC.

Fluorescent images were obtained using a FluoView FV100

confocal laser scanning microscope (Olympus).

Expression of recombinant protein
Total RNA was isolated from TG cells using the RNA

Purification Kit (Qiagen), and the purified RNA samples were

stored at 230uC until use. RNA was quantified by absorption at

260 nm using the SmartSpec 3000 spectrophotometer (Bio-Rad).

RT-PCR was performed using Superscript II Kit (Invitrogen). The

primers used for mouse Bcl-XL amplification were 59- ATGTCT-

CAGAGCAACCGGG AG -39 and 59- TCACTTCCGACT-

GAAGAGTGA -39. To express Bcl-XL in TG cells, amplified

DNA encoding Bcl-XL from TG cells in RT-PCR was cloned into

the pcDNA4/TO vector of the T-Rex System (Invitrogen).

pcDNA4/TO-Bcl-XL was transfected into TG cells using the

FuGENE 6 Transfection Reagent (Roche) at a final concentration

of 1.2 mg/ml.

siRNA experiment
siRNA duplexes used for silencing mouse HO-1 (target

sequence: CAGCCACACAGCACTATGTAA) and Bcl-XL (tar-

get sequence: AAAGTGCAGTTCAGTAATAAA) and AllStars

Negative Control siRNA were purchased from QIAGEN. TG

cells were transfected transiently using the X-tremeGENE siRNA

Transfection Reagent (Roche) with or without a final concentra-

tion of 10 nM for siRNAs.

Determination of cell death
Cell death was determined using the JC-1 Mitochondrial

Membrane Potential Assay Kit (Cayman Chemical) according to

the manufacturer’s instructions. Mitochondrial membrane poten-

tial, DJm, an important parameter of mitochondrial function, is

used as an indicator of cell health. Healthy cells have a high

mitochondrial DJm and red fluorescence, while apoptotic or

unhealthy cells have a low DJm and green fluorescence [50].

Mice
Six to 10-week-old BALB/c female mice were mated individ-

ually to 6- to 10-week-old BALB/c male mice. The parent mice

were obtained from Kyudo Co., Ltd.. Vaginal plug was observed

at day 0.5 of gestation. The normal gestational time for these mice

is 19 days.

Virulence in pregnant mice
Groups of five pregnant mice were infected intraperitoneally at

13.5 days of gestation with approximately 105 cells of L.

monocytogenes in 0.1 ml saline with or without Co-PP (5 mg/kg,

Sigma). On day 16.5 of gestation, their livers were removed and

homogenized in saline. The tissue homogenates were serially

diluted with PBS and plated on BHI agar plates to estimate the

number of CFU. Fetuses were classified as alive if there was a

heartbeat and as dead if there was no heartbeat. The animal

experiments were approved by the Animal Research Committee

of Yamaguchi University (permit number: 141).

Statistical analyses
Statistical analyses were performed using Student’s t test.

Statistically significant differences compared with the controls

are indicated by asterisks (*, P,0.05). Data are expressed as the

mean of triplicate samples from three identical experiments, and

the error bars represent the standard deviations.
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