

Addition/Correction

pubs.acs.org/JACS

Correction to "Simple, Chemoselective, Catalytic Olefin Isomerization"

Steven W. M. Crossley, Francis Barabé, and Ryan A. Shenvi*

J. Am. Chem. Soc. 2014, 136, 16788-16791. DOI: 10.1021/ja5105602

Page 16788 and Supporting Information page SI-4. Entry 13 was inadvertently omitted from Table 1 and S.I. Table 1. This entry suggests mechanistic overlap between our alkene

isomerization and hydrogen atom transfer radical polymerization, more so than entry 12 alone. The complete S.I. Table 1 is shown below.

S.I. Table 1. Distribution of products from common Mukaiyama hydrofunctionalization catalysts

entry	conditions ^a	%1 ^b	%2	%3
1	1 mol% Co(Sal ^(Bu,fBu) Cl, 2 mol% PhSiH ₃ , PhH, 22 °C, 3 h	4	96	0
2	10 mol% Mn(dpm) ₃ , 2 equiv. PhSiH ₃ , i-PrOH, 22 °C, 3 h	39 ^c	0	16
3	2 equiv. Fe ₂ (oxalate) ₃ , 6.4 equiv. NaBH ₄ , ACN/H ₂ O/i-PrOH (1:1:0.2), 0 °C, 1 h, air atm.	34	1	1
4	50 mol% Fe(acac) ₃ , 1 equiv. PhSiH ₃ , EtOH, 60 °C, 1 h	28 ^c	0	57
5	50 mol% Fe(acac) ₃ , 1 equiv. PhSiH ₃ , PhH, 60 °C, 1 h	65 ^c	0	0
6	50 mol% Co(acac) ₃ , 1 equiv. PhSiH ₃ , PhH, 60°C, 1 h	99	0	0
7	5 mol% Salcomine-Cl, 50 mol% PhSiH ₃ , PhH, 60 °C, 3 h	65	20	6
8	1 mol%, Co(Sal ^{rBu,rBu})Cl, 10 mol% PhSiH ₃ , Me ₂ CO, 22 °C, 3 h.	5	94	<1
9	1 mol% Co(Sal ^{fBu,fBu})Cl, 10 mol% PhSiH ₃ , CH ₂ Cl ₂ , 22 °C, 3 h	17 <i>c</i>	63	2
10	5 mol% Co(Sal ^{fBu,fBu})Cl, 2 equiv. PMHS, PhH, 22 °C, 24 h	4 ^c	78	0
11	2 mol% Co(Sal ^{fBu,fBu})Cl, 40 mol% TESH, PhH, 22 °C, 24 h	98	0	0
12	5 mol% Co(Sal ^{fBu,fBu})Cl, 50 mol% AIBN, PhH, 80 °C, 2 h	86	11	0
13	5 mol% Co(Sal ^{fBu,fBu}), 50 mol% AIBN, PhH, 80 °C, 2 h	70	30	0

 a under Ar unless otherwise noted; b according to GC-FID; c other unidentified product(s) were observed