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Introduction
The Notch pathway is used throughout development to couple 
the cell fate choice of one cell to those of neighboring cells, 
ultimately affecting proliferation, apoptosis, and differentiation 
(Artavanis-Tsakonas et al., 1999; Schweisguth, 2004; Bray, 
2006). Notch signaling has been associated with normal devel-
opment in all organisms. In humans, alternations in Notch sig-
naling have also been implicated in different diseases including 
cancer (Gridley, 2003). Notch encodes a single-pass transmem-
brane receptor (Wharton et al., 1985) and the classical develop-
mental logic of the signaling pathway relies on the interaction 
of the receptor expressed on one cell with membrane-bound 
ligands expressed on the neighboring cells. The canonical sig-
naling model has the Notch receptor being activated through a 
series of proteolytic events after it interacts with the ligands, 
Delta (Dl) or Serrate (Ser) (Bray, 2006; Kopan and Ilagan, 
2009). The crucial cleavage event for signaling depends on  
-secretase and results in releasing the intracellular domain of 
Notch from the membrane. This allows it to translocate into the 

nucleus, where it directly participates in a core transcriptional 
complex together with DNA binding protein Suppressor of 
Hairless (Su(H)) and the nuclear effector Mastermind, thereby 
activating the transcription of target genes (Bray, 2006; Kopan 
and Ilagan, 2009).

Small variations of Notch signaling can profoundly affect 
the biology and indeed pathobiology of cells, a fact reflected by 
the sensitivity of development to the gene dosage of several 
Notch pathway components. Thus, mechanisms capable of mod-
ulating signaling are of great importance. As components of 
endocytic trafficking have been implicated in regulating the  
activity of the Notch receptor (Wilkin and Baron, 2005; Fortini, 
2009; Yamamoto et al., 2010), the role and the complexity of 
such signal modulating mechanisms is increasingly appreciated. 
Several factors modulating the degradation of the Notch recep-
tor and consequently the negative attenuation of signaling have 
been identified, while sorting of the receptor through the endo-
cytic compartments has been shown to be critical for the acti-
vation of the receptor (Fortini, 2009; Yamamoto et al., 2010). 
Notably, such intracellular events have not only been associated 
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mechanism that regulates cell fate decisions in 
metazoans. Signaling is modulated by a broad and 

multifaceted genetic circuitry, including members of the 
endocytic machinery. Several individual steps in the endo­
cytic pathway have been linked to the positive or negative 
regulation of the Notch receptor. In seeking genetic ele­
ments involved in regulating the endosomal/lysosomal 
degradation of Notch, mediated by the molecular synergy 
between the ubiquitin ligase Deltex and Kurtz, the non­
visual -arrestin in Drosophila, we identified Shrub, a core 
component of the ESCRT-III complex as a key modulator 

of this synergy. Shrub promotes the lysosomal degra­
dation of the receptor by mediating its delivery into multi­
vesicular bodies (MVBs). However, the interplay between 
Deltex, Kurtz, and Shrub can bypass this path, leading 
to the activation of the receptor. Our analysis shows 
that Shrub plays a pivotal rate-limiting step in late endo­
somal ligand-independent Notch activation, depending 
on the Deltex-dependent ubiquitinylation state of the 
receptor. This activation mode of the receptor empha­
sizes the complexity of Notch signal modulation in a 
cell and has significant implications for both development 
and disease.
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The screen identified d02738, an insertion in shrub as a 
strong suppressor (see Materials and methods). shrub encodes a 
protein homologous to the yeast protein Snf7 and its mamma-
lian orthologue vps32, a key core component of the ESCRT-III 
complex (Sweeney et al., 2006). The insertion in d02738 dis-
rupted the shrub coding region, suggesting a loss-of-function 
mutation. Consistent with this, shrub4, an extant hypomorphic 
allele of shrub (Sweeney et al., 2006), failed to complement the 
lethality of d02738 (unpublished data). Moreover shrub4 as a 
heterozygote suppressed the wing-nicking phenotype caused by 
Dx and Krz (Fig. 1 K), as did the expression of an inverted 
repeat RNA corresponding to Shrub (ShrubRNAi; Fig. 1 J). Con-
versely, expression of Shrub enhanced the wing-nicking pheno-
type (Fig. 1 L).

shrub affects the subcellular localization  
of Notch
In wild-type epithelial cells, Notch is mostly concentrated in 
the apical lateral adhesion junctions (zonula adherens) with 
some protein detected more basally in intracellular vesicles 
(Fehon et al., 1991). When Dx, a molecule known to physically 
interact with Notch (Matsuno et al., 1995), is expressed in the 
wing margin, Notch is depleted from the adhesion junctions of 
the Dx-expressing cells (Hori et al., 2004). This cellular phenotype 

with ligand-dependent (Coumailleau et al., 2009) but also with 
an enigmatic ligand-independent, i.e., noncanonical, activation 
of the receptor (Hori et al., 2004; Sakata et al., 2004; Wilkin 
et al., 2004, 2008; Thompson et al., 2005; Vaccari and Bilder, 
2005; Childress et al., 2006; Vaccari et al., 2008, 2009). Muta-
tions in elements of the endosomal sorting machinery were 
shown capable of triggering noncanonical signaling in the early 
endosomes (Thompson et al., 2005; Vaccari and Bilder, 2005; 
Vaccari et al., 2008, 2009). In addition, another distinct activa-
tion path implicates the late endosome in noncanonical activa-
tion of the receptor (Hori et al., 2004; Wilkin et al., 2008). The 
genetic circuitry capable of modulating such intracellular Notch 
signaling remains opaque, but ligand-independent activation of 
the receptor has been recently shown to be essential for the 
normal development of Drosophila blood cells (Mukherjee 
et al., 2011).

Here, we address these questions based on our previous 
study showing that Kurtz (Krz), the single nonvisual -arrestin 
homologue in Drosophila together with the ubiquitin ligase 
Deltex (Dx), affects trafficking of the Notch receptor and regu-
lates Notch signaling by modulating the turnover of the receptor 
(Mukherjee et al., 2005). To gain further insight into how Krz 
and Dx regulate the trafficking of the Notch receptor we per-
formed unbiased genetic screens for modifiers of the Krz and 
Dx-dependent synergy, which is manifested in vivo as a typical 
loss of Notch function wing phenotype. We thus identified a 
key core component in the ESCRT (endosomal sorting complex 
required for transport)-III complex, Shrub, the yeast Snf7 
homologue (Sweeney et al., 2006; Vaccari et al., 2008), as a 
modifier of Notch signaling. Our analysis gives a mechanistic 
insight into the role of ESCRT-III in a late endosomal ligand-
independent activation of the Notch receptor. We determined 
that this mode of Notch regulation relies on the ubiquitinylation 
of the receptor, controlled by the functional association between 
Shrub, Dx, and Krz. The data we present emphasize both the 
complexity and diversity of the means used by the cell to modu-
late Notch signals. The Notch activation mode we uncover here 
has significant implications for both development and disease.

Results
shrub modulates the synergy between dx 
and krz
Dx, Krz, and Notch were shown to form a trimeric complex, which 
modulates the ubiquitinylation and trafficking of the Notch re-
ceptor, leading to its degradation (Mukherjee et al., 2005). The co-
expression of Dx and Krz consequently shows a wing-nicking 
adult phenotype (Fig. 1 D; Mukherjee et al., 2005), a typical phe-
notype of Notch loss of function (Lindsley and Zimm, 1992) that 
is dosage sensitive as it is strongly enhanced by a heterozygous null 
Notch mutant, N54l9 (Fig. 1 E), and suppressed by up-regulating 
Notch through the expression of a transgene carrying a wild-type 
copy of the receptor (Fig. 1 F). To probe the genetic circuitry capa-
ble of modulating the dx and krz synergy, we relied on the Dx and 
Krz coexpression wing-nicking phenotype to carry out a genetic 
screen for dominant modifiers using the Exelixis mutant collection 
(Artavanis-Tsakonas, 2004; Kankel et al., 2007).

Figure 1.  shrub modulates the synergy between dx and krz. (A) Wild-
type adult wing. (B) Heterozygous Notch-null allele (N54l9/+) is associated 
with the typical wing notching. (C) Expression of full-length Notch driven by 
C96-Gal4 (C96-Gal4/UAS-NFL7) does not affect wing morphology under 
our experimental conditions. (D and F) Co-expression of Dx and Krz shows 
wing notching (UAS-Flag:Dx; C96-Gal4, UAS-HA:Krz/+) (D), consistent 
with Notch loss-of-function, which is rescued by expressing a transgene en-
coding wild-type Notch (UAS-Flag:Dx/+; C96-Gal4, UAS-HA:Krz/ UAS-
NFL7 = 90%, n = 20) (F). (E) N54l9/+ enhances Dx- and Krz-mediated wing 
notching phenotype (N54l9/+; UAS-Flag:Dx/+; C96-Gal4, UAS-HA:Krz/+ 
= 100%, n = 17). (G) Wing notching phenotype associated with Dx and 
Krz is rescued by treatment with chloroquine (52%, n = 23). (H and I) Het-
erozygote shrub loss-of-function mutations, shrub4/+ (H), or overexpression 
of Shrub alone by C96-GAL4 in the developing wing (I) does not display  
wing notching. (J and K) The wing notching phenotype is suppressed  
by expressing ShrubRNAi (UAS-Flag:Dx/+; C96-Gal4, UAS-HA:Krz/UAS-
ShrubRNAi = 76%, n = 33) (J), or by reducing shrub levels in heterozygous ani
mals (shrub4/UAS-Flag:Dx; C96-Gal4, UAS-HA:Krz/+ = 91%, n = 11) (K). 
(L) The wing notching is enhanced by increasing shrub levels along with Dx 
and Krz (UAS-Flag:Dx/+; C96-Gal4, UAS-HA:Krz/UAS-Shrub = 83%, 
n = 23). Bars, 0.2 mm. Representative examples are shown.
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expression of ShrubRNAi, induced a weak but consistent ectopic 
Cut expression (Fig. 3, E and F) at 18°C, notably in the ventral 
part, a phenotype dramatically enhanced at higher temperatures 
(Fig. S1, A and B). We conclude that Shrub negatively regu-
lates Notch signals during wing development.

Shrub antagonizes Dx, whereas it enhances 
Krz activity
We examined the antagonistic role Shrub has on Notch signals 
and particularly how it affects the dx–krz synergy by probing 
how and if it can individually affect dx and krz activities.

As expected, expression of Dx alone in the AP axis results 
in weak ectopic expression of Cut (Fig. 3, G and H). This effect 
is not seen when Dx is coexpressed with Shrub (Fig. 3, I and J). 
Conversely, the down-regulation of Cut associated with Shrub 
expression (Fig. 3, C and D) is reversed by Dx (Fig. 3, I and J;  
n = 20). Thus, Dx and Shrub have opposing effects on Notch signal-
ing. This is confirmed by the dramatic enhancement of Notch sig-
naling when Dx and ShrubRNAi are coexpressed (Fig. 3, K and L).

is paralleled by an enrichment of intracellular vesicles encom-
passing both Dx and Notch (Fig. 2, A–C) and accompanied by 
a slight up-regulation of Notch signals (Hori et al., 2004; 
Mukherjee et al., 2005; see also Fig. 3, G and H). Expression 
of Krz alone in the same cells did not alter the subcellular 
distribution of Notch (Mukherjee et al., 2005). However, con-
sistent with the documented Dx- and Krz-dependent ubiqui-
tinylation and degradation of Notch (Mukherjee et al., 2005), 
when both Dx and Krz were coexpressed, both proteins are 
localized in vesicles that are no longer positive for Notch  
(Fig. 2, D–F), a cellular phenotype associated with loss of 
Notch signaling and consequently a wing-nicking adult phe-
notype (Fig. 1 D; Mukherjee et al., 2005). Notably, when these 
flies are cultured in fly medium containing chloroquine, a re-
agent known to inhibit lysosomal degradation by raising intra-
lysosomal pH (Chi et al., 2010), the wing-nicking phenotype 
is suppressed (Fig. 1 G), suggesting that Dx and Krz regulate 
the sorting and degradation of Notch protein via an endosomal/
lysosomal pathway.

The down-regulation of Shrub through the expression of 
ShrubRNAi at a cellular level prevents the depletion of Notch 
associated with overexpression of Dx with Krz (compare 
Fig. 2, G–I, with Fig. 2, D–F), suggesting that the above pheno-
typic interactions reflect a mechanistic relationship among the 
three proteins. We have not been able to document physical inter
action between Dx and Shrub or Krz and Shrub, but our ob-
servations indicate that Shrub can be a rate-limiting factor in 
the Notch regulation mediated by Dx and Krz.

Consistent with this notion, we observe that Shrub ex-
pression influences the subcellular distribution of Notch. When 
Shrub alone is expressed along the anterior–posterior (AP) 
boundary of wing imaginal discs (using the ptc-GAL4 driver), 
the surface Notch staining in Shrub-expressing versus wild-
type cells is not obviously altered (unpublished data). In con-
trast, there is a dramatic shift in the intracellular epitopes of 
Notch, with Notch accumulating in intracellular vesicles, which 
are also associated with Shrub (Fig. 2, J–L), and is accompanied 
by a clear, albeit low penetrance, wing-notching phenotype in 
the adult (ptc-GAL4/+; UAS-Shrub/+ = 8.4%, n = 166). These 
observations suggest that Shrub, a component of ESCRT-III, 
affects the membrane trafficking of Notch protein and the dx-krz–
mediated Notch signal modulation.

Shrub is a negative regulator of  
Notch signaling
To confirm that Shrub actually affects the output of the Notch 
receptor, we examined the consequences of Shrub modulation 
on Cut expression, a downstream target of Notch signals in the 
dorsoventral (DV) boundary of the wing imaginal disc (de Celis 
et al., 1996; Neumann and Cohen, 1996), as an indicator of 
Notch activity. In the wild type, Cut is expressed in a narrow 
stripe along the DV wing boundary (Fig. 3, A and B), whereas 
endogenous Shrub is expressed ubiquitously throughout the 
third instar wing disc (Sweeney et al., 2006). Induction of Shrub 
expression along the AP boundary suppresses Cut expression at 
the AP–DV boundary intersection (Fig. 3, C and D). In contrast, 
the down-regulation of Shrub along the AP boundary, via the 

Figure 2.  Shrub regulates the synergistic effects of dx and krz on Notch 
by affecting trafficking. (A–C) In the wing disc expressing Dx driven by 
C96-Gal4 (UAS-Flag:Dx/+; C96-Gal4/+), Notch (green) is colocalized 
with Dx (purple) in enriched intracellular vesicles. (D–F) In the wing disc co-
expressing Dx and Krz driven by C96-Gal4 (UAS-Flag:Dx/+; C96-Gal4,  
UAS-HA:Krz/+), Notch (green) does not colocalize with Dx (purple)-positive  
intracellular vesicles. (G–I) In wing discs expressing ShrubRNAi in addi-
tion to Dx and Krz by C96-GAL4 (UAS-Flag:Dx/+; C96-Gal4, UAS-HA:
Krz/UAS-ShrubRNAi), Notch (green) colocalizes with Dx (purple). (J–L) Ex-
pression of Shrub by ptc-GAL4 driver (ptc-GAL4/+; UAS-Shrub/+) leads to 
accumulation of Notch (green) in Shrub (purple)-positive enlarged vesicles. 
Dashed lines indicate the boundary between cells induced to express 
Shrub versus wild-type cells.

http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
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incubation, to reveal the subcellular localization of the Notch 
extracellular antigens (Fig. S2, A–F). Remarkably, the same  
internalization kinetics of Notch are seen whether we down-
regulate or up-regulate Shrub along the AP axis, an unexpected 
observation in view of the antagonistic relationship between 
Shrub and Notch (Fig. S2, C–F). Thus, even though in this assay 
low or high Shrub levels affect the internalization kinetics of the 
Notch receptor in a similar fashion, the effects on signaling are 
distinct and opposite between the two conditions.

We further examined the subcellular localization of the 
receptor in the wing discs expressing Shrub (Fig. 4) as well as 
in S2-N cultured cells (Fig. 5), a cell line stably expressing 
full-length Notch (Rebay et al., 1991). As Shrub is a core element 
of the ESCRT-III complex, we expect it to localize on MVBs. 
Indeed, when Shrub is expressed in S2-N cells, we find that 
it localizes on the surface of large vesicular structures also 
positive for Rab7 and thus indicative of MVBs (Fig. 5, A–C). In 
wing discs overexpressing Shrub, Notch is mostly accumu-
lated in the enlarged Rab7-positive MVBs (Fig. 4, A–C). Sim-
ilarly, when we query where Notch is relative to Shrub in 
S2-N cells, we see both molecules coinciding on MVBs (Fig. 5, 
D–F). This is true whether we probe with antibodies specific 
for intracellular or extracellular Notch epitopes (Fig. S2,  
G–L). As can be seen in the higher magnification confocal 
images (Fig. 5, G–I), Shrub and Notch, while residing on the 
same vesicles, do not have identical distribution on the vesi-
cle. These findings indicate that Shrub expression shifts the 
distribution of Notch to MVBs, eventually leading to the 

We note again that this enhancement is context specific as it 
is detected only in the ventral region of the disc. In probing this be-
havior, our analysis showed that this context specificity is indepen-
dent of Fringe (unpublished data), an obvious candidate for such 
regulation (Fleming et al., 1997). However, when we inhibit lyso-
somal functions with chloroquine, activation is triggered both ven-
trally and dorsally (Fig. S1 D), indicating that at least partially this 
tissue-specific regulation is regulated by lysosomal degradation.

Unlike Dx, expression of Krz alone down-regulates repro-
ducible, albeit slight, Cut expression (Fig. 3, M and N), without re-
sulting in an adult wing notching phenotype (0%, n = 40). When 
Shrub is coexpressed with Krz, this down-regulation is amplified 
(Fig. 3, O and P), resulting in a highly penetrant wing-notching 
adult phenotype (88.9%, n = 54). Consistently, when shrub 
expression was inhibited by RNAi, the down-regulation of Cut by 
Krz was no longer observed (Fig. 3, Q and R), defining Shrub as a 
positive regulator of krz activity. We can thus conclude that Shrub 
enhances the action Krz exerts on Notch, whereas it antagonizes 
the effects Dx has on the pathway.

Shrub and Dx modulate Notch signaling 
through MVBs/endosomal trafficking
To gain insight into the way Shrub affects the trafficking of 
Notch, we modulated Shrub activity and followed the internal-
ization of the Notch molecules in live cells (Vaccari and Bilder, 
2005). Notch was tagged on the surface of imaginal discs dis-
sected from animals expressing different levels of Shrub. The 
discs were then fixed and stained, at different time points after 

Figure 3.  Shrub antagonizes Dx while it enhances Krz activity. (A and B) Wild-type Cut (purple) expression in larval wing disc, along the DV boundary in 
ptc-Gal4/UAS-GFP animals. (C and D) Suppression of Cut (purple, arrowhead) is seen when Shrub is expressed by ptc-GAL4 driver (ptc-Gal4/UAS-GFP; 
UAS-Shrub/+). (E and F) Ectopic Cut expression (purple, arrowhead) in the ventral region of the wing pouch is induced when shrub activity is inhibited 
through shrub RNAi expression driven by ptc-GAL4 (ptc-Gal4/UAS-GFP; UAS-ShrubRNAi/+) (see also Fig. S2). (A–F) Expression of GFP (green) marks 
ptc-Gal4 expression domain. (G and H) Expression of Dx (green) alone results in ectopic Cut (purple, arrowhead) expression (ptc-GAL4/UAS-Flag:Dx).  
(I and J) This effect is suppressed (purple, arrowhead) by the co-expression of Shrub with Dx (green) driven by ptc-Gal4 (ptc-Gal4/UAS-Flag:Dx; UAS-Shrub/+).  
(K and L) When ShrubRNAi is expressed along the AP boundary together with Dx (green) (ptc-Gal4/UAS-Flag:Dx; UAS-ShrubRNAi/+), a dramatic up-regulation 
of Cut (purple) is seen, albeit in the ventral part of the disc. (M and N) Expression of Krz (green) alone results in a slight but consistent suppression of Cut 
(purple, arrowhead) (ptc-Gal4/; UAS-HA:Krz/+). (O and P) Co-expression of Krz (green) and Shrub results in an obvious suppression of Cut (purple, arrow-
head) (ptc-Gal4/+; UAS-HA:Krz/UAS-Shrub). (Q and R) Co-expression of Krz (green) with ShrubRNAi does not affect endogenous Cut (purple, arrowhead) 
levels (ptc-Gal4/+; UAS-HA:Krz/UAS-ShrubRANi). All crosses were performed at 18°C.

http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
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up-regulated Notch signaling, as judged by the expression of 
Cut (Fig. 6, A and B). In cells lacking both DlREV10 and SerRX82 
(Fig. 6, C and D) but overexpressing Dx and ShrubRNAi, Cut is 
still activated, confirming that the intracellular signaling we ob-
served is independent of the ligand. Extending these obser-
vations, we also determined that this mode of Notch activation 
is not affected when Dl is down-regulated in vivo by DlRNAi 
(Fig. S3, A and B). Moreover, in a Notch-dependent reporter 
assay using S2 cells that express neither of the ligands, we find 
that the signal triggered by the expression of full-length Notch 
is modulated by Shrub (Fig. S2 M).

Finally, we examined whether this noncanonical Shrub 
and Dx-dependent activation of Notch still depends on Presenilin 
(Psn), -secretase that is essential for the cleavage of intracellular 
Notch, and on the canonical effector Su(H). Through clonal 

degradation of Notch, explaining the down-regulation of the 
Notch signal by Shrub.

Given that Dx can counteract the negative effect Shrub 
has on Notch signaling (Fig. 3, I and J), we examined if Dx 
expression can affect Shrub dependent recruitment of Notch on 
MVBs. When S2-N cells were transfected with both Shrub and 
Dx, Shrub is localized on Rab7-positive MVBs and so is Notch 
(Fig. 5, J, K, and M). Dx is also detected on the same subcellu-
lar structures, and consistent with its ability to physically inter-
act with Notch (Matsuno et al., 1995), the position of these two 
molecules coincides (Fig. 5, J–O).

In wing discs expressing ShrubRNAi, where Notch signal 
is up-regulated (Fig. 3, E and F), Notch is localized in Rab7-
positive vesicles (Fig. 4, D–F). Because either the up- or down-
regulation of Shrub expression is key in triggering the 
internalization and its localization on MVBs, tagged by Rab7, 
the functional outcome of the differential regulation is not the 
same. We propose that once Notch is trafficked on to MVBs, 
whether it will be degraded or not depends on the relative 
availability of Shrub and Dx. Down-regulating Shrub results in 
an up-regulation of the Notch signal (Fig. 3, E and F), while the 
up-regulation of Dx promotes the activation of the receptor, 
defining the Notch–Dx–Shrub–Krz circuitry as an important 
means for Notch signal regulation.

Shrub-Dx–regulated intracellular Notch 
signaling is ligand independent
Given that our results indicate that Notch receptor can be in-
duced to signal while not on the cell surface and potentially 
through a noncanonical signal mechanism, we wanted to exam-
ine if this signaling is ligand dependent. We generated somatic 
clones lacking both Notch ligands, Dl and Ser, and asked if the 
Notch signal modulated by Dx and ShrubRNAi (Fig. 3, K and L) 
is ligand dependent. Consistent with what we expect from 
the above analysis, cells in mosaic clones in the ventral part of 
the wing disc expressing Dx and ShrubRNAi (marked by GFP) 

Figure 4.  Shrub modulates the subcellular distribution of Notch. (A–C) 
In wing discs expressing Shrub by ptc-GAL4 (ptc-GAL4/UAS-GFP; UAS-
Shrub/+), Notch (blue) is accumulated in Rab7 (purple)-positive large 
vesicles. (D–F) In the wing disc expressing ShrubRNAi by ptc-GAL4 (ptc-
GAL4/UAS-GFP; UAS-ShrubRNA/+), Notch (blue) is localized in Rab7 
positive vesicles (purple). Dashed lines indicate the boundary of the re-
gion (green) that is induced by ptc-GAL4 driver. All crosses were per-
formed at 18°C.

Figure 5.  Shrub modulates endosomal trafficking and activation of 
Notch. (A–C) Shrub (green) localization partially overlaps with Rab7-positive  
vesicles (purple) in S2-N cells transfected with Shrub-Flag-HA. (D–F) Local-
ization of Shrub (green) and Notch (purple) in subcellular compartments  
in S2-N cells transfected with Shrub-Flag-HA. (G–I) Relative localization 
of Notch (purple) and Shrub (green) on subcellular vesicles in S2-N cells 
transfected with Shrub-Flag-HA. (J–L) Relative Localization of Shrub (green), 
Notch (purple), and Dx (blue) on subcellular vesicles of S2-N cells trans-
fected with Shrub-Flag-HA and Dx. M, N, and O are the merged images, 
respectively, of J and K, K and L, and J–L.

http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
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and Fig. S5, E and F). The disruption of Vps4 activity (through 
Vps4RNAi expression) in a Dx-expressing background shows a 
severe developmental defect of the wing disc (unpublished data).

Examining the subcellular localization of Notch in the 
wing discs expressing Dx when representative members of  
ESCRT-I (Vps28), -II (Vps25), and -III (Vps2) are inhibited by 
RNAi corroborated the distinct role of ESCRT-III. Vps2 inhibi-
tion resulted in the up-regulation of the Notch signal (Fig. 7,  
H and I; and Fig. S5, E and F) and the colocalization of  
Notch and Dx (Fig. S5, M–O). Alternatively, when Vps28RNAi or 
Vps25RNAi is expressed along with Dx, we observed that Notch  
accumulates in vesicles, but Notch is not colocalized with Dx 
(Fig. S5, G–L) and clearly signaling is not activated (Fig. 7, B, 
C, E, and F; and Fig. S5, A–D). These results also highlight that 
colocalization of Notch with Dx is necessary for the endo-
somal activation of Notch signaling we document with loss of 
ESCRT-III components. We conclude that the Dx-dependent, 
ligand-independent Notch activation by ESCRT-III compo-
nents is distinct from the previously reported ESCRT-I– and 
ESCRT-II–dependent Notch activation in eye disc (Vaccari and 
Bilder, 2005; Vaccari et al., 2009).

Shrub and Dx regulate the extent of  
Notch ubiquitinylation
Given that the ESCRT complexes are associated with the traf-
ficking of ubiquitinylated proteins (Slagsvold et al., 2006; Saj  
et al., 2010) and that Dx function is also associated with ubiqui-
tinylation (Mukherjee et al., 2005; Wilkin et al., 2008), we ex-
amined the ubiquitinylation status of Notch under conditions 
where Dx and Shrub levels are modulated. When Shrub is ex-
pressed with the ptc-GAL4 driver, 95% of Notch-bearing vesi-
cles in Shrub-expressing cells are also positive for FK1, an 
antibody that recognizes poly-ubiquitinated proteins (Fig. 8 A; 
n = 100). On the other hand, upon inhibiting Shrub through 
ShrubRNAi, where Notch signal is slightly up-regulated (Fig. 3,  
E and F), the FK1 antigens coincide with the Notch antigens less 
frequently (Fig. 8 B; 60%, n = 100). Because up-regulation of 
Notch by ShrubRNAi is robustly enhanced by expression of Dx 
(Fig. 3, K and L), we examined if Dx can alter this ubiquitinyl-
ation pattern. When both Dx and ShrubRNAi are expressed, the 
vast majority of the Notch-positive vesicles do not coincide 

analyses we found that cells lacking either Psn activity (PsnC2 
clones marked by GFP; Fig. 6, E and F) or Su(H) activity (Su(H)47 
clones marked by GFP; Fig. 6, G and H), but coexpressing 
Dx and ShrubRNAi, cannot up-regulate Cut. Correspondingly, 
PsnRNAi or Su(H)RNAi inhibit the Notch receptor activation we 
describe (Fig. S3, C–F). Thus, the Shrub-Dx–regulated sig-
naling, although ligand independent, still needs -secretase 
as well as Su(H).

Relating Dx activity to the  
ESCRT complexes
Given the association of Shrub with ESCRT-III and previous 
reports suggesting that loss-of-function mutations in other 
ESCRT elements display cellular interactions with Notch 
(Thompson et al., 2005; Vaccari and Bilder, 2005; Vaccari  
et al., 2008, 2009), we explored the relationship of the non
canonical Notch signaling we uncovered with the ESCRT fam-
ily of complexes (Slagsvold et al., 2006; Hanson et al., 2009). 
We asked if the Notch noncanonical signaling, triggered by 
Dx and ShrubRNAi, can also be seen when the function of other 
members of the ESCRT family are disrupted.

Inhibiting Vps23, Vps28 (ESCRT-I), Vps36, and Vps25 
(ESCRT-II) by RNAi, in a Dx-expressing background, failed to 
show an up-regulation of Notch signaling (Fig. 7, B, C, E, and 
F; and Fig. S4, B, C, E, and F). We observed that Cut expres-
sion is slightly, but detectably, suppressed under these condi-
tions. The suppression of Cut is a bit more prominent when we 
inhibited Vps28 or Vps25 by RNAi, using the Ay-GAL4 driver 
at 25°C (Fig. S5, A–D). Thus, the results suggest that these 
components are not involved in the dx-mediated activation of 
Notch signal in this context. This was corroborated by extant 
loss of function mutations in vps23 and vps36 (vps23e00381, 
vps23f00976, and vps36c04474), as heterozygotes failed to affect the 
wing-nicking phenotype associated with Dx and Krz coexpres-
sion (unpublished data), unlike loss-of-function shrub alleles.

In contrast, the disruption of ESCRT-III members other 
than Shrub emphasizes the particular role ESCRT-III displays 
in modulating the Notch signaling mode we describe here. In-
hibiting Vps2 (through Vps2RNAi expression) in a Dx-express-
ing background using two independent drivers results, like 
Shrub, in the up-regulation of Notch signals (Fig. 7, H and I; 

Figure 6.  Activation of Notch induced by Dx and 
ShrubRNAi is independent of Dl and Ser, but dependent on 
Psn and Su(H). (A and B) In the mosaic clones express-
ing Dx and ShrubRNAi (marked by GFP) (hs-FLP, tub-GAL4, 
UAS-GFP/+; UAS-Flag:Dx/UAS-ShrubRNAi; tub-GAL80, 
FRT82B/FRT82B), ectopic expression of Cut (purple) is in-
duced in mostly the ventral part of the wing disc. (C and D)  
Co-expression of Dx and ShrubRNAi in DlREv10 and SerRX82 
clones (marked by GFP) maintains the ectopic Cut expres-
sion (purple) (hs-FLP, tub-GAL4, UAS-GFP/+; UAS-Flag:
Dx/UAS-ShrubRNAi; tub-GAL80, FRT82B/DlREV10, SerRX82, 
FRT82B). (E and F) In PsnC2 clones (marked by GFP), 
coexpression of Dx and ShrubRNAi does not induce the 
expression of Cut (purple) (hs-FLP, tub-GAL4, UAS-GFP/+; 
UAS-Flag:Dx/UAS-ShrubRNAi; tub-GAL80, FRT2A/PsnC2, 
FRT2A). (G and H) Su(H)47 clones (marked by GFP), with 
coexpressing Dx and ShrubRNAi, fail to induce Cut expres-
sion (purple) (hs-FLP, tub-GAL4, UAS-GFP/+; tub-GAL80, 
FRT40A/Su(H)47 FRT40A; UAS-Flag:Dx/UAS-ShrubRNAi).

http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
http://www.jcb.org/cgi/content/full/jcb.201104146/DC1
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In summary, the in vivo immunocytochemical evidence 
indicates that the down-regulation of Shrub in the presence of 
Dx results in shifting Notch away from vesicles positive for a 
poly-ubiquitin marker. The biochemical analysis indicates that this 
shift is associated with high levels of mono-ubiquitinylation on 
the receptor. The functional consequence of these events is a 
Dx-associated promotion of Notch signaling that reverses the 
negative regulation Shrub exerts on Notch.

Discussion
The extraordinary sensitivity of normal development to the dos-
age of the Notch receptor is manifested through the haploin-
sufficient and triplomutant behavior of the Notch locus 
(Artavanis-Tsakonas et al., 1999). Dosage sensitivity is consistent 
with the fact that the Notch signaling mechanism relies on stoi-
chiometric interactions rather than enzymatic amplification steps 
to bring the signal from the surface to the nucleus. This also 

with those positive for poly-ubiquitinated proteins (Fig. 8 C; 
5%, n = 80). Using an antibody that recognizes both mono- and 
poly-ubiquitinated proteins (FK2), the expression pattern of 
Notch in cells expressing Shrub, ShrubRNAi, or ShrubRNAi and 
Dx does not display significant differences (Fig. 8 D–F). Thus, 
Dx can influence the ubiquitinylation state of Notch, a phenotype 
paralleled by a dramatic up-regulation of Notch signaling 
(Fig. 3, K and L).

To directly assess the relative roles of Dx and Shrub in the 
ubiquitinylation of Notch we relied on the S2R+ cultured cells 
that do not express Notch endogenously. Cells were transfected 
with full-length Notch and a flag-tagged wild-type Ubiquitin 
(Flag-Ubwt) and 24 h later treated with shrub dsRNA (ShrubRNAi) 
for another 24 h (Fig. 8, G and H). When Notch alone is ex-
pressed in S2R+ cells together with Flag-Ubwt we detect low  
levels of ubiquitinylated Notch species. In contrast, the down-
regulation of Shrub increases the levels of ubiquitinylated Notch 
species. Analogous experiments involving Dx and Notch also 
show that Dx modulation affects the ubiquitinylation status of 
Notch, as previously determined (Mukherjee et al., 2005). If Dx 
is expressed in the presence of ShrubRNAi, Notch ubiquitinyl-
ation is further enhanced. When instead of Flag-Ubwt we use 
Flag-Ubmono as the ubiquitinylation substrate, which can only 
participate in mono-ubiquitinylation events, we observe an 
almost identical pattern of Notch ubiquitinylation, arguing that 
the phenomenon we monitor in this cellular context is probably 
associated with mono-ubiquitinylation events.

Figure 7.  Notch signal induced by Dx and ShrubRNAi is dependent on  
ESCRT-III. (A, D, and G) Expression of double-strand RNA of vps28 (vps28RNAi) 
(ptc-GAL4/+; UAS-vps28RNAi/+) (A), vps25 (vps25RNAi) (ptc-GAL4/+; UAS-
vps25RNAi/+) (D), or vps2 (vps2RNAi) (ptc-GAL4/+; UAS-vps2RNAi/+) (G), 
by ptc-GAL4 does not show significant effect on endogenous Cut levels 
(purple). (B, C, E, and F) Co-expression of Dx (green) with vps28RNAi (ptc-
GAL4/UAS-Flag:Dx; UAS-vps28RNAi/+) (B and C) or vps25RNAi (ptc-GAL4/
UAS-Flag:Dx; UAS-vps25RNAi/+) (E and F) results in the subtle but reproduc-
ible reduction of Cut (purple). (H and I) Co-expression of Dx (green) with 
vps2RNAi results in the ectopic activation of Cut (purple) (ptc-GAL4/UAS-
Flag:Dx; UAS-vps2RNAi/+). All crosses were performed at 18°C.

Figure 8.  Shrub and Dx regulate the ubiquitinylation status of Notch. 
(A) Expression of Shrub by ptc-GAL4 results in the accumulation of Notch 
(green) in endosomal vesicles marked by FK1 (purple), an antibody 
that recognizes poly-ubiquitinated proteins (ptc-Gal4/+; UAS-Shrub/+).  
(B) Expression of ShrubRNAi by ptc-GAL4 results in a significant increase of 
Notch-containing vesicles (green) that are not marked by FK1 (purple) (ptc-
Gal4/+; UAS-ShrubRNAi/+). (C) Co-expression of ShrubRNAi and Dx results 
in Notch accumulation (green) in subcellular vesicles that are negative for 
FK1 (purple) (ptc-Gal4/UAS-Flag:Dx; UAS-ShrubRNAi/+). (D–F) Expression 
of Shrub (D), ShrubRNAi (E), or ShrubRNAi and Dx (F), driven by ptc-GAL4, 
increases the number of Notch-containing vesicles (green) that are marked 
by FK2 (purple). (G and H) Ubiquitinylation assay in S2R+ cells transfected 
with pMT-NFL, pMK33-Shrub-Flag-HA, pMT-Dx, pMT-Flag-Ubwt (G), or pMT-
Flag-Ubmono (H) shows a significant increase in Notch ubiquitinylation in the 
presence of Dx, suggesting that Dx drives Notch to a mono-ubiquitinated 
form. The cells were treated with shrub dsRNA to deplete shrub levels.



JCB • VOLUME 195 • NUMBER 6 • 2011� 1012

entire body of work related to various aspects of Notch re-
ceptor trafficking it seems that there may be several, distinct 
ways the receptor can be activated after entering the endocytic 
path. Some studies link early endosomes with the activation of 
the receptor (Vaccari and Bilder, 2005; Childress et al., 2006; 
Vaccari et al., 2009), whereas others (Wilkin et al., 2008) impli-
cate late endosomal compartments with ligand-independent 
activation of Notch. Particularly relevant to the activation mode 
we document here are the genetic studies of Wilkin et al. (2008), 
which associated Notch activation with the HOPS (homotypic 
fusion and vacuole protein sorting) and AP-3 (adaptor protein-3) 
complexes, demonstrating the existence of a Notch activation 
path that is dependent on late endosomal compartments.

We found that the expression of Shrub triggers a dramatic 
subcellular shift of the Notch receptor to MVBs, consistent with 
the fact that ESCRT-III mediates the cargo de-ubiquitination, 
budding, and scission of intraluminal vesicles (Wollert et al., 
2009, Henne et al., 2011), which control the delivery of the 
cargo to the lysosomes. The down-regulation of Notch signals 
by Shrub is apparently associated with the recruitment of Notch 
in intraluminal vesicles and its eventual degradation. On the 
other hand, disrupting the cellular equilibrium between Dx and 
Shrub by down-regulating Shrub and/or up-regulating Dx acti-
vates the receptor in a ligand-independent manner. It is also 
clear that the mode of Notch activation we document is inde-
pendent of the ligands and is linked to the ubiquitinylation sta-
tus of the Notch receptor, which is in turn is modulated by Dx 
and Krz. Krz was shown to modulate Notch activity through its 
ability to regulate the levels of the Notch protein (Mukherjee et al., 
2005). We note with interest that although -arrestins have 
been implicated as adaptors during clathrin-dependent endo
cytosis, Ram8, an arrestin homologous protein in yeast, has also 
been associated with the recruitment of the ESCRT machinery 
to MVBs loaded with a G-coupled receptor cargo (Herrador  
et al., 2010). If Krz has a similar relationship with the ESCRT 
machinery, it may be involved in sorting Notch on MVBs and 
hence the eventual recruitment of Notch in intraluminal vesicles 
for degradation, a notion compatible with the observation that 
Krz enhances the Shrub-dependent down-regulation of Notch.

In order for the receptor to enter intraluminal vesicles, a 
de-ubiquitinylation of the cargo must take place (Slagsvold et al., 
2006; Ma et al., 2007; Henne et al., 2011). It is noteworthy that 
Snf7 (the Shrub orthologue in yeast) recruits the de-ubiquitinat-
ing enzyme Doa4 necessary for such cargo de-ubiquitination 
(Odorizzi et al., 2003; Luhtala and Odorizzi, 2004). In our cell 
culture studies, where we could clearly follow the relative  
subcellular localization of Notch, Shrub, and Dx, we observed 
localization of Notch, Shrub, and Dx with MVB membranes. 
Because this subcellular phenotype is paralleled by a dramatic 
ligand-independent activation of the receptor and a shift from 
poly- to a mono-ubiquitination status of the receptor, this leads 
us to suggest that Dx, which physically interacts with Notch, inter
feres with processes that are essential for loading the receptor on 
intraluminal vesicles.

It is clear that a more detailed analysis of subcellular dy-
namics in vivo is necessary to address many of the questions 
raised by the present study. On the basis of the data we present 

provides a rationale for the observation that cellular events in-
volved in trafficking/turnover are emerging as major Notch 
signal–controlling mechanisms (Artavanis-Tsakonas et al., 
1999; Fortini, 2009; Tien et al., 2009; Yamamoto et al., 2010). 
The canonical pathway relies on the activation of the receptor 
triggered by its interaction with membrane-bound ligands on an 
apposing cell but the possibility that the receptor can also be  
activated intracellularly, in a ligand-independent fashion, as sev-
eral studies, including the present one, suggest, has important 
implications for the biology and pathobiology of Notch. The 
rules governing how and where a receptor, trafficking through 
the endocytic compartments, can be activated, in the presence 
or absence of the ligand, are still not completely defined. More-
over, we do not understand how such events are integrated into 
the genetic circuitry that affects the regulation of endosomal 
compartment assembly and function.

Here, we provide insight into these questions by showing 
that the interplay between the Notch signal modulator Dx, the 
nonvisual -arrestin orthologue Krz, and a critical component 
of the ESCRT-III complex, Shrub, directs Notch either into a 
degradation or into a ligand-independent activation path, which 
is paralleled by distinct ubiquitinylation states of Notch. The 
ESCRT pathway, recently described as a “cargo-recognition 
and membrane-sculpting machine,” defines a complex, multi-
purpose cellular machinery with cellular roles and molecular 
mechanisms that are not fully elucidated (Henne et al., 2011). 
ESCRT is crucial in mediating the various steps leading to the 
sorting of membrane proteins into MVBs on their way to lyso-
somal degradation. The implication of Shrub in Notch signaling–
related processes was revealed through an unbiased genetic 
screen for isogenic modifiers of the dx-krz–dependent pheno-
type, which is based on the endosomal/lysosomal degradation 
of the Notch receptor (Mukherjee et al., 2005). Our study is not 
the first to provide a general link between Notch signaling with 
the ESCRT machinery (Moberg et al., 2005; Thompson et al., 
2005; Vaccari and Bilder, 2005; Vaccari et al., 2008, 2009; 
Herz et al., 2009), but both our genetic screen as well as our 
subsequent analysis points to the differential and major role 
of the ESCRT-III complex in the dx-krz–dependent, ligand-
independent mode of Notch signaling we describe here.

Several studies established that as the Notch receptor  
enters an endocytic path, it can be activated inside the cell in both 
a ligand-dependent as well as ligand-independent fashion (Hori 
et al., 2004; Sakata et al., 2004; Wilkin et al., 2004, 2008; 
Mukherjee et al., 2005; Childress et al., 2006). Consequently, 
several elements of the endosomal machinery including ele-
ments of the ESCRT complexes were shown to influence the 
intracellular accumulation and activation of the Notch receptor 
(Moberg et al., 2005; Thompson et al., 2005; Vaccari and 
Bilder, 2005; Vaccari et al., 2008, 2009; Herz et al., 2009). Our 
data are compatible with these studies and indeed extend and 
complement them. These studies are not directly comparable, 
not only because of differing genetic backgrounds, a crucial  
element in evaluating genetic interactions, but also because we 
are analyzing the impact of ESCRT function on the modulation 
of Notch signaling via the synergistic action of Dx and Krz, which 
may well define a different but specific path. Considering the 
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(https://drosophila.med.harvard.edu; Artavanis-Tsakonas, 2004; Kankel 
et al., 2007). The collection was screened for genes that dominantly mod-
ify the wing-nicking phenotype associated with simultaneous C96-Gal4–
directed expression of Dx and Krz using the UAS-Flag:Dx/+; C96-Gal4, 
UAS-HA:Krz/+ strain (C96-Dx+Krz). In the primary screen, C96-Dx+Krz 
virgin females were crossed with males carrying autosomal or viable  
X-linked insertions. C96-Dx+Krz males were crossed with virgin females 
carrying lethal insertions on X chromosome and the F1 progeny was scored 
for phenotypic modifications. Modifying transposons were categorized as 
enhancers or suppressors of weak, moderate, or strong intensity. Out of 
805 primary screen modifiers, 388 were retested with C96-Dx+Krz to con-
firm modification. A secondary test was performed by crossing confirmed 
modifiers to flies carrying the C96-Gal4 alone to eliminate the false modifi-
ers that affect wing development. Positive secondary tests were performed 
to examine the interaction with dx or krz, using wing phenotypes that result 
from expression of Dx (UAS-Flag:Dx/+; C96-Gal4/+), expression of Krz 
(C96-Gal4, UAS-HA:Krz/+), dx mutant (dx152;; C96-Gal4/+), or krz  
mutant (krz1, C96-Gal4/+). As a result, we recovered 127 modifiers, includ
ing a single transposon insertion in shrub (d02738).

Generation of mosaics
Mitotic clones were generated by Flp-mediated mitotic recombination (Xu 
and Rubin, 1993). Recombination was induced in the second instar larvae 
by a 60-min heat shock at 37°C. To generate the clones expressing Dx 
with ShrubRNAi, hs-FLP, tub-GAL4, UAS-GFP/Y; UAS-Flag:Dx/+; tub-GAL80, 
FRT82B/+ males were crossed with UAS-ShrubRNAi/CyO,GFP; FRT82B/
TM6B virgin females. To generate the double-mutant clones of DlREV10  
and SerRX82, expressing Dx with ShrubRNAi, hs-FLP, tub-GAL4, UAS-GFP/Y; 
UAS-Flag:Dx/+; tub-GAL80, FRT82B/+ males were crossed with UAS-
ShrubRNAi/CyO,GFP; DlREV10, SerRX82, FRT82B/TM6B virgin females. To 
generate the mutant clones of PsnC2 expressing Dx and ShrubRNAi, hs-FLP, 
tub-GAL4, UAS-GFP/Y; UAS-Flag:Dx/+; tub-GAL80, FRT2A/+ males were 
crossed with UAS-ShrubRNAi/CyO,GFP; PsnC2, FRT2A/TM6B virgin fe-
males. To generate the Su(H)47 expressing Dx and ShrubRNAi, hs-FLP, tub-
GAL4, UAS-GFP/Y; tub-GAL80, FRT40A/CyO, UAS-Flag:Dx/+ males 
were crossed with Su(H)47 FRT40A/CyO; UAS-ShrubRNAi/TM6B.

Immunohistochemistry
Wing discs from third instar larvae were dissected in PBS and fixed in PLP 
(2% paraformaldehyde, 0.01 M NaIO4, 0.075 M lysine, and 0.037 M 
sodium phosphate, pH 7.2; Matsuno et al., 2002). Discs were washed in 
PBS-DT (0.3% sodium deoxycholate and 0.3% Triton X-100 in PBS) and  
incubated with the following antibodies: mouse anti-NICD (9C6, 1:500;  
Fehon et al., 1990), mouse anti-NECD (2H, 1:500; Fehon et al., 1990), 
mouse anti-Cut (2B10, 1:100; Developmental Studies Hybridoma Bank, 
Iowa City, IA), rabbit anti-Flag (1:1,000; Sigma-Aldrich), rabbit anti-HA 
(1:1,000; Sigma-Aldrich), rat anti-Dx (17A, 1:50; Busseau et al., 1994), 
mouse anti-polyubiquitinated protein (FK1, 1:100; Enzo Life Sciences), 
mouse anti-mono/polyubiquitinated protein (FK2, 1;1000; Enzo Life Sci-
ences), rabbit anti-Rab7 (1:1,000; Chinchore et al., 2009), and rabbit 

here we propose a model for the activation mode we uncovered 
(Fig. 9). We suggest that the ESCRT-III component Shrub can 
regulate receptor cycling, diverting it to a signaling path, a fate 
modulated by Dx and Krz. Thus, Notch signaling can be attenu-
ated inside the cell in a ligand-independent fashion. It remains 
to be determined how such intracellular signaling serves the de-
velopmental logic of Notch which couples the fate of one cell to 
that of the next door cellular neighbor. It is possible for such 
mode of Notch action to be useful to modulate the fate of a cell 
that, for example, circulates, as was elegantly demonstrated by 
Mukherjee et al. (2011), and is thus not necessarily in contact 
with a ligand-expressing neighbor. Irrespective of the potential 
role ligand-independent activation may play in normal develop-
ment, activating the receptor can have profound pathological 
consequences. Therefore, understanding pathways capable of 
modulating Notch activity in an intracellular, ligand-independent 
manner is of great importance.

Materials and methods
Genetic strains
We used the following mutant alleles: N54l9 (Lindsley and Zimm, 1992), 
krz1 (Roman et al., 2000), shrub4 (Sweeney et al., 2006), PsnC2 (Lukinova 
et al., 1999), Su(H)47 (Morel and Schweisguth, 2000), and DlRevF10 and 
SerRX82 double mutant (Micchelli et al., 1997). The UAS lines used were 
UAS-Flag:Dx (Mukherjee et al., 2005), UAS-HA:Krz (Mukherjee et al., 
2005), UAS-Shrub (Sweeney et al., 2006), UAS-ShrubRNAi (Sweeney et al., 
2006), UAS-GFP (Bloomington Drosophila Stock Center, Bloomington, IN), 
UAS-vps23RNAi (Vienna Drosophila RNAi Center, Vienna, Austria), UAS-
vps28RNAi (Vienna Drosophila RNAi Center), UAS-vps36RNAi (Vienna Dro-
sophila RNAi Center), UAS-vps25RNAi (Vienna Drosophila RNAi Center), 
UAS-vps20RNAi (Vienna Drosophila RNAi Center), UAS-vps24RNAi (Vienna 
Drosophila RNAi Center), UAS-vps4RNAi (Vienna Drosophila RNAi Center), 
UAS-vps2RNAi (Vienna Drosophila RNAi Center), UAS-DlRNAi (Vienna Dro-
sophila RNAi Center), UAS-PsnRNAi (Vienna Drosophila RNAi Center), and 
UAS-Su(H)RNAi (Vienna Drosophila RNAi Center). The UAS constructs were 
driven by C96-Gal4 (Gustafson and Boulianne, 1996), ptc-Gal4 (Speicher 
et al., 1994), tub-GAL4 (Wang and Struhl, 2005), or Ay-GAL4 (Ito et al., 
1997) as indicated in the figure legends. All crosses were performed at 
25°C unless otherwise stated.

Isolation of shrub mutant
The Exelixis collection is composed of 16,000 transposon-induced gene 
disruptions, resulting in mutations in 53% of the Drosophila genome 

Figure 9.  Shrub-Dx-Krz–dependent modulation of Notch 
signaling. The ubiquitinylation state of the Notch receptor 
regulates its activation fate as it enters the endocytic path. 
Although some steps in this path have been character-
ized, some simply define working hypothesis. Our studies 
indicate that Dx in synergy with Krz promotes the poly-
ubiquitinated state of the receptor, which leads to the deg-
radation of Notch, through the MVBs, a step regulated 
by Shrub, a core component of the ESCRT-III complex. 
The close proximity of the Shrub–ESCRT-III complex with 
Notch in the cartoon is not meant to imply a direct as-
sociation of Shrub with Notch, given that we could not 
find evidence favoring such interaction. Our evidence 
is consistent with the notion that Shrub “surrounds” the 
ubiquitinylated receptor, a role compatible with the previ-
ously suggested role of the yeast homologue Snf7 (Wollert  
et al., 2009). The expression of Dx, which physically inter
acts with Notch, favors a mono-ubiquitinated state of the 
receptor, which leads to a ligand-independent intracellu-
lar activation of Notch (NICD: the cleaved, activated form 
of Notch).
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anti-Flag (1:1,000; Sigma-Aldrich), followed by goat anti–mouse or –rabbit 
HRP-conjugated antibody (1:5,000; GE Healthcare), and developed using 
the ECL+ chemiluminescence detection system (GE Healthcare).

Online supplemental material
Fig. S1 shows that down-regulation of Shrub results in the activation Notch. 
Fig. S2 describes an endocytosis assay to monitor Notch trafficking in live 
wing disc cells and S2-N cells. Fig. S3 shows that Notch signaling induced 
by Dx and ShrubRNAi is independent of Dl and Ser, but dependent on Psn 
and Su(H). Fig. S4 shows that Notch signal induced by Dx and ShrubRNAi 
is dependent on ESCRT-III. Fig. S5 shows that ESCRT-III is primarily respon-
sible for dx-mediated Notch signal. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.201104146/DC1.
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