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One of the important research topics is protecting the host from threats by developing a reliable and accurate intrusion detection
system. However, since the amount of data has grown fast due to the emergence of big data, the performance of traditional systems
designed to identify breaches has suffered several flaws. One of them, for example, is known as single-point failure; low
adaptability and a high false alarm rate are also typical. Hadoop is used to detect intrusions to tackle these difficulties. The Java
system is used to create a framework with a significant data flow that detects intrusions when a distributed system is built. The
proposed solution employs a distributed operating system for data collection, storage, and analysis. The results indicate that
external distributed denial of service (DDoS) attacks are recognized quickly. The single-point failure issue is overcome, alleviating

the bottleneck problem of data processing ability.

1. Introduction

More complicated and costly security issues appear to be
treated efficiently as computer network technology rapidly
advances. Hence, they trigger to cause the development of
diverse technologies that deal with information security in
several aspects. For example, while the firewall generally
defends information security as an intrusion detection
technology, the upgraded version is called a defense firewall
[1, 2]. The intrusion detection system aims typically at
collecting and crunching critical information and utilizes
some predefined rules or protocols to detect irregular actions
or transitions occurring supposedly against security policies
and the predefined set of rules that were constructed using
historical records when network technology is under in-
vestigation. By doing so, unauthorized, abnormal, or out-of-
predefined rules are timely alerted to the security unit of the
system. The system’s efficiency is related to an issue called
the single-point failure that the intrusion detection system
faces often. Besides, the implementation constraints of
processing vast and complicated data under the significant
data cases grow more complex [3, 4]. Therefore, a novel

approach called intrusion detection systems employing
distributed systems under a big data environment could
bring plenty of advantages for protecting information
security.

Big data brings several issues to deal with, namely, a vast
data set whose structure changes fast and includes diverse
data types such as numeric, categoric, and unstructured.
Besides, the standard computer configuration processing
mode cannot satisfy the different requirements to process
big data. So, Hadoop, launched by the Apache community
[5] as a platform to crunch big data, employs a mapping
reduction model (MapReduce) to conduct fundamental
tasks of sorting and calculations. Moreover, Hadoop pro-
vides a cluster architecture to distribute tasks to the con-
stituents of the distributed system. Hadoop functions as
independent clusters, so the whole system continues to
operate when any failure occurs regarding one or several
nodes. A distributed computing proficiency is associated
with the cluster architecture of Hadoop. In other terms,
when each node of a cluster is assigned to take care of large-
scale data analysis tasks, the efficiency of data analysis is
greatly improved. Therefore, this capability can be smoothly
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implemented to detect intrusions. In conclusion, the issues
related to single-point failure and bottlenecks due to the low
capacity of data processing can be effectively resolved.

Parallel programs featuring distributed architecture can
be written, run, executed, and employed to run calculations
regarding massive data sets on Hadoop clusters, an open-
source distributed parallel programming widely imple-
mented by enterprises and research institutions. MapRe-
duce, the computing model of Hadoop, constructed by
Google, is an effective tool.

The Hadoop distributed file system (HDES) uses two key
technologies. While the first one is the storage tool, the other
is called the MapReduce distributed computing framework.
The storage mechanism provides the underlying support for
Hadoop. HDFS generally consists of Client, Datanode, and
Namenode. When a cluster utilizes the architecture of
Hadoop, a host called the Namenode and several hosts called
the Datanode are available. The client represents the pro-
gram employing HDFS. Namenode is a responsible host in
the Hadoop cluster to save information of data nodes and
distribute computational tasks and the final protocol.
Datanode is responsible for data storage and processing. To
ensure data security, HDFS increases the amount of re-
dundant data moderately. The specific method is to save
three copies of the same data in different Datanodes.

The parallel computing process running on a large-scale
cluster is split into two functions: Map and Reduce. The
other key technology is called MapReduce distributed
computing framework, a mode to process and generate large
datasets. The calculation process of MapReduce is based on
decomposing large datasets into thousands of small datasets.
Then, some datasets are distributed to a cluster node to
process and produce intermediate outcomes. Finally, these
results are obtained by several nodes to form the final
outputs.

Big data technology is combined with the process of
intrusion detection in [6], and an extensible quasi-real-time
intrusion detection system employing Hadoop is suggested,
which uses Hive and Mahout technologies to detect p2p
botnet attacks. The Hive module functions as surveilling and
processing network traces. Since the Mahout module pro-
vides parallel solid processing capability, constructing a
decision tree model of random forest can be smoothly re-
alized to detect botnets. A distributed intrusion detection
system based on cloud computing utilizing the K-means
clustering algorithm is proposed by [7], which resulted in
higher detection accuracy. An unsupervised method to re-
duce dimensionality issues that combine t-SNE and a hi-
erarchical neural network is suggested to detect the behavior
of attacks [8]. By doing so, mapping high-dimensional
network data space is shrunk into low-dimensional space. A
method based on employing a distributed ensemble learning
to cope with a misbehavior-aware on-demand collaborative
intrusion detection system is proposed in [9], whose ad-
vantage is to reduce the number of life threats and road
congestions caused by network attacks on VANET.

However, the research to cope with intrusion detection
systems concerning significant data implementation issues
has been at a developmental stage, so there is no longer a
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full-fledged method. Therefore, the research direction is on
the track of improving the conventional ones toward the
ones satisfying the necessities of big data.

The motivation of this research is summarized two-fold:
increasing detection accuracy and adaptability to big data
implementations by taking care of the single-point failure
problems when the available distributed intrusion detection
system model is a concern. Thus, a distributed intrusion
detection system dealing with big data is proposed. In this
effort, Hadoop’s cluster computing environment [10] and its
operational storage features are employed to utilize the
Amazon DynamoDB database and Java architecture to
design more robust intrusion detection components.

The rest of the manuscript is structured as follows:
Section 2 presents the aspects of data such as data collector,
transceiver, data analysis, and data-based alert systems.
Section 3 is allocated to both results and discussion. Section
4 concludes the research by stressing the advantages of the
proposed method.

2. The Proposed Method

Big data architecture is intended to manage data input,
processing, and analysis that are too massive or complicated
for typical database systems. The threshold at which busi-
nesses join the extensive data domain varies depending on
the users’ and tools’ capabilities. It might imply hundreds of
gigabytes of data for some and hundreds of terabytes for
others. The definition of big data evolves as technologies for
dealing with large datasets improve. This word increasingly
refers to the value you can extract from your data sets using
sophisticated analytics rather than the amount of the data,
which tends to be pretty huge in many circumstances. The
data landscape has evolved. What you can and are expected
to do with data have shifted. Storage costs have dropped
substantially, but the methods for collecting data have ex-
panded. Some data comes at a quick speed, requiring on-
going collection and observation. Other data comes more
slowly but in massive quantities, often in the form of decades
of historical data. You might be dealing with advanced
analytics or a cyber security dilemma. These are the prob-
lems that big data architectures aims to overcome.

Figure 1 depicts the logical components that comprise
the proposed big data architecture. Its architecture has
features: a data detector, data collector, agent, transceiver,
and data analysis center.

It must be noted that there is not another comparable
model to use as a pilot. Consequently, to avoid bias or
incorrect impressions, the paper presents the performance of
the proposed model in an innovative dataset. The experi-
ments were made exclusively for this research approach and
presented only in this paper. Every element in this design is
included in the suggested individual solution, as discussed in
the following sections.

2.1. The Detection of Data. A system coping with acquiring
data and analyzing events as a unit located at the bottom of
the system is called a data detector (DD). DDs are
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FIGURE 1: The structure diagram of the distributed intrusion detection system.

categorized into two types, host-based and network-based
DDs, per different data resources. For general indexes such
as central processing unit (CPU), memcachd (MEM) uti-
lization, transmission control protocol (TCP) connections
[11], and network bandwidth, a DD employs a capture
service to determine indexes with a minimum interval
length, then sends data to middleware, and finally returns it
to the data center. For different indexes such as user behavior
logs and WEB servers running records on other computers, a
DD regularly utilizes a log monitoring service to capture the
latest log information. Moreover, the system has no re-
strictions on the DD [12].

2.2. Data Collector. The DD is unique to each monitoring
host. The data acquisition agent controls all local DDs. When
the DD is in charge of transmitting data to the transceiver, it
needs to send data to the agent and then the agent transmits
it to the transceiver. The Chukwa of Apache software is
employed as the data collector [13], which detects the
contents of files written by DDs. If a new range exists in the
file, it will be input into the collector of Chukwa following
the specific rules and the collection will be input into
Amazon DynamoDB [14].

The monitored host’s CPU utilization, memory, TCP
connections, and network bandwidth are collected. The DD,
written in Java, employs SNMP-V3 based on the TCP
convention family to handle the dispatching line. Then, the
DD establishes a connection with the SNMP service through
the SNMP driver package [4]. The reference is made to port
161 and obtains information by transmitting an analogous
SNMP monitoring ID to the server. The workflow of the DD
is composed of four sections. First, the DD is initialized and
then linked to the SNMP service of the monitored machine
[15]. Second, the data detector traverses each node in the
SNMP service tree according to the OID set by the devel-
oper, and the stop condition is utilized to find the node with
the same settings. Third, different threads are opened in the
DD, and finally, each line grabs the data according to the

minimum level and writes the captured data into the de-
velopment file.

2.3. Data Transceiver and Middleware. Data transceiver di-
vides the system monitoring network into multiple areas, and
each site is composed of a group of transceivers and numerous
data collectors. The operation of the data transceiver will sort
out and process the received data [16]. A single-point failure
may occur at one of these areas corresponding to a transceiver.
Therefore, the transceiver adopts a redundancy strategy, and
multiple transceivers can coexist in one area. When the data
acquisition agent transmits data, it randomly selects a trans-
ceiver to transfer the data, which helps efficiently balance the
available load [17]. The data middleware functions to cluster
new information and loosen up the data analysis center to
investigate information in the data. For this purpose, a message
queue called RocketMQ is employed as the data receiving and
sending middleware in this manuscript.

2.4. Data Analysis Center. The distributed intrusion detec-
tion system is constructed by the mode of “distributed
detection and storage, and centralized analysis.” While the
monitoring host stores some intrusion or suspicious data at
the bottom of the system locally and hoards the rest in the
data analysis center, it utilizes the characteristics of suspi-
cious events to pinpoint the intrusion behaviors that cannot
be detected otherwise.

The Hadoop cluster framework, whose two types of
nodes have specific roles, is implemented [18]. While one is
called the common computing node, the other is called the
task submission node. The task submission node will pe-
riodically submit data to analyze tasks in a cluster. Then, the
corresponding process is described as follows: the number of
partitioned tasks is firstly computed based on data size.
Then, each task is partitioned and distributed to each cluster
node to make calculations. If the calculation task determines
specification steps, the partition outcomes of each task will



be summarized, calculated, and presented. Otherwise, the
results will be provided as output directly. The Hadoop
framework deals with the whole process by allocating and
scheduling tasks and recovering errors. Thus, users only
define computational tasks of MapReduce, processing
methods used for data fragmentation, and specification
methods.

The proposed protocol has an intriguing quirk: the re-
ducers never directly communicate with one another, but
only through the mappers in the following round. Map-
Reduce handles grouping and message passing, along with
engineering challenges like fault tolerance or load balancing,
which are all controlled by MapReduce. The proposed
mathematical protocol’s most significant suggestion is to
encode a limit on the total amount of space consumed.
Specifically, the algorithm takes a key-value pair list as input:

Kis Vi, (1)

As a whole size,
N
n=S k] + v (2)
i1

The mapper m is a Turing machine that takes a single
key-value pair k, v as input and returns a list of key-value
pairs as output:

kivis. .. kv (3)

If MRC[ f (n), g (n)] is the round bound and the second
argument is the time bound, the logarithmic number of
rounds is defined as

MRC' = MRC[logi (n),poly(n)]. (4)

On the other hand, the mapper p is a Turing machine
that takes a single key-value k as input and a list of values
vi»...,V,, and produces a new list as v)l, RN v}w.

Each reducer determines what the finishing state would
be if the G is a graph that had started in state s after pro-
cessing the chunk of the input for each conceivable state s in
G. As a result, the output of reducer j would be an encoding
of the following table:

s —T; (s1)s
s, — T (s2),

(5)

Sig — Tj(sm).
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If
MRC/poly (n), 1]1eMRC[poly (n), poly (n)], (6)
and

MRC[1,1] € MRC[n, 1] CMRC[I,nZ];MRC[nz,nz] c.... (D

The process is
MRC(1, poly ()] = MRC[poly (1), poly (1)]. (8)
The size (number of edges) and storage space needed in

the computer memory to neighborhood list of a graph
(number of nodes) are

(i(“deg(w))) =0(n+m). )

We have
deg(v;) = dgy (v;),1<i<n. (10)

Therefore, the total complexity required to implement
the algorithm is

O(m) + Y O(IAdj(W) = O(n +m). (11)
veV

The cost function we want to minimize during the re-
duction process is as follows:

%lel +C Z log(exp(—yi(wai + b)) + 1), (12)
i1

where C>0 and b are the coefficients representing the
penalty of incorrect results.

So, to be able to estimate the probability distribution of
the process, we limit the history to n processes:

P(wrlwy, w,, . .. L Wr_p Wr ).

(13)

s wr_y) = P(wrlwr_, ..

Through maximum likelihood estimation, we calculate

w,) = count (w;, w,, w;)
2y count (wy, w,, w)

P(wslwy, (14)

Therefore,

x =[C(w,); C(w,);...;C(w,)].
¥ =P(w;lwy. ) = LM (wy, ) = softmax(hW2 + bz).

h= g(le + bl).

(15)

x = [Cw)Cw,):- .- :Clw,)]

C(w) = E,.

where w; € V, E € RVP o W' e R pl ¢ R W2 ¢ R4V 42 ¢ RIVI,
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FIGURE 2: MapReduce processing.

Finally, we propose a method that first linearly increases
the learning rate and then decreases it linearly for reducers.
The proposed algorithmic system is as follows:

cut = [T - cut_frac],

t .
— if t < cut,
cut

p= (16)

t —cut
cut. (1/cut_frac — 1)

else,

B 1+ p- (ratio—-1)
Nt = Nmax * ratio .

The idea is to adapt the parameters to the characteristics
of a particular set of processes. The model should first
converge quickly to a suitable area of the parameter space
and then improve the parameters.

2.5. Monitoring of the System and Alarming Service. The
monitoring system mainly surveils the CPU, MEM, TCP
connection, network bandwidth, and other fundamental
sections of each host, as well as the running status of the
monitoring host [19]. The external invasion trace can be
determined during the process, and the corresponding mea-
sures can be taken when data detection is utilized [20]. The
system has an alert facility located at the highest stage, and its
function is to judge whether the system is within the normal
operation bounds. The alarm service receives information
from the data analysis [21] center and monitoring system.
When there would be abnormal data [22] or an aberrated host
running state, the alarm service would send an alarm to inform
the administrator that the system could be under attack [23].

The spring MVC framework and velocity template
technology are employed to implement the module to
monitor the system. This module in charge of surveilling is
composed of modules to allocate the management of a user,
monitor the system, and manage Amazon DynamoDB [24].

The login page of the user management module accepts
information in a template form. Whenever information is input
to log in, the token must be verified [25]. A user verified as logged
in by the token directly reaches the home page. In contrast, the
receipt confirms the login information, which results in suc-
cessful verification. Then, it will jump into the login interface
directly. Otherwise, it will be directed to the error interface.

The monitoring module contains two functions: index
view and index definition. While JavaScript and velocity
technology implement the index view function, the index
definition function is implemented by the JavaScript Hight
Charts drawing function library. The Amazon DynamoDB
management module is employed to manage online Amazon
DynamoDB to reduce the management complexity [26].

3. Results and Discussion

The DD module in this manuscript’s distributed intrusion
detection system grabs data at the minimum level. The CPU
utilization rate captured by the DD module was gauged
between 0:00 to 6:00 am on December 5, to depict the
operation condition of the CPU system, which is shown in
Figures 2 and 3.

Currently, the main security problem in implementing
big data services has been distributed denial of service
(DDoS) attack, which is taken as the research object. It must
be noted that while firewalls and intrusion prevention
systems (IPS) are essential for network security, they are
insufficient to guard against complicated DDoS assaults.
Modern DDoS attack tactics need a multifaceted strategy
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FIGUre 4: The figure plot showing the trend of the CPU index
(Server 2).

that allows users to examine Internet infrastructure and
network availability. Consider the following capabilities for
improved DDoS protection and quicker mitigation of TCP
SYN flood DDoS attacks:

(1) Support for both inline and out-of-band deployment
to guarantee the network has no single point of
failure

(2) It has broad network visibility, including the ability
to observe and analyze traffic from many networks
segments

(3) Various threat information sources, such as statis-
tical anomaly detection, customized threshold alerts,
and fingerprints of known or new threats, ensure
rapid and precise detection

(4) There is scalability to handle assaults of various sizes,
from low end (e.g., 1 Gbps) to high end (e.g., 10 Gbps
and 40 Gbps)

The offense instrument of the DDoS is utilized to pro-
pose the distributed intrusion system.
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Ficure 5: The figure plot depicts the changing trend of the CPU
when the system is underattacked or invaded.

Figure 4 depicts that the number of TCP connections
fluctuates from 0 to 100 between 0 and 20 minutes, and the
changing trend is found to be relatively stable, proving that
the system has not received attacks.

In Figure 5, between 20 through 40 minutes, the DDoS
attacks are launched on the monitored system and the
number of TCP connections increases to 300. Therefore,
external attacks and intrusions can be detected through the
monitoring system.

4. Conclusion

The Java system is employed to devise and execute a dis-
tributed intrusion detection framework by implementing
the Hadoop framework when big data is considered. Thus, a
novel protection method is put forward. The proposed
method bringing advantages to the literature can be sum-
marized as follows: (1) Distributed data acquisition, dis-
tributed processing, and distributed analysis are realized. (2)
Monitoring CPU, MEM, and TCP indexes of the controlled
host, external attacks, and intrusions are well detected. The
corresponding alert services are provided when the DD
collaborates with the data collector, transceiver middleware,
and the center responsible for analyzing data.

The proposed method resolves the issues related to
single-point failure and the low operating efficiency of the
original distributed intrusion system. However, it still has
some limitations. In the future research agenda, the com-
bination with the machine learning algorithm would po-
tentially contribute to the proposed intrusion detection
methods, a capability that improves the ability of self-
learning and adaptivity of the system. In conclusion, the
most critical aspect will be reached by having both efficient
and precise detection accuracy.

MapReduce is a programming framework, not an algo-
rithm in and of itself, and complexity analysis is usually re-
served for algorithms. But, a future expansion of the proposed
approach will be the complexity analysis of MapReduce op-
erations by getting the appropriate variables, for example,
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where 7 is the number of items, s is the number of nodes, and
p is the ping time between nodes (assuming equal ping times
between all nodes in the network).
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