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Abstract

Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is

an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indica-

tion that it may also become a serious disease of durum wheat (T. turgidum L. var. durum).

Therefore, we investigated the genetic architecture underlying resistance to stripe rust in

adapted durum wheat germplasm. Wheat infection assays were conducted under controlled

conditions in Canada and under field conditions in Mexico. Disease assessments were per-

formed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa

(susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that con-

sisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the

90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for

stripe rust resistance were identified on chromosome 7B (LOD 6.87–11.47) and chromo-

some 5B (LOD 3.88–9.17). The QTL for stripe rust resistance on chromosome 7B was sup-

ported in the breeding panel. Both QTL were anchored to the genome sequence of wild

emmer wheat, which identified gene candidates involved in disease resistance. Exome cap-

ture sequencing identified variation in the candidate genes between Kofa and W9262-

260D3. These genetic insights will be useful in durum breeding to enhance resistance to

stripe rust.

Introduction

Durum wheat (Triticum turgidum L. var. durum) is an important food crop in regions with rel-

atively dry climates. Worldwide, 21 countries produce durum wheat across an average area of

approximately 18 million hectares, with an annual production of approximately 35 million

tonnes (Mt) [1]. Canada is the second largest producer of durum wheat in the world, with
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Saskatchewan (SK), Alberta (AB) and Manitoba (MB) contributing 84%, 14% and 2% to

national production, respectively [2].

Wheat stripe or yellow rust is caused by the fungus Puccinia striiformis Westend. f. sp. tritici
Eriks (Pst). The pathogen is widespread in nearly all wheat growing areas on all continents and

is estimated to cause 5.47 Mt of wheat losses annually, valued at approximately 979 million US

dollars [3]. Regional production that is exposed to stripe rust persistently ranges from 73.9 to

89.0% in Europe (including Turkey), Latin America and the Caribbean, and sub-Saharan

Africa [3]. In terms of global production, exposures are persistently greatest in Europe (includ-

ing Turkey) (20.5%) and in the Pacific/Asia (4.5%), including China, the world’s largest pro-

ducer of wheat [3, 4]. Trends also indicate increased losses from stripe rust since 2000,

especially in North America [3]. Historically, stripe rust was not considered an economically

important disease in Canada; however, stripe rust has appeared more frequently in western

Canada since 2000 and during the recent stripe rust epidemics in 2010 and 2011, most Cana-

dian commercial common wheat cultivars were infected [5, 6]. Most of the commercially

grown durum wheat germplasm are resistant to stripe rust, but there are indications of

increased incidence of the disease due to the appearance of new races with increased virulence

on durum, such as those identified in Mexico in 2014 and 2016 [7].

The primary host of Pst is wheat, with barberry (Berberis spp.) and Oregon grape (Mahonia
aquifolium) serving as alternate hosts [8, 9]. However, eradication of barberry, which also

serves as an alternate host for P. graminis f. sp. tritici (stem rust), has limited the lifecycle of Pst
to wheat in most parts of North America [10, 11]. Pst is an obligate biotrophic parasite that

absorb nutrients from living tissues [12]. After approximately two weeks, the fungus produces

yellow uredia on the surface of the leaves, which appear in linear arrangements. The uredinio-

spores within the uredia can be dispersed, by wind, thousands of kilometers from the initial

infection site, thereby allowing the pathogen to colonize new wheat plants. Because of the

short time required for the fungus to generate urediniospores, multiple generations of Pst can

develop in a single growing season [4, 12]. Pst is adapted to cool environmental conditions (7–

20˚C) and may survive under mild winter conditions in Canada by reproducing asexually.

However, temperatures are too severe in most northern locations for Pst to survive and the dis-

ease cycle usually ends with the wheat harvest [3, 4]. In western Canada, the source of inocu-

lum in the spring is influenced by epidemics in the south and the Pacific North West; however,

the geographic range of stripe rust is expanding as a result of changes in climate and pathogen

adaptation, thus highlighting the importance of studying this pathogen in both northern and

southern climates of North America [13, 14].

Sowing wheat cultivars that express adequate levels of resistance to stripe rust is the most

effective strategy to control the disease [15, 16]. In general, there are two types of resistance:

all-stage or seedling resistance and adult-plant resistance (APR). All-stage resistance is usually

expressed in all plant growth stages and is generally only effective against specific races of the

pathogen (race-specific). Due to the rapid evolution of the pathogen population, all-stage resis-

tance genes deployed in a monogenic state are prone to rapid breakdown [17]. In contrast,

APR is only expressed from approximately stem elongation to early head emergence, with

maximum expression occurring during the boot stage [18]. Adult-plant resistance can also be

effective against multiple races of Pst in high temperature environments. To date, there are

only four well-characterized APR resistance genes that are effectively and knowingly used in

field breeding programs. These include Lr34/Yr18 (on chromosome 7DS), Lr46/Yr29 (on chro-

mosome 1BL), Lr67/Yr46 (near the centromere of chromosome 4DL) and Sr2/Yr30 (on chro-

mosome 3BS) [19, 20]. Lr34/Yr18 and Lr67/Yr46 are not readily available to tetraploid durum

wheat breeders because of their location on the D-genome of hexaploid wheat. Even though

these genes are race-non-specific, wise gene stewardship would be that new genes, those not
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already widely used in bread wheat, should be the focus in durum wheat breeding. Thus,

efforts are needed to identify new sources of resistance for durum wheat, including genes that

can be combined or pyramided for durable resistance.

Combining multiple resistance genes into breeding lines can be difficult if based exclusively

on phenotypic selection, especially when all-stage resistance genes are involved. As an alterna-

tive to phenotypic selection alone, molecular markers that are tightly linked to resistance genes

are used for stacking resistance genes [21]. Although numerous studies have investigated and

developed genetic markers for stripe rust resistance, research has primarily focused on hexa-

ploid wheat and much less is known about the genetic basis of stripe rust resistance in durum

wheat or from other tetraploid sources. Among the 78 officially named resistance genes to date

[22], roughly seven were detected in durum wheat [22–24].

The aim of this study was to identify additional stripe rust resistance genes in modern

durum wheat germplasm that could be used in breeding programs to develop more durable

resistance. The 90K SNP iSelect assay made it possible to genotype a large number of acces-

sions and simultaneously investigate the genetic architecture of stripe rust resistance in durum

wheat. We performed linkage analysis on a bi-parental doubled haploid (DH) mapping popu-

lation from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant), which

was evaluated for seedling resistance against two Pst isolates. QTL from the DH population

were also tested in a breeding panel consisting of 92 diverse durum cultivars and breeding

lines.

Materials and methods

Populations

Two populations were used in the present study; the first was a bi-parental population consist-

ing of 155 DH lines, derived from the cross between the susceptible parent Kofa and the mod-

erately resistant parent W9262-260D3 (Kyle�2/Biodur) [25]. The second population consisted

of a breeding panel of 92 elite cultivars and breeding lines collected from 13 countries, repre-

sentative of the major durum wheat breeding programs of the world (S1 Table). In addition,

three stripe rust susceptible checks (Avocet, Brigade and DT749) and two resistant checks

(DT546 and Lillian) were included in the panel.

Collection of Pst races

Two isolates (W009 and W015) and a field collection (FC) of stripe rust were provided by the

Cereal & Flax Pathology Laboratory at the Crop Development Centre, University of Saskatche-

wan. W009 was isolated in Richardson, SK (50˚ 24’N, 104˚ 29’W) in 2011 and W015 was iso-

lated in Lethbridge, AB (49˚ 43’N, 112˚ 48’ W) in 2010 [13]. These isolates were propagated to

obtain inoculum by infecting susceptible wheat plants (cv. ‘Avocet S’) with urediniospores that

were obtained from a single pustule. Brar and Kutcher [13] reported that W009 and W015 are

genetically uniform isolates with different avirulence / virulence formulae. Isolate W009 is race

C-PST-2, which is the second most common race among 59 isolates collected from 2005 to

2013 in western Canada. Isolate W015 is race C-PST-30, and was determined previously to

have the widest spectrum of virulence among western Canadian isolates when evaluated on

the Avocet differential set [13].

The FC for the seedling assays was collected from naturally infected susceptible spring

wheat lines in Lethbridge, Alberta in 2011, and the composition is unknown. Stripe rust ure-

diniospores were collected from multiple infected wheat leaves, combined, and stored in a

freezer at -80˚C. The FC was also propagated on the susceptible cultivar ‘Avocet S’ to obtain

additional inoculum.
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Stripe rust resistance evaluation

Evaluation of seedling stripe rust resistance was performed in an environmentally controlled

growth chamber with a diurnal temperature cycle of 18˚C in darkness and 22˚C in light, with

a photoperiod of 8 h of darkness and 16 h of light. Seedlings of both populations were inocu-

lated at the two-leaf stage (approximately 10 days after planting). Inoculations were made

using urediniospores suspended in mineral oil (Bayol1, Esso Canada, Toronto, ON) at a con-

centration of 0.01 g of urediniospores per 900 μl mineral oil. Inoculated seedlings were left to

dry and transferred to a high humidity growth chamber (10˚C) and kept in darkness for 24 h.

Seedlings were then moved to a growth chamber with a temperature of 10˚C in darkness and

15˚C in light, with a photoperiod of 8 h of darkness and 16 h of light. The DH population was

inoculated with spores of W009 and W015 as independent experiments, while the breeding

panel was inoculated with W009, W015, and FC, as independent experiments. The DH popu-

lation and the breeding panel were arranged in an alpha-lattice design with three replications

and four seedlings per replication (S2 Table). Ten to eighteen days post-inoculation, the sec-

ond leaf was evaluated for disease based on the 0 (resistant) to 9 (susceptible) scale rating of

infection type (IT) [12, 18]. The IT was scored twice approximately two days apart, and scores

were analyzed independently.

The DH population was also evaluated for stripe rust resistance in replicated field trials in

Mexico in 2014. Similarly, the breeding panel was evaluated in Mexico over two consecutive

years, 2013 and 2014. The experiments were conducted in Toluca (19˚17’N, 99˚39’W, 2,680 m

above sea level, sandy clay loam soil). A randomized complete block design (RCBD) with three

replications was employed in each field test (S3 Table). The experimental lines were planted in

single row plots (1.5 m) with 0.5 m space between rows, with approximately 30 plants per plot.

Susceptible spreader rows were planted around the experimental plots to facilitate the spread

of the disease. Both spreader rows and experimental plots were artificially inoculated with a

mixture of stripe rust races with the widest virulence spectrum in Mexico. Disease severity

(DS) in the field trials was evaluated for the flag leaf based on the modified Cobb scale, on a

per plot basis [26]. The first disease evaluation in 2014 was performed when the flag leaves of

susceptible checks reached 40% severity. For both 2013 and 2014, subsequent ratings were per-

formed every five days with the final rating performed when the susceptible checks reached

100% severity, at approximately Zadoks growth stage (GS) 55 [27]. The area under the disease

progress curve (AUDPC) for the field data collected in Mexico was used to obtain an estimate

of disease accumulation on each plot. The AUDPC was calculated using the following formula;

where, n is the total number of ratings, Yi is the stripe rust severity for the ith rating and Ti is

the day of the ith rating [28].

AUDPC ¼
Pn

i¼1

Yi þ Yi� 1

2

� �

ðTi � Ti� 1Þ

The disease evaluation data was analyzed using PROC MIXED in SAS V9.3 with durum

accessions as a fixed effect, while replications (Rep), blocks and interacting factors were con-

sidered random. The least square means (LSMeans) for the stripe rust disease ratings were cal-

culated using LSMEANS in SAS V9.3 for both growth chamber and field experiments [29].

The deviations of observed and expected frequencies of resistant individuals in the DH popula-

tion were tested using the Pearson’s chi-squared test.
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DNA extraction, genotyping, and construction of the genetic map for the

DH population

Genomic DNA was extracted from leaves of one-week-old seedlings using the cetyltrimethy-

lammonium bromide (CTAB) protocol [30]. Standard gel electrophoresis, using a 1.5% (w/v)

agarose gel with known size standards, was used to evaluate the quality and integrity of the

DNA samples. DNA was quantified by the PicoGreen fluorometric assay [31]. Each sample

was genotyped using 500 ng of DNA in 10μl as input for the Wheat 90K iSelect SNP assay [32].

Genotypic data was analyzed by the genotyping module of Illumina GenomeStudio data analy-

sis software GSGT V1.9.4 (Illumina, San Diego, CA). For the DH population, in addition to

the 10,641 SNP markers from the 90K SNP Infinium iSelect assay [32], 109 SSR and 125 DArT

markers [25] were analyzed. The polymorphism information content (PIC) of both SNP and

SSR markers were determined by PowerMarker V3.25 [33]. A genetic map of the DH popula-

tion was constructed using both MSTMap [34] and MapDisto [35], as described previously

[36]. For the breeding panel, conservative filtering (S4 Table) was applied to filter out non-

informative SNPs. There were 244 simple sequence repeat (SSR) markers that were also used

in the analysis of the breeding population [37].

QTL analysis

Composite interval mapping (CIM) was performed by Qgene V4.3.10 [38], using the genetic

map of the DH population. We used a stepwise cofactor selection method, where the ‘maxi-

mum number of cofactors’, ‘F-to-add’, and ‘F-to-drop’ thresholds were set as ‘auto’. One thou-

sand permutation tests were performed to estimate the critical logarithm of the odd (LOD)

threshold. Significant QTL were illustrated with diagonally hatched bars using MapChart V2.2

[39]. The additive and epistatic effects of QTL were investigated using SAS V9.3.

Confirmation of QTL from the DH population in the breeding panel

Using data from the breeding panel, the linkage disequilibrium (LD) between pair-wise mark-

ers was calculated among SNPs with known genetic positions according to the SNP-based con-

sensus map of durum wheat [40]. Using TASSEL V3.0, LD was measured using the squared

correlation between loci (r2) and was plotted against genetic distance between adjacent mark-

ers. The LD decay against genetic distance was simulated in a nonlinear regression model [41].

The critical r2 value referred to the 95% quantile of r2 values between unlinked SNP markers

(i.e. markers that were localized to different chromosomes).

The phylogenetic tree was constructed using allele frequency-based distances between

accessions. Population structure within the breeding panel was estimated using principal com-

ponent analysis (PCA) using TASSEL V3.0 [42], and Bayesian clustering analysis was per-

formed using STRUCTURE V2.3.4 and Structure Harvester [43] to determine the coancestry

coefficient (Q matrix). The Bayesian clustering analysis was applied to SSR markers with high

PIC identified previously [37]. The Q matrix was used as a covariate in the general linear

model (GLM) or mixed linear model (MLM). The kinship matrix (k matrix) was estimated

using genetic data in TASSEL V3.0, and incorporated as a random effect in the MLM.

Association analyses were performed using three different models in TASSEL V3.0; these

included a naïve model (GLM without any correction for population structure), GLM (with Q

matrix as a correction for population structure) and MLM (with Q and P matrix as corrections

for population structure) [44]. The model that best corrected for bias in population structure

and kinship was chosen based on minimizing systematic inflation or deflation of P-values

using the Quantile-Quantile (Q-Q) plot. The P-value was adjusted using a positive false
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discovery rate (pFDR) method. When the MLM was employed, an ‘FDR Q-value’ was esti-

mated using the R package ‘fdrtool’ and Q� 0.05 was used as threshold to determine signifi-

cant associations [45, 46].

Physical anchoring of QTL and exome sequencing

The genome sequence for wild emmer wheat (WEW) was used to determine the physical inter-

val of the QTL. Markers were compared to the genome by GMAP v2014-12-29 [47] and fil-

tered for matches with 95% sequence identity and 80% coverage. Genes within the intervals

were extracted from the available gene annotations of WEW. For exome sequencing, DNA

from Kofa and W9262-260D3 were enriched for coding regions using the wheat exome cap-

ture array according to the procedures outlined previously [48]. High-throughput sequencing

was performed on the Illumina HiSeq2500 platform with 2 x 100 bp PE chemistry. Raw

sequence reads were deposited in the NCBI Sequence Read Archive (Accession: SRP154228).

Reads were processed in Trimmomatic v0.32 [49] and aligned to the genome of WEW using

Novoalign v3.02.05. Duplicate read mappings and improper read pairs were removed using

samtools v1.3.1 [50] and picard-tools [51]. Sequence variations were determined using free-

bayes v1.0.2-16-gd466de [52], with ploidy set to 4. Predictions on the effect of the variants on

gene function were determined within high confidence gene models by SnpEff [53].

Results

Genetic mapping for stripe rust resistance in the DH population

The two parents of the DH population had clear differences in their phenotypic response to stripe

rust infection. In the seedling stage, the 1st and 2nd leaves of the moderately resistant parent

W9262-260D3 had few uredia that were surrounded by chlorotic/necrotic areas, which were stag-

gered on the leaf surface (IT 3–4). In contrast, both leaves of the susceptible parent Kofa were

covered with many uredia, which showed no necrosis or chlorosis (IT 6–7). There was no observ-

able difference in the number of uredia between isolates W009 and W015. The IT frequency dis-

tribution approximated a bimodal distribution in the DH population, with a range of 1–8 for

isolate W009 and 2–8 for isolate W015 (Fig 1A and 1B). The frequency distribution of resistance

to W009 had two peaks, with 17.1% of individuals with IT ranging from 2 to 3, and 71.9% of indi-

viduals with a more susceptible IT range of 6 to 8 (Fig 1A). The frequency distribution of resis-

tance to W015 also had two peaks, with 20.0% of individuals with IT ratings that ranged from 3

to 4, and 61.3% of individuals with IT ratings that ranged from 5 to 7 (Fig 1B). Transgressive seg-

regation for seedling resistance was also observed for the DH population. When inoculated with

W009, 18.7% of the DH population had a higher level of resistance than W9262-260D3, while

23.2% were more susceptible than Kofa; similarly; for W015, 12.3% of the DH population were

more resistant than W9262-260D3, while 35.5% were more susceptible than Kofa.

The distribution of stripe rust DS assessed in field experiments in Mexico in 2014 is shown

in Fig 1C. The moderately resistant parent W9262-260D3 had some uredia on the surface of

the flag leaf (DS of 10–20%), while susceptible parent Kofa had uredia on half of the flag leaf

area (DS of 50%). DS of the DH population ranged from 0 to 90%; however, DS ranged from

10% to 50% for 87.7% of the population. Similar to the seedling reactions, the DH population

also showed transgressive segregation for adult plant resistance to stripe rust (Fig 1). For adult

plant resistance in Mexico in 2014, 5.8% of the DH population were more resistant than

W9262-260D3, whereas 6.5% were more susceptible than Kofa.

In order to identify QTL associated with the resistance in the DH population, we first con-

structed a genetic map using genotypic data from the 90K iSelect SNP array. The genetic map

spanned 2,639.7 cM with an average interval size of 0.64 markers/cM. Gaps larger than 10 cM
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were found on chromosomes 1A, 1B, 3A, 3B, 4A, 5A and 6A (S5 Table). Two QTL for seedling

resistance to isolates W009 and W015 were then identified by CIM (permutation P< 0.05),

QYr.usw-5B and QYr.usw-7B (Fig 2; Table 1; S1 Appendix). The moderately resistant parent

W9262-260D3 carried the resistant alleles for both QYr.usw-5B and QYr.usw-7B. The QTL posi-

tions also coincided perfectly for both fungal isolates. QYr.usw-7B had the largest effect and was

also identified in the field reaction to the Mexican races in Toluca in 2014 (Fig 2, Fig 3C and

Table 1). QYr.usw-7B was flanked by markers BS00003929and BS00075300_51with an interval

of 2.9 cM; the peak marker, BS00075300_51,was located at 222.5 cM on chromosome 7B. QYr.
usw-5B was identified in seedling experiments, but was not detected in field trials against the

Mexican races in 2014. QYr.usw-5B was flanked by markers RAC875_c38873_1118and

wsnp_Ku_c4427_8029592with an interval of 1.3 cM; the peak marker, wsnp_Ku_c4427_8029592,

was located at 225.3 cM on chromosome 5B. Based on seedling stripe rust resistance to W009

and W015, there was a significant epistatic interaction between QYr.usw-5B and QYr.usw-7B
(P< 0.01). The two-QTL interaction explained 12.7% of seedling resistance to W009 and 17.1%

for W015 (Fig 3A and 3B).

Disease reaction and testing of QYr.usw-5B and QYr.usw-7B in the breeding

panel

Phenotypic variation was observed in the infection assays for the breeding panel. For the seed-

ling assays, the IT ranged from highly resistant (IT < 2) to highly susceptible (IT > 7) (S6

Fig 1. Frequency distributions for stripe rust disease for the DH population Kofa/W9262-260D3. Seedling disease reaction to (a) W009 and (b)

W015. (c) Final scoring of adult plant disease severity collected on 27-Aug-2014 in Toluca, Mexico (MX-14_DH).

https://doi.org/10.1371/journal.pone.0203283.g001
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Table). The IT LSmeans for the disease assessment across the entire breeding panel ranged

from 1.4 to 9.1 (S6 Table). The correlation among the infection assays using FC, W009 and

W015 was high, with Pearson’s correlation coefficients larger than 0.77 (S7 Table). Under field

Fig 2. Map of stripe rust resistance QTL in the Kofa/W9262-260D3 DH population. The positions of significant QTL on chromosome 5B (a)

and 7B (b) are illustrated by diagonally hatched bars next to the chromosome, which are expanded to show map detail. Flanking markers are in

bold. The dotted lines indicate the QTL significance thresholds. The QTL are labelled and colored according to three independent experiments

involving stripe rust infection: two growth cabinet experiments using single isolates W009 (orange) or W015 (green) and a third field experiment

performed in Mexico in 2014 (MX-14, pink).

https://doi.org/10.1371/journal.pone.0203283.g002
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conditions, DS ranged from 0 to 80% in 2013 and from 0 to 90% in 2014 in Mexico (S8 Table).

DS and AUDPC were highly correlated between the two years (r2� 0.90). The adult plant

resistance observed in 2013 and 2014 was moderately correlated with seedling resistance, with

correlation coefficients ranging from 0.58 to 0.71.

Table 1. QTL for stripe rust resistance to W009, W015 and Mexican races identified in the Kofa/W9262-260D3 DH population.

QTL Chr. Resistance interaction Flanking markers LOD R2 (%) Additive effect

QYr.usw-5B 5BL Seedling—W009 RAC875_c38873_1118—wsnp_Ku_c4427_8029592 9.17 25.1 0.79

Seedling—W015 3.88 11.0 0.35

QYr.usw-7B 7BL Seedling—W009 BS00003929—BS00075300_51 11.47 30.4 0.90

Seedling—W015 6.87 18.6 0.49

Adult—

Mexico a
9.57 25.0 2.20

a Data are from a field experiment performed in Mexico in 2014.

https://doi.org/10.1371/journal.pone.0203283.t001

Fig 3. Mean stripe rust infection in the DH population Kofa/W9262-260D3 for QTL on chromosomes 7B and 5B. Seedling stripe rust reaction to

(a) isolate W009 (W009_DH) and (b) W015 (W015_DH), and (c) adult plant resistance in Mexico in 2014 (MX-14_DH). The ‘p’ represents the

susceptible allele from Kofa, while ‘q’ represents the resistant allele from W9262-260D3, as determined using the peak markers for QYr.usw-5B
(wsnp_Ku_c4427_8029592) and QYr.usw-7B (BS00075300_51). There were 34, 37, 39, and 39 lines with the ‘pp’, ‘qp’, ‘pq’ and ‘qq’ haplotype for QYr.
usw-5B and QYr.usw-7B, respectively (a and b). Likewise, there were 73 lines with the ‘p’ haplotype and 76 lines with the ‘q’ haplotype for QYr.usw-7B
(c). Bars that do not share a letter differ significantly (Fisher’s LSD, P< 0.05).

https://doi.org/10.1371/journal.pone.0203283.g003
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The 92 accessions were clustered into three subpopulations (SP1, SP2 and SP3) based on

geographic distribution, phylogenetic relationship, and Bayesian clustering (S1 Fig) [54]. The

first subpopulation, SP1, was comprised of 33 varieties from diverse origins, SP2 of 18 Italian

accessions, and SP3 of 41 varieties from North America (Fig 4A). The LSmeans (from seedling

and field experiments) across all cultivars within a subpopulation then were compared. The

LSmeans for stripe rust resistance of SP3 (North American accessions) were significantly (P<
0.05) more susceptible compared to SP1 and SP2 (Fig 4A and 4B). The accessions in SP1 and

SP2 had a more balanced distribution for resistance and susceptibility against stripe rust, and

the average DS was not significantly different between SP1 and SP2. Similar trends were

observed in the seedling and adult plant resistance.

To facilitate QTL testing, the breeding population was genotyped with the 90K iSelect SNP

array (S9 Table; S2 Fig; S1 Appendix). The major locus QYr.usw-7B from the DH population

was identified within a 3.0 cM region near the telomere of chromosome 7B in the breeding

panel. Fifteen SNPs and one SSR marker were associated with stripe rust in some or all of the

datasets (S10 Table). The proportion of phenotypic variance explained by the QTL when inoc-

ulated with W009, W015, and the FC ranged from 17.1% to 32.3% for seedling resistance,

while for field resistance, it ranged from 11.6% to 22.6%. The QYr.usw-5B QTL identified in

the DH population was not found in the breeding panel. The alleles at the marker wsnp_Ku_
c4427_8029592were nearly fixed in most lines in this panel. Ninety-five percent of the lines

studied carried the same allele as W9262-260D3 (resistant genotype from the DH population)

at marker wsnp_Ku_c4427_8029592 (peak marker of QYr.usw-5B) and five carried the same

genotype as Kofa (susceptible genotype from the DH population). Lines carrying the suscepti-

ble genotype were all highly susceptible to stripe rust at all stages. Average disease scores placed

these five individuals within the top 25% of the most susceptible lines; Mexa (IT = 6.7), Kofa

(IT = 6.9), Westbred (IT = 7.2), Ocotillo (IT = 7.3) and Pathfinder (IT = 7.6). Mexa, Kofa,

Westbred and Ocotillo also carried the susceptible genotype (same as Kofa) at the QYr.usw-7B
locus. The only exception was Pathfinder, which had the resistant genotype (same as W9262-

260D3) at QYr.usw-7B, but was still among the most severely affected by stripe rust among

these five genotypes.

Fig 4. Mean strip rust infection in the breeding panel. (a) LSMeans for seedling disease severity of lines from three subpopulations that

were inoculated with FC, W009, and W015. (b) LSMeans for adult plant disease severity of lines from three subpopulations, based on final

ratings in 2013 (MX-13) and 2014 (MX-14). Bars that do not share a letter differ significantly (Fisher’s LSD, P< 0.05). Data are presented

as mean ± standard error.

https://doi.org/10.1371/journal.pone.0203283.g004
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Identification of gene candidates

Gene candidates for QYr.usw-5B and QYr.usw-7B were identified by mapping the markers for

the QTL to the available genome sequence of WEW. QYr.usw-5B mapped to 3.63 Mbp interval

ranging from 681.19 Mbp (RAC875_c38873_1118) to 684.82 Mbp (wsnp_Ku_c4427_8029592)

on chromosome 5B. This interval contains 67 genes, of which 36 have high confidence annota-

tions (Table 2). Two of these genes, TRIDC5BG077260and TRIDC5BG077630,are annotated

as leucine-rich repeat receptor-like protein kinases, which have a role in pathogen recognition

and disease resistance. Similarly, QYr.usw-7B mapped to a very small 267 kbp interval ranging

from 719.49 Mbp (BS00075300_51) to 719.75 Mbp (BS00003929_51) on chromosome 7B. This

interval contains seven genes, of which only four have high confidence annotations (Table 2).

Two of the genes within QYr.usw-7B, TRIDC7BG070820and TRIDC7BG070830,are annotated

as disease resistance proteins with nucleotide-binding site leucine-rich repeat domains.

Exome sequencing identified 642 sequence variants, SNPs and small insertions or deletions

(InDels), between Kofa and W9262-260D3 in QYr.usw-5B and QYr.usw-7B (S2 Appendix).

While most of the variants identified were in intergenic regions and introns, which may have a

role in regulating gene expression, 78 were within the coding sequences. Fifteen genes within

QYr.usw-5B had sequence variation in their coding sequence, including InDels in the genes

TRIDC5BG077150(IAA-amino acid hydrolase ILR1-like 4) and TRIDC5BG077600(unknown

function) that are predicted to cause a shift in the reading frame and have a major effect on

gene function. Variation was also detected within three genes from QYr.usw-7B, including pre-

dicted disease resistance genes TRIDC7BG070820and TRIDC7BG070830,which had four mis-

sense mutations each (S2 Appendix). All four missense variants for TRIDC7BG070820
occurred within InterPro predicted leucine-rich repeat or nucleotide binding domains. Two

out of four missense variants for TRIDC7BG070830occurred in InterPro predicted leucine-

rich repeat or nucleotide binding domains, while the remaining two were part of the leucine-

rich repeat unintegrated signature (S2 Appendix).

Discussion

Stripe rust, a destructive disease of wheat occurring worldwide, can cause complete yield loss

in extreme cases. In recent years, regional epidemics have occurred in North America (particu-

larly the Pacific North-West), East Asia, South Asia, Australia, and East Africa [3]. In Canada,

stripe rust has appeared more frequently in regions east of the Rocky Mountains, with epidem-

ics occurring in southern Alberta and Saskatchewan in 2006, 2010 and 2011 [6]. Given the

increased incidence of stripe rust and the limited number of effective disease resistance genes

characterized in durum wheat, additional effort is required to identify new resistance genes

that can be combined to mitigate the breakdown of currently available resistance [3, 19, 20]. In

this study, we identified QTL on chromosomes 5B and 7B that confer resistance to stripe rust

in durum wheat. The QTL on chromosome 5B was detected only in the DH population at the

seedling stage. A second QTL, on chromosome 7B, was identified through QTL mapping of

both seedling evaluations under controlled conditions and adult plant field trials in the DH

population, and was also identified in global breeding lines.

Genomic regions associated with stripe rust resistance on chromosome 7B

The effect of QYr.usw-7B on chromosome 7B in the DH population was confirmed through

the discovery of a QTL at the same position in our breeding panel (S10 Table). The experimen-

tal evidence presented here suggests that this QTL contains a broad-spectrum resistance gene

that is effective against multiple races of stripe rust, and is effective at all stages of plant devel-

opment. QYr.usw-7B maps to the region on chromosome 7B known to harbor Yr67 [50, 55]
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and YrZH84 [56]. According to previous studies, 78 officially named resistance genes (Yr1 to

Yr78) and many temporarily designated genes (www.ars.usda.gov and www.shigen.nig.ac.jp)

have been identified. Of the resistance genes currently known, Yr2, Yr6, Yr39, Yr52, Yr59,

YrZH84, Yr67 and YrMY37 are located on chromosome 7B. The genes Yr39, Yr52 and Yr59 are

Table 2. Gene candidates for QYr.usw-5B and QYr.usw-7B from the WEW genome.

Chr. Position

(Mbp)

Gene accession Gene descriptor

5B 681.19 TRIDC5BG077010 actin 7

5B 681.19 TRIDC5BG077030 Myb/SANT-like DNA-binding domain protein

5B 681.42 TRIDC5BG077040 TCP family transcription factor

5B 681.43 TRIDC5BG077050 Cytochrome P450 superfamily protein

5B 681.43 TRIDC5BG077060 RNA-binding protein 1

5B 681.5 TRIDC5BG077070 unknown function

5B 681.5 TRIDC5BG077080 photosystem II reaction center PSB28 protein

5B 681.53 TRIDC5BG077100 Harpin-induced protein 1 containing protein, expressed

5B 681.54 TRIDC5BG077120 Harpin-induced protein 1 containing protein, expressed

5B 681.6 TRIDC5BG077130 Dehydrogenase/reductase SDR family member 4

5B 681.64 TRIDC5BG077140 IAA-amino acid hydrolase ILR1-like 3

5B 681.65 TRIDC5BG077150 IAA-amino acid hydrolase ILR1-like 4

5B 681.66 TRIDC5BG077160 IAA-amino acid hydrolase ILR1-like 4

5B 681.75 TRIDC5BG077210 mRNA-decapping enzyme-like protein

5B 681.8 TRIDC5BG077230 cellulose synthase 6

5B 681.89 TRIDC5BG077260 Leucine-rich repeat receptor-like protein kinase

5B 681.95 TRIDC5BG077270 ABC transporter G family member 45

5B 682.01 TRIDC5BG077280 nicotinate phosphoribosyltransferase 1

5B 682.1 TRIDC5BG077290 Pentatricopeptide repeat-containing protein

5B 682.1 TRIDC5BG077300 Eukaryotic translation initiation factor 4E-1

5B 682.11 TRIDC5BG077310 Eukaryotic translation initiation factor 4E-1

5B 682.11 TRIDC5BG077320 U3 small nucleolar RNA-associated protein 25

5B 682.21 TRIDC5BG077330 basic helix-loop-helix (bHLH) DNA-binding

5B 682.97 TRIDC5BG077350 unknown function

5B 683.63 TRIDC5BG077430 Bax inhibitor-1 family protein

5B 683.73 TRIDC5BG077450 Ubiquinone biosynthesis monooxygenase COQ6

5B 683.74 TRIDC5BG077470 E3 ubiquitin-protein ligase RNF170

5B 683.75 TRIDC5BG077490 Mitochondrial transcription termination factor

5B 684.23 TRIDC5BG077530 HXXXD-type acyl-transferase family protein

5B 684.25 TRIDC5BG077540 Subtilase family protein

5B 684.31 TRIDC5BG077550 ammonium transporter 2

5B 684.33 TRIDC5BG077560 Phosphoglycerate mutase family protein

5B 684.45 TRIDC5BG077570 Post-GPI attachment to proteins factor 3

5B 684.47 TRIDC5BG077590 Protein kinase superfamily protein

5B 684.49 TRIDC5BG077600 unknown function

5B 684.49 TRIDC5BG077610 OJ991214_12.8 protein

5B 684.63 TRIDC5BG077630 LRR receptor-like serine/threonine-protein kinase GSO1

5B 684.81 TRIDC5BG077670 Calmodulin-binding transcription activator 2

7B 719.48 TRIDC7BG070820 Disease resistance protein

7B 719.56 TRIDC7BG070830 Disease resistance protein (CC-NBS-LRR class) family

7B 719.67 TRIDC7BG070850 undescribed protein

7B 719.75 TRIDC7BG070880 RING/U-box superfamily protein

https://doi.org/10.1371/journal.pone.0203283.t002
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adult plant resistance genes, which are not effective at the seedling stage and are therefore unlikely

candidates for QYr.usw-7B [57]. Although Yr2, Yr6, Yr67, YrZH84 and YrMY37 could qualify as

candidates because of their effectiveness at all growth stages, the differential lines carrying Yr2 and

Yr6 were not effective against W009 and W015 [13]; therefore, QYr.usw-7B is functionally distinct

from Yr2 and Yr6. YrMY37 was also ruled out as a candidate corresponding to the QTL we inves-

tigated because it is located on chromosome 7B close to the centromere [58], while QYr.usw-7B is

near the distal end of chromosome 7B. Yr67 (previously named YrC591) [50, 55] and YrZH84
[56] are also all-stage dominant resistance genes mapped to the telomeric region of chromosome

7B. Lines carrying Yr67 and YrZH84 had different reactions to a panel of Pst isolates, indicating

they are in fact distinct resistance genes [59]. Both genes share one significant flanking SSR

marker with QYr.usw-7B, namely, Xcfa2040-7B. The relationship among QYr.usw-7B, Yr67 and

YrZH84 needs further study, with allelism testing to estimate the genetic distance among them.

However, both Yr67 and YrZH84 are outside of the physical interval for QYr.usw-7B, indicating

that QYr.usw-7B may be a different gene (S3 Fig). The physical interval for QYr.usw-7B is very

narrow and contains two genes annotated as pathogen receptors, each of which contained four

missense mutations between Kofa and W9262-260D3 (Table 2, S2 Appendix). Additional

research is required to validate the role of these gene candidates and the SNPs we identified,

including their potential involvement in stripe rust resistance. Furthermore, linkage between QYr.
usw-7B and other genes on chromosome 7B, including genes for yellow pigment and resistance to

leaf rust, should also be investigated for breeding purposes [60].

Genomic regions associated with stripe rust resistance on chromosome 5B

The QTL on chromosome 5B, QYr.usw-5B, was found to confer resistance to Pst isolates W009

and W015 in the Kofa/W9262 DH population. The QTL was flanked by RAC875_c38873_1118
and wsnp_Ku_c4427_8029592, with the peak situated nearest to the latter marker. The QTL

explained 25.1% and 11.0% of phenotypic variance in seedling resistance to W009 and W015,

respectively. QYr.usw-5B showed strong epistatic interaction with QYr.usw-7B in the DH map-

ping population but was not identified in the breeding panel. Upon closer inspection, it was

found that the susceptible allele at marker wsnp_Ku_c4427_8029592, the peak marker for QYr.
usw-5B, was nearly absent in the breeding panel, which may have limited our ability to detect

the QTL. The five lines that carried the susceptible allele all had severe disease ratings in all tri-

als. The reduced representation of this allele in such a diverse set of lines suggests that breeding

programs have selected for the resistant allele at this locus. In previous studies, seedling resis-

tance genes Yr19, Yr47, and Yr74 were also found to be located on chromosome 5B. Yr47 was

identified as a seedling resistance gene located on chromosome 5BS [61], whereas QYr.usw-5B
is located on 5BL. Recently, Yr74 was identified as an all stage resistance gene in the Australian

hexaploid wheat Avocet R (AvR)-AUS 90660; however, there is no information regarding this

gene in durum wheat and the assocciated DArT-Seq markers are unavailable for comparative

analysis to QYr.usw-5B [62]. Yr19 is a dominant resistance gene located on chromosome 5B

discovered in an F2 population from crosses of disomic aneuploidy lines of Chinese Spring

[63], but no marker information is available for Yr19. The relationship between QYr.usw-5B,

Yr74, and Yr19 is unknown at this time and warrants further investigation. Comparison of

QTL across populations can be facilitated by using a common set of markers or a common ref-

erence genome sequence. Our study provides a physical location for QYr.usw-5B in an avail-

able tetraploid reference genome and lists gene candidates from the interval as well as

sequence variation within genes and intergenic regions that may be involved in stripe rust

resistance. However, the sequence variation identified in this study using exome capture

sequencing does not fully capture all genes and their variants; therefore, additional variants
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within genes and intergenic regions likely exist between Kofa and W9262-260D3 for both QYr.
usw-5B and QYr.usw-7B that could be identified by a more comprehensive sequence strategy.

Additional research is also required to determine if the variation within these gene candidates

are involved in stripe rust resistance.

Interaction between rust resistance QTL on chromosomes 5B and 7B

The full expression of resistance in the DH population requires both QYr.usw-5B and QYr.usw-
7B (Table 1). The statistical analysis indicated that the epistatic interaction between QYr.usw-5B
and QYr.usw-7B was significant (P< 0.01), and genes are most effective when stacked. Epistatic

interactions that involve rust resistance genes have been documented in other studies. For exam-

ple, an epistatic interaction was identified between a QTL for stripe rust resistance on chromo-

some 2AS and QTL on chromosome 6AL, which resulted in some inbred lines that had

resistance that was equal to or greater than the resistant parent [64]. Similarly, an epistatic inter-

action was identified between QTL that conferred resistance to stem rust resistance in a DH pop-

ulation derived from the Canadian wheat cultivars AC Cadillac and Carberry [65]. Epistatic

interactions were also observed between multiple pairs of QTL in other studies, including QTL

on chromosomes 4B and 5B, 4B and 7B, 5B and 6D, 6D and 3B, and 6D and 7B. In research con-

ducted by Yu et al. [66] on stem rust resistance of CIMMYT spring wheat, multiple significant

pairwise QTL interactions were detected. The Sr2 locus on chromosome 3BS and the wPt1859
locus on 7DL interacted with other loci on the same chromosome and with markers on chromo-

some 6B. Interactions also involved loci on chromosomes 1B, 4A and 2B. Yu et al. [67] also con-

ducted research on stem rust resistance of winter wheat to Ug99, and showed that multiple loci

were involved in the QTL interaction, including loci on chromosomes 3BS, 6BS, 2BS and 7DS.

This suggests that complex genetic control for adult plant resistance to stem rust isolate Ug99

exists in winter wheat. Kumar et al. [68] studied leaf rust and stripe rust resistance in the Interna-

tional Triticeae Mapping Initiative (ITMI) population and identified eight QTL interactions for

each trait, as well as and epistatic-QTL interaction between loci on chromosomes 1D and 3B.

Together, epistatic interactions between QTL relating to resistance to rust pathogens is common,

and the interaction we identified between QTL on chromosomes 7B and 5B will be actively incor-

porated into breeding programs to enhance resistance to stripe rust in Canadian germplasm.

Germplasm from the breeding panel can be used in future crosses to

enhance resistance to stripe rust

Genetic exchange among breeding programs is critical to widen the genetic base of any pro-

gram in general, and to enhance stripe rust resistance in particular. The majority of Canadian

durum germplasm were susceptible to stripe rust at the seedling stage; the percentage of sus-

ceptible lines was 100% for FC, 75% for W009, and 83% for W015. In the Mexican field trials,

percentage of the Canadian lines that displayed adult plant DS greater than 20% was 46% in

2013 and 57% in 2014. Some Canadian lines that were susceptible at the seedling stage were

resistant at the adult plant stage, such as Strongfield, 9661-AF1D, 9661-CA5E, D24-1773,

DT513, DT710, and DT711. Other resistant or moderately susceptible lines at the seedling

stage were also highly resistant at the adult plant stage, including AC Avonlea, Napoleon, CDC

Verona, DT696, DT705, DT707, and Kyle. Although stripe rust is not currently a common dis-

ease of durum wheat in Canada, the recent epidemics in hexaploid wheat in AB and SK may

indicate a trend towards increased disease pressure and a need to develop Canadian durum

cultivars with increased resistance. In the breeding panel, some lines from other breeding pro-

grams were highly resistant at both seedling and adult plant stages, such as Buck Ambar

(Argentina), Carioca (France), Durabon (Germany), D-73-15 (Iran), Arcobaleno (Italy),
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Ciccio (Italy), Iride (Italy), Parsifal (Italy), Tresor (Italy), DHTON 1 (Morocco), Arrivato

(New Zealand), CFR5001 (New Zealand), CRDW17 (New Zealand), Altar-Aos (Spain), and

Gallareta (Spain). Together, the identification of Pst resistance genes in both domestic and for-

eign cultivars, and the development of usable molecular markers linked to their resistance, will

be invaluable to aid breeding efforts aimed at preserving durum wheat as a global crop that is

both viable and competitive.

Conclusions

We used genetic mapping to detect two QTL (QYr.usw-5B and QYr.usw-7B) that conferred

stripe rust resistance in a DH population, one of which (QYr.usw-7B) was also identified in a

diverse breeding panel. The physical locations of the QTL were determined in the WEW

genome and candidate resistance genes and genetic variations within the interval were identi-

fied. Within the DH population, a strong epistatic interaction was observed between QYr.usw-
5B and QYr.usw-7B. Combining the major QTL from this study with other effective resistance

genes via marker assisted selection could be applied in future breeding programs to develop

durable resistance to stripe rust. The 90K wheat SNP assay greatly facilitated the identification

of the QTL in the DH population and provided a standard set of SNP markers that could be

used to pyramid the QTL we investigated with those identified from other studies.
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