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*e high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in
BRCA pathogenesis and prognosis. Areas with highDNAmethylation (such as CpG islands) were accompanied by copy number variation
(CNV), and these genomic variations affected the level of DNAmethylation. In this study, we characterized intertumor heterogeneity and
analyzed the effects of CNV on DNA methylation and gene expression. In addition, we performed a Genetic Set Enrichment Analysis
(GSEA) to identify key pathways for changes between patients with low and high expression of genes. Our analysis found two key genes,
namely, HPDL and SOX17.*e protein expressed byHPDL is 4-hydroxyphenylpyruvate dioxygenase-like protein, which has dioxygenase
activity. SOX17 is a transcription factor that can inhibit Wnt signaling, promote the degradation of activated CTNNB1, and participate in
cell proliferation. Our analysis found that the CNV of HPDL and SOX17 is not only related to the patient’s prognosis, but also related to
genemethylation and expression levels affecting the patient’s survival time. Among them, the high-methylation, low-expressionHPDL and
SOX17 showed poor prognosis. And the addition of two copies of SOX17 is associated with a lower survival rate, while a decrease in the
copy number of HPDL also suggests a poor prognosis. *is study provided an effective bioinformatics basis for further exploration of
molecular mechanisms related to BRCA and assessment of patient prognosis, but the development of biomarkers for diagnosis and
treatment still requires further clinical data validation.

1. Introduction

In the postgenomic era, rapidly evolving high-throughput
sequencing technologies have enabled the acquisition of vast
amounts of multiomics data more efficiently [1]. *e vari-
ation of expression of some genes causes the genetic reg-
ulation trajectory inside the cell to deviate, which alters the
gene expression programming inside the cell. *erefore,
most disease-causing genomic variants are likely to play a
role by altering gene regulation, such as transcription factor
binding and DNAmethylation, rather than directly affecting
protein function [2, 3]. *e high heterogeneity of breast

cancer (BRCA) makes it more challenging to interpret the
genetic variation mechanisms involved in BRCA patho-
genesis and prognosis [4].

In human cancer, genomic instability leads to extensive
cell copy number variation (CNV) [5]. Genome-wide as-
sociation studies (GWASs) have been conducted for com-
monmalignancies and have identifiedmore than 450 genetic
variants associated with increased disease risk [6]. In BRCA,
CNV is associated with about 40% of gene expression, which
can participate in the occurrence and development of BRCA
and affect the prognosis of patients [7]. It has been found
that changes in CNV such as BRCA1, BLM, and OR4C11
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will increase the incidence of BRCA. BRCA1, BLM, and
OR4C11 are all related to cell proliferation. BRCA1 is a
transcriptional activator that can regulate the cell cycle; BLM
is involved in DNA replication and repair, and OR4C11 can
regulate cell signal transduction [8], while changes in CNV
such as MYC and JAK2 play a role in acquired chemo-
therapy resistance to triple-negative BRCA [9]. In addition,
the higher intratumoral heterogeneity of EGFR/CEP7 and
CCND1/CEP11 CNV could predict metastasis and was
significantly correlated with metastasis-free survival in triple
negative BRCA patients [10].

Disorders in the epigenetic state are closely related to
human diseases, particularly cancer. DNA methylation is a
well-characterized epigenetic modification that is closely
related to many cellular processes. In the current study,
DNA methylation and its sites associated with tumor re-
currence and overall survival (OS) of BRCA and its subtypes
have been identified based on methods employed for ge-
nome-wide DNA methylation analysis [11–13]. *e meth-
ylation of oncogenes, ESR1 and ERBB2, and tumor
suppressor genes, FBLN2, CEBPA, and FAT4, contribute to
the early diagnosis of BRCA [14]. And the methylation of
HER2, Ki67, and GSTP1 are associated with BRCA TNM
staging and tumor size and can be combined for early di-
agnosis and prognosis [15].

CNV represents a major source of genomic variation and
is an important genetic factor leading to various cancers.
DNA methylation, a major means of epigenetic modifica-
tion, is considered an inhibitory epigenetic marker. Several
studies have found that areas with high DNA methylation
(such as CpG islands) are accompanied by copy number
variation, and these genomic variations affect the level of
DNA methylation [16]. For example, in lung adenocarci-
noma, DNA methylation heterogeneity demonstrates
branch clonal evolution of lung adenocarcinoma regions
driven by genomic instability and subclone copy number
variation [17]. Here, we investigated the association between
genomic variation (such as CNV) in regulatory regions of
BRCA and corresponding changes in DNA methylation. In
addition, we performed a Genetic Set Enrichment Analysis
(GSEA) to identify key pathways for changes between pa-
tients with low and high expression of genes. *us, an in-
depth study of the genome pathogenesis of BRCA was
conducted to identify prognostic biomarkers and their
clinical efficiency.

2. Materials and Methods

2.1. Data Processing and Analysis. *e BRCA-related
methylation, CNV, gene expression, and clinical data were
downloaded from *e Cancer Genome Atlas (TCGA) GDC
(https://gdc.cancer.gov/). *e chi-square test and Limma
and edgeR software packages were used to collate and an-
alyze the downloaded data and screened according to P and
logFC values. To obtain differences in CNV, abnormally
methylated and dysregulated genes between BRCA tissue
samples and normal tissue samples were analyzed. *e data
from the TCGA database is public. *erefore, no approval
from the local ethics committee was required.

2.2. Multilayer Correlation Analysis Predicts the Pattern of
Gene CNV in BRCA. DNA methylation has been shown to
regulate gene expression in a variety of ways, such as
changing chromosome structure, DNA stability, etc. In
addition, CNV is widely distributed in the human genome
and has important biological implications. To further ex-
plore the link between CNV and methylation on gene ex-
pression, the possible patterns of CNV in BRCA need to be
elucidated. *is study focuses on the analysis of correlation
between abnormal methylation and gene expression, CNV
and aberrant methylation, and CNV and gene expression.
Screening was done by the Pearson correlation coefficient
and P value. Key genes with simultaneous methylation
abnormalities, CNV, and abnormal expression were ob-
tained, and further prognostic analysis was performed on
these genes.

2.3. Mapping of Kaplan–Meier Survival Curve of Genes and
Screening of Prognostic Key Genes. In order to further
identify key genes related to the prognosis of BRCA
patients from the genes obtained above, survival analysis
was performed on the relevant data based on the survival
software package, and survival curves were plotted to
show the effect of abnormal methylation and methylation
combined with abnormal gene expression on patient
survival. In addition, in order to further explore
the methylation sites of prognostic aberrant methylation
genes, the factors affecting the prognosis of patients
and gene expression are mapped to specific methylation
sites.

2.4. 2e Impact of CNV of Key Genes on Patient Prognosis.
*rough data analysis, it was found that the abnormal
methylation of key genes is closely related to the prognosis
of BRCA patients, while the key genes harbored meth-
ylation abnormalities, CNV, and abnormal expression,
and there was a significant correlation between them. *e
effect of mutations on the prognosis of patients can be
seen by studying CNV and survival time of BRCA pa-
tients, further indicating the biological significance of
gene CNV in the progression of BRCA. In addition, we
performed GSEA analysis between high-expression and
low-expression groups of key genes to determine key
pathways that are altered in patients with abnormal gene
expression [18].

3. Results

3.1. Data Processing and Analysis. In this study, BRCA-
related methylation data downloaded from the TCGA
database included 883 samples, comprising 96 normal
tissue samples and 787 BRCA tissue samples. *e dif-
ference analysis results obtained a total of 122 protein-
coding genes with P< 0.05 and |logFC|> 1 as the cutoff
condition (Figure 1(a)). *e CNV data included 2201
samples, 1103 normal tissue samples, and 1098 BRCA
tissue samples. A total of 19178 genes with CNV were
found based on the chi-square test results (P< 0.05)
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(Supplementary Material 1). *e difference analysis of
gene expression data between 112 normal tissue samples
and 1096 cancer tissue samples showed that 2138 dys-
regulated genes, including 1375 upregulated genes and
763 down regulated genes (Figure 1(b)), were obtained
with P< 0.01 and |logFC|> 2 as the cutoff condition.

3.2. Multilayer Correlation Analysis to Screen Key Genes.
In order to reduce the number of calculations of correlation
analysis between the two, we performed correlation
analysis on the condition of genes with abnormal meth-
ylation. First, we found that 105 of the 122 genes with
aberrant methylation exhibited simultaneous expression
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Figure 1: (a) *e heat map of BRCA-related aberrant methylated genes. *e color from green to red shows a trend from low expression to
high expression. (b) *e volcano diagram of BRCA-related differentially expressed genes. *e red dot represents upregulated genes, and
green dot represents downregulated genes. (c) *e CNV circle map of BRCA-related genes on chromosome. *e points at the periphery
indicate copy number amplification, and the points at the inner circumference indicate a decrease in copy number.
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disorders. Combining methylation and expression-related
samples (857 in total) for correlation analysis showed that
the aberrant methylation of 25 genes was closely related to
the expression with the Pearson correlation coefficient Cor
> 0.4 as the screening criterion (Table 1). Interestingly,
these 25 genes harbored CNV simultaneously (Figure 1(c)).
To explore the pattern of effects of CNV in disease pro-
gression, we performed a correlation analysis of CNV with
methylation and abnormal gene expression for 25 genes.
Among them, CNV and methylation-related samples were
combined with a total of 855, and CNV and expression-
related samples were combined with a total of 1172.
Screening with P< 0.01 as the cut-off criterion, the CNV of
12 genes was associated with the level of methylation, and
the CNV of 16 genes was related to the abnormal ex-
pression level. Among them, there are 6 common genes
(Figure 2). We used these six genes as key genes for
prognostic survival analysis.

3.3. Joint Survival Analysis and Site-Related Prognostic As-
sessment to Identify Biomarkers. *rough joint survival
analysis, it was found that the combination of methylation
and abnormal expression of HPDL and SOX17 was sig-
nificantly associated with the prognosis of BRCA patients.
Furthermore, the results showed that high-methylation low-
expression of HPDL and SOX17 showed poor prognosis
(Figure 3(a)). In addition, based on the survival of the R
package, we analyzed the effects of the relevant methylation
sites of these two genes on patient survival. P< 0.05 was used
as a screening criterion for predicting prognosis, and specific
methylation sites associated with the prognosis of these
genes were found. Among them, the two methylation sites of
HPDL and the eight methylation sites of SOX17 can affect
the survival time of patients (Figure 3(b)).

3.4.Kaplan–MeierSurvivalCurveAnalysis of theEffectofGene
CNV on Patient Prognosis. *e genes HPDL and SOX17
showed not only methylation abnormalities and abnormal
expression, but also CNV. Further analysis showed that
CNV in HPDL and SOX17 were associated with overall
patient survival, in which the addition of two copies of
SOX17 is associated with a lower survival rate, while a
decrease in the copy number of HPDL also suggests a poor
prognosis (Figure 3(c)). In addition, as the CNV of HPDL
and SOX17 are related to methylation and abnormal ex-
pression levels, our research indicated that the CNV of
HPDL and SOX17 can directly affect the prognosis of pa-
tients and can also indirectly affect the survival time of
patients by affecting the methylation and expression levels of
the corresponding genes.

3.5. GSEA Analysis of Patients with Low and High Expression
of HPDL and SOX17. To identify the molecular pathways of
the biological functions and effects of HPDL and SOX17 in
BRCA progression, we used GSEA to identify key pathways
involved in the changes between patients with low and high
expression of genes. With P value< 0.05 as the screening

standard, the results indicated that the pathways that HPDL
can affect mainly, including MAPK signaling pathway and
p53 signaling pathway. In addition, SOX17 mainly affects
JAK-STAT signaling pathway, WNT signaling pathway, and
so on (Table 2, Figure 4).

4. Discussion

Heterogeneity is an important predictor of tumor treatment
failure and drug resistance, and genomic mutations (such as
copy number variation) are important causal factors of
heterogeneity among tumors. Previous studies have shown
that CNV can affect the expression level of proteins through
epigenetic regulation, and the key mechanism is to affect
epigenetic modifications (such as DNA methylation). *e
overall hypomethylation of oncogenes and hyper-
methylation of tumor suppressor genes are characteristic of
most cancer types. Molecular understanding of BRCA
heterogeneity is the key to effective treatment and person-
alized medicine. In this study, we used TCGA high-
throughput molecular profiling data to characterize inter-
tumor heterogeneity and analyzed the effects of CNV on
DNA methylation and gene expression.

In our analysis, CNV of HPDL and SOX17 affected
methylation and gene expression levels in BRCA, and CNV
and methylation of HPDL and SOX17 can lead to poor
prognosis in patients with BRCA. In this study, it was found
that the CNV of SOX17 showed copy number amplification
on chromosome 8, while the CNV of HPDL showed a
decrease in copy number on chromosome 1. Further analysis
showed that when the copy number of SOX17 increased or
the copy number of HPDL decreased, the prognosis of
BRCA patients was poor.*e CNV of SOX17 and HPDL can
affect the expression of genes through epigenetic modifi-
cation, and DNA methylation is an important pathway for
epigenetic modification.*emethylation sites of SOX17 that
we characterized with BRCA OS included cg00123055,
cg02222728, cg03329976, cg08044907, cg15377283,
cg24150172, cg24891539, and cg24928317. *e methylation
sites of HPDL included cg12178578 and cg15071854. Sur-
vival analysis showed that the OS of BRCA patients
hypermethylated in SOX17 and HPDL was poorer. *ere-
fore, CNV and methylation of SOX17 and HPDL could
predict recurrence, metastasis, and prognosis of BRCA
patients.

SOX17, a transcriptional regulator, binds to target
promoter DNA and inhibits Wnt signaling. SOX17 gene
promoter methylation can be used as a tumor suppressor
and dysregulated oncogene in many tumors [19–21]. In
BRCA, Fu et al. used methylation-specific polymerase chain
reaction to assess the relationship between the methylation
of the SOX17 gene promoter and the onset and prognosis of
BRCA. Abnormal SOX17 methylation in cancer tissues and
plasma DNA was found to be significantly associated with
tumor lymph node metastasis and lymph node metastasis,
associated with poor disease-free survival (P< 0.005) and
overall survival (P< 0.005). In addition, SOX17 methylation
in plasma DNA is an independent prognostic factor for DFS
in BRCA [22]. Chimonidou et al. found that the SOX17
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Figure 2: Continued.

Table 1: 25 genes with significant correlation between methylation level and expression.

Gene Cor P value
HOXB13 0.455 5.47E− 45
SCGB3A1 −0.404 5.75E− 35
POU4F1 −0.411 2.76E− 36
SOX17 −0.412 2.06E− 36
SLC35G2 −0.417 2.56E− 37
RASSF10 −0.421 4.45E− 38
AADAT −0.422 2.84E− 38
HFM1 −0.424 1.23E− 38
HPDL −0.426 3.82E− 39
SNCA −0.427 2.85E− 39
TBX18 −0.429 1.18E− 39
VIM −0.475 1.99E− 49
DSC3 −0.503 4.94E− 56
LRRC34 −0.505 1.23E− 56
ZSCAN23 −0.53 2.24E− 63
ZNF454 −0.538 2.08E− 65
ZNF728 −0.545 1.39E− 67
MT1E −0.566 9.90E− 74
IRX1 −0.567 4.62E− 74
ZNF492 −0.584 1.55E− 79
PSAT1 −0.587 1.64E− 80
EID3 −0.599 1.23E− 84
ID4 −0.605 1.26E− 86
HIST3H2A −0.658 2.66E− 107
ZNF471 −0.662 3.79E− 109
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Figure 2: Six genes with CNVmutations that are related to both methylation and gene expression levels. (a–f) CNV and methylation. (g–l)
CNV and expression.
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Figure 3: (a) Kaplan–Meier survival curves for the joint survival analysis. (A)*e combination of gene HPDL methylation and expression;
(B) the combination of gene SOX17 methylation and expression. (b) Kaplan–Meier survival curves of the related methylated sites. (A, B)
Methylated sites of the gene HPDL; (C–J) methylated sites of the gene SOX17. (c) Kaplan–Meier survival curves for the copy number
variation.

Table 2: *e key pathways for the differential between low and high expression of patients based on GSEA analysis.

Gene Name NES P value

HPDL

KEGG_FOCAL_ADHESION −1.91198 P< 0.001
KEGG_DILATED_CARDIOMYOPATHY −1.61559 0.002

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM −1.64029 0.002075
KEGG_ADHERENS_JUNCTION −1.74735 0.002283

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION −1.70915 0.002387
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC −1.75006 0.006993

KEGG_ABC_TRANSPORTERS −1.5166 0.014141
KEGG_MAPK_SIGNALING_PATHWAY −1.66251 0.016713

KEGG_TGF_BETA_SIGNALING_PATHWAY −1.52333 0.04008
KEGG_OOCYTE_MEIOSIS 1.754743 P< 0.001

KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 1.685132 P< 0.001
KEGG_CELL_CYCLE 1.639552 P< 0.001

KEGG_P53_SIGNALING_PATHWAY 1.51856 0.035503
KEGG_OLFACTORY_TRANSDUCTION 1.609742 0.046472

SOX17

KEGG_OOCYTE_MEIOSIS −1.58789 0.04814
KEGG_JAK_STAT_SIGNALING_PATHWAY 1.797007 P< 0.001

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 1.865758 0.001481
KEGG_ABC_TRANSPORTERS 1.455277 0.014463

KEGG_RETINOL_METABOLISM 1.741166 0.017483
KEGG_HEMATOPOIETIC_CELL_LINEAGE 1.564893 0.021195

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 1.562236 0.023636
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 1.588887 0.029297

KEGG_INSULIN_SIGNALING_PATHWAY 1.672106 0.038113
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 1.663495 0.039587

KEGG_WNT_SIGNALING_PATHWAY 1.528532 0.04
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 1.675274 0.043328

KEGG_AXON_GUIDANCE 1.497392 0.047445
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promoter is highly methylated in primary breast tumors, in
CTCs isolated from patients with BRCA, and in corre-
sponding cfDNA samples, which provides new predictive
ideas for recurrence and prognosis in patients with operable
BRCA and metastatic patients [23, 24]. HPDL may have
dioxygenase activity. Previous studies have found that HPDL
exhibits differential expression in CNS lymphoma compared
with nonprimary central nervous system (CNS) lymphoma
[25]. However, understanding the role of HPDL in BRCA
needs further research and interpretation, which provides an
idea for the in-depth study of the molecular mechanism of
BRCA.

Intracellular signaling pathways regulate various cel-
lular activities. We performed GSEA identification on
SOX17 and HPDL to further explore the small-molecule
regulation mechanism of BRCA and found that signaling
pathways with significant changes in enrichment exist
between patients with low expression and high expres-
sion. When SOX17 is downregulated, the enriched
pathways mainly included JAK-STAT signaling pathway
andWnt signaling pathway. It is well known that the JAK-
STAT signaling pathway, a signal transduction pathway
stimulated by cytokines, is involved in biological pro-
cesses, such as cell proliferation, differentiation,
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Figure 4: Related pathways for abnormal expression of key genes in patients.
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apoptosis, and immune regulation, and is associated with
pathogenesis of many tumors, such as liver cancer,
ovarian cancer, and BRCA [26–28]. *e major cellular
processes during BRCA development rely on JAK/STAT
signaling to coordinate growth factor function. Previous
studies have found that activation of the JAK/STAT
pathway is common in triple-negative BRCA, which can
affect the expression of genes controlling immune signals.
Dysregulated JAK/STAT signaling has been implicated in
BRCA metastasis, associated with high risk of recurrence
[29–31]. *e Wnt signaling pathway plays a crucial role in
early embryonic development, organ formation, tissue
regeneration, and other physiological processes, often
involving stem cell control, which may induce cancer if a
key protein is mutated [32]. Wnt signaling pathway in-
volves the onset and treatment of colorectal cancer,
pancreatic cancer, gastric cancer, and other tumors
[33–35]. Yang et al. confirmed that SOX17 is a target gene
of miR-194-5p. In mouse studies, knockdown of miR-194-
5p in BRCA cells may increase SOX17 expression and
regulate the signaling pathway of Wnt/β-catenin [36].
*erefore, increased expression of SOX17 can activate the
Wnt signaling pathway and, thus, participate in the
pathogenesis of BRCA. In addition, the enrichment results
of SOX17 include pathways related to cell growth, divi-
sion, and proliferation of oocyte meiosis, ABC trans-
porters, and neuroactive ligand-receptor interaction.

*e enrichment pathways of HPDL upregulation
mainly include cell cycle and P53 signaling pathway. And
the HPDL downregulation is mainly enriched in MAPK
signaling pathway and TGF-β signaling pathway. Both cell
cycle and p53 signaling pathways are involved in cell
division and proliferation. *e p53 gene is called the
“guardian of the genome,” but when p53 is deregulated, it
participates in the development and proliferation of
various tumor cells [37]. Both MAPK and TGF-β signaling
pathway are involved in cell growth, differentiation, and
apoptosis. In recent studies, abnormal activation of the
MAPK signaling pathway signal has been found to favor
the abnormal proliferation of malignant cells [38]. TGF-β
signaling acts as suppressor and inducer of tumor pro-
gression during the early and late stages of cancer and can
trigger a cascade of reactions that mobilize cancer cells
[39, 40].

Recent studies have demonstrated the consequences of
genetic variation in regulating overall risk associated with
BRCA patients. In the study so far, we explored the effects of
CNV and DNA methylation on gene expression levels and
OS of BRCA patients and found that CNV can affect DNA
methylation levels. CNV and methylation of SOX17 and
HPDL are related to expression and regulation. In addition,
the CNV of SOX17 and HPDL were also correlated with
methylation levels. In addition, we found methylation sites
for SOX17 and HPDL associated with BRCA prognosis.
DNA methylation is an effective regulator of gene expres-
sion. If the CpG island is located in the promoter region of a
gene, the methylation of the CpG island will significantly
reduce or even completely silence the transcription of the
gene and then affect the protein expression. In this study,

due to data and conditional restrictions, we did not dis-
tinguish whether it was on the promoter or DNA when
screening prognostic relatedmethylation sites, which is what
we will explore in the next study. Finally, by enriching the
low and high expression pathways of SOX17 and HPDL,
pathways related to BRCA progression have been discov-
ered, including the JAK-STAT/Wnt/P53/MAPK signaling
pathway.

However, this research also has certain limitations. For
example, the quality of the samples in the TCGA database is
very high, but the number of samples is very large.*erefore,
the development of biomarkers for diagnosis and treatment
still needs further clinical data verification. In future work,
we will further increase the in-depth research and verifi-
cation of our research results.

5. Conclusion

In summary, by comprehensively assessing the effects of
CNV and DNA methylation on gene expression and patient
OS, the CNV and DNA methylation associated with the risk
of BRCA recurrence and prognosis were identified. *ese
new discoveries are very promising. Prognostic assessment
at the genome level may not only be useful for identifying
new prognostic biomarkers, but would also open up new
horizons for novel pathways involved in BRCA progression,
serving the potential goal of developing more effective
therapeutic strategies.
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