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Abstract

during treatment.

these infections.

Background: Upon re-examination of our human history, evolutionary perspectives, and genetics, a prevailing iron
deficiency phenotype appears to have evolved to protect the human race from extinction.

Body: In this review, we summarize the evolutionary and genetic perspectives pointing towards the hypothesis that
low iron mitigates infection. The presence of infection promotes the generation of resistance alleles, and there are
some evolutionary and genetic clues that suggest the presence of an iron deficiency phenotype that may have
developed to protect against infection. Examples include the relative paucity of iron overload genes given the essential
role of iron, as well as the persistence of iron deficiency among populations in spite of public health efforts to treat it.
Additional examination of geographic areas with severe iron deficiency in the setting of pandemics including HINT,
SARS, and COVID-19 reveals that areas with higher prevalence of iron deficiency are less affected. RNA viruses have
several evolutionary adaptations which suggest their absolute need for iron, and this dependency may be exploited

Conclusion: RNA viruses pose a unique challenge to modern healthcare, with an average of 2-3 new pathogens
being discovered yearly. Their overarching requirements for iron, along with human evolutionary and genetic
adaptations which favored an iron deficiency phenotype, ultimately suggest the potential need for iron control in
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Background

Ancient stars in their death throes spat out atoms
like iron which this universe had never known. ...
Now the iron of old nova coughing's vivifies the
redness of our blood. Howard Bloom

Coronavirus Disease 2019 (COVID-19) is a viral infec-
tion caused by the newly discovered Severe Acute Re-
spiratory Syndrome Coronavirus 2 (SARS-Cov-2). It was
first discovered in the city of Wuhan, China, in
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December 2019, and by March 11, 2020, the World
Health Organization (WHO) declared it as a global
health emergency [1]. Recent findings and lab data sug-
gests that COVID-19 falls within the spectrum of hyper-
ferritinemia syndromes given the shared manifestations
of macrophage activation syndrome (MAS), multiple
organ dysfunction (MOD), and septic shock [2]. The na-
ture of this ribonucleic acid (RNA) virus, along with
findings of hyperferritinemia [3], may be responsible for
the resulting increase in intracellular iron, which is the
main trigger for ferroptosis within cells. These findings
suggest an underlying role of iron in the pathogenesis of
COVID-19.

Advancements in our civilization may have increased
our risk to infections and disease, as well as stressed our
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survival fitness. Overcrowding, domestication of animals,
and the agrarian revolution may have all played a role in
the development of a prevailing protective iron defi-
ciency phenotype, which may have increased our resist-
ance as a species to acute infections and epidemics [4].
In this review, using insights from evolution and genet-
ics, we summarize the hypothesis that low iron may
mitigate infection, as well as the potential benefits of
iron control in the setting of infections, such as the
current pandemic.

Main text

1. Iron, iron deficiency, anemia, and infection

i. Iron’s role in infection

Iron is a vital element required in the internal processes
and cellular operations of nearly all multi-cellular organ-
isms [5]. Uniquely, bacteria, fungi, and some viruses have
developed methods to extract iron from their hosts [6].
Some viruses infect iron-acquiring cells by binding to
transferrin receptor type 1, while other viruses target the
Human Homeostatic Iron regulator Protein (HFE) genes
and hepcidin, with the end goal of inducing iron overload
on a cellular level to promote their survival and replication
[7]. For example, the cytomegalovirus (CMV) interferes
with the Major Histocompatibility Complex (MHC) class
I proteins causing the proteosomal degradation of HFE,
reversing the hepcidin effect of reducing cellular iron up-
take, allowing cells which they infect to become over-
loaded with iron [8].

In a study regarding the correlation between iron levels
and viral load, Chang et al. found that there was reduced
virulence within iron deficient cells [9]. It was further dem-
onstrated that iron-chelation benefits the host by reducing
the amount of viral nucleic acids and proteins, which in turn
decreases viral replication and release. Additionally, low iron
levels could downregulate the expression of adhesion mole-
cules required for viral attachment and internalization [9—
11]. Notably, iron intake that exceeds the body's needs may
promote the proliferation of pathogens, while some evidence
suggests that a state of hypoferremia can be protective in en-
demic areas. Dietary iron restriction may protect against in-
fection in settings of high transmission or morbidity [12].
One study suggests that prophylactic daily supplementation
of iron and folic acid, with or without zinc, showed no sig-
nificant differences in attack rates of respiratory infection,
dysentery, or diarrhea. Interestingly, this study had originally
hypothesized that iron supplementation would mitigate mor-
tality risk in their cohort of Nepali children with iron defi-
ciency anemia, but the rates of mortality and morbidity did
not differ between treatment and placebo groups [13]. This
study suggests that the presence of concurrent malnutrition
(ie., protein energy malnutrition) disorders limit the effect-
iveness of iron therapy in the setting of iron deficiency
anemia (IDA), while other studies suggest that the resistance
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to iron supplementation in the setting of anemia may be due
to genetic variations. When controlling for the presence of
chronic illness and malabsorption diseases in patients with
IDA, analysis revealed that the presence of genetic variants
(T495M and P555S) is responsible for non-response to par-
enteral iron therapy [14, 15]. Contrastingly, cell-mediated im-
munity is affected by iron deficiency, as demonstrated by Das
et al. who found that patients with IDA had significantly
lower levels of CD4+ T cells (P < 0.05), as well as a declining
CD4 to CDS8 cell ratio. Cell-mediated immunity (CMI) was
improved with iron supplementation for 3 months [16]. The
goal remains in finding the optimal iron status in the setting
of infection [17] and finding the trade off point between its ef-
fects on immunity in the setting of infection. As suggested
by Wander et al,, a compromise will exist between the effects
of hypoferremia on CMI, and the need for resisting certain
infections, and local disease ecology [12].

ii. Iron deficiency anemia, females, and COVID-19 infection
IDA is a type of anemia defined as inadequate tissue
oxygenation caused by abnormal red blood cells as a re-
sult of a defective iron state, which is prevalent world-
wide. Females are more commonly affected owing to the
chronic blood loss during menstruation and pregnancy
[18]. According to the WHO, global anemia prevalence
is 30.2% (95% CI 28.7-31.6)/468 million (95% CI 446—
491) among non-pregnant women of reproductive age
(WRA). Of the number of individuals affected by anemia
worldwide, 29% were non-pregnant WRA, while 16% of
those affected were males. The highest prevalence was
found in Africa (47.5%) and South East Asia (45.7%),
while the lowest prevalence was in the Americas (17.8%)
[19, 20]. Studies suggest that many intracellular microor-
ganisms, such as plasmodia and mycobacteria, are en-
hanced by iron therapy; while there appears to be a
decreased susceptibility to malaria-related illness [21,
22], human immunodeficiency virus (HIV) [23, 24], and
tuberculosis (TB) [25, 26] in patients with IDA. Oral
iron supplementation has been associated with increased
risk of infection and morbidity. In fact, treatment of
anemia in malaria endemic areas is not recommended
without prophylaxis for malaria [24, 27]. The right bal-
ance must be found between dose and timing of inter-
vention in areas with endemic infectious disease [28].
Given that IDA has higher prevalence among females
worldwide, this deficiency may have a potential protect-
ive factor for females in the setting of COVID-19
infection.

COVID-19 patient data suggests a decreased risk of in-
fection and decreased risk of poor outcome (either in-
tensive care unit (ICU) admission or mortality) in
females [29-31]. Sharma et al. outlined the differences
in mortality between sexes during the COVID-19 pan-
demic, and concluded that males were more likely to
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develop severe disease, and had higher mortality and
case fatality ratio compared to females [32]. Reports
from Italy have shown higher death rates for males com-
pared to females across all age groups, with a male to fe-
male death ratio of 80 to 20% [33]. Moreover, SARS-
COV, as well as Middle Eastern Respiratory Syndrome
(MERS)-COV, also affected more males than females
[34]. Mortality appears to be related to the presence of
risk factors including cardiovascular disease, which have
higher occurrence in men. It is posited that females are
more protected than males owing to the role of estrogen
and the X chromosome on the immune system, as well
as social behavioral differences between males and fe-
males that favor female overall health, such as willing-
ness to seek preventative care [32, 35].

In China, an interesting observation was made, in that
in pregnant females, no increased risk for COVID-19 was
observed. In another study, 92% presented with mild dis-
ease and only 8% (9 patients) had severe hypoxemia.
Moreover, of those 9 patients with severe disease, 6 of
them developed this only after delivery [36]. This observa-
tion warrants more robust research. Reduced iron avail-
ability in pregnant females may be protective. The
prevalence of anemia in pregnant females may range from
anywhere between 35-75% in developing countries and
18% in developed countries [37, 38]. During fetal develop-
ment, iron being shunted from the mother to the fetus
may result in IDA, which may be a protective factor for
pregnant females in the setting of COVID-19. The pla-
centa itself retains approximately 90 mg of iron for its
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own functions, as well as shunts 270 mg of iron to the
fetus, throughout the second and third trimesters [39, 40].

In Figs. 1 and 2, we have mapped out the world wide
occurrence of IDA in women of reproductive age
(WRA), which is considered all women of child bearing
age between the ages of 15 and 49 years (menarche till
menopause) (data retrieved from WHO survey), as well
as case fatality rate (CFR) of COVID-19 infection (from
data retrieved on June 2, 2020) worldwide. Stark and in-
teresting contrasts can be noticed immediately. The
great majority of Sub-Saharan Africa (SSA), which con-
sist of all African countries geographically south of the
Sahara desert, reports a CFR of < 5%, while having the
highest known prevalence of IDA. Interesting juxtaposi-
tions are seen in neighboring countries, for example, Pa-
pua New Guinea IDA prevalence > 40% versus Indonesia
CER > 5%, the major affection of South America with a
CER > 5% except for Peru and Guyana, which have a se-
vere IDA prevalence of >40%, and the highest concen-
tration of countries with CFR >10% in European
countries with generally mild IDA prevalence, and this
contrast is also seen in America and Canada. These ob-
servations suggest a potential connection between IDA
prevalence and CFR that needs more evidence to prove.
Interestingly, countries with the highest prevalence of
IDA seem to be more protected, thus implying that IDA
works through a sort of “herd immunity” to protect en-
demic areas from acute infection, which may also ex-
plain why there are lower infection and mortality rates
reported in areas like that of SSA.

Worldwide in WRA

B Severe (>40%)
Moderate (20.0-39.9%)
Mild (5.0-19.9%)
Normal(<5.0%)

No Data

South East Asia. The lowest prevalence is in the Americas. Data source: WHO

Fig. 1 Anemia prevalence worldwide in women of reproductive age. The highest prevalence is seen in Sub-Saharan Africa (SSA), Eastern Mediterranean, and
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Case Fatality Rates of
COVID-19

B CFR[>10.0%]
B CFR[509.99%]
| | CFR[<5.0%]

Fig. 2 Case Fatality Rate world map, based on data accessed on June 3, 2020. CFR is defined as the number of deaths divided by the number of
incident patients within a specified time. CFR is least affected by reporting bias but maybe underestimated by time lag bias due to diagnosing
and reporting cases, and the assumption that all cases have been reported, while it may be overestimated by the definition of a case, either
confirmed or closed. This map depicts the CFR so far. The highest CFR (> 10%) is reported in Belgium (16.21%), France (15.47%), Italy (14.35%),
Hungary (13.54%), the Netherlands, Sweden (11.64%), Spain (11.32%), and Mexico (10.58%). Comparing this map to the IDA prevalence Map in
Fig. 1, a stark contrast is seen. Countries with high IDA prevalence have yet to report CFR > 3%. This includes the majority of SSA, excluding

Kenya and Mali, as well the South East Asia. Meanwhile, countries with mild anemia prevalence appear to be reporting much higher CFR. There
appears to be a connection between severe anemia and lesser CFR, bolstering the notion that the anemic defense is an evolutionary response to
acute infection in the endemic setting, a chronic anemia “herd immunity” of sorts that may protect populations rather than a case by case basis

A systematic analysis of national surveys regarding
IDA prevalence among WRA revealed that African
countries had the highest prevalence of IDA, including
Cote d’Ivoire (49.9%) and Sierra Leone (44.8%) [41]. Of
concern is the health care system status and the eco-
nomic factors in poorer countries of SSA; it is unclear
should a connection between COVID-19 and IDA pro-
tection exist, how robust this protection would be in the
face of under developed healthcare systems and econ-
omies. There is evidence that suggests some form of
economic and health care instability in SSA that oc-
curred in the aftermath of the Ebola outbreak [42, 43].
Additionally, the African continent appears to be strug-
gling with limited testing capacity. The COVID-19 gold
standard test is the nucleic acid-based real-time quanti-
tative polymerase chain reaction (PCR), which is expen-
sive and requires expertise. Even the alternative
serological tests with low sensitivity are more available
in high income countries. African countries also suffer
from low staffing, and inadequate referral systems, which
may explain the lower numbers of reported cases. One
alternative explanation is that previous pandemics may
have actually better prepared African countries in the

handling of infectious diseases in the form of swift lock-
downs, and the setting up of task forces for pandemic
response. Additionally, Africa shows low importation
risk, with the highest risk coming only out of Egypt,
Algeria, and South Africa [44]. Lastly, Africa’s younger
population may explain its lower infection rates, with
the median age of Africa being 19.4 years, as compared
to 38 and 40 in the USA and Europe, respectively [44,
45].

These observations suggest that it is not the severity of
anemia (which COVID-19 patients with severe hypox-
emia were observed to have more profound hypoferre-
mia [46]), but rather the severity of the prevalence of
anemia that is potentially protective, as counties with
mild prevalence show a CFR exceeding 5%, as well as
the overall distribution given a geographical range.
COVID-19 has yet to deeply infect SSA as the geograph-
ical range of IDA prevalence is tightly woven in this
area. Figures 3 and 4 also depict worldwide affection of
the HIN1 virus, and the SARS 2002 epidemic, notably
IDA prevalent areas that were minimally affected.

It is suggested that during epidemics with high mortal-
ity rates, iron deficiency decreased death and improved
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Swin Flue (HIN1) Deaths

[l >100 Death
I 0 Deaths

Fig. 3 Depicted here are the recorded deaths of the 2009 Swine Flu HIN1 epidemic (source: ECDC). Countries in black suffered more than 100
deaths; deaths were highest in the USA, Brazil, India, and Mexico (> 1000). Countries in green reported no deaths owing to HIN1. Yet again, the

highest prevalence IDA countries were very nearly all protected from HIN1 fatalities

survival odds by “affecting the outcome of bacterial
superinfection.” This increases for each epidemic faced
by a single generation, resulting in an “increased overall
fitness of the iron deficient individual” [4]. Additionally,
Denic et al. point out that struggles against deadly infec-
tions, such as the plague and malaria, may have exerted
enough evolutionary pressures to increase the prevalence
of an iron deficiency phenotype [4].

2. Iron from an evolutionary perspective

From an evolutionary perspective, despite advances in
public health to deal with IDA, such as the availability of
iron supplements, improved nutrition, and fortification
of foods, IDA remains a persistent issue. It is suggested
that an iron deficiency phenotype had developed over
years of evolution and survived under selection pres-
sures, given the changes to human culture that lead to
overcrowding, disease, and agriculture-related iron defi-
ciency diets. It is posited that a failure to adapt to iron
deficiency, both genetically and culturally, led to the
prevalence of an iron deficiency phenotype.

Female menstruation

Denic et al. point towards the excessive menstruation
among human females when compared to other pri-
mates, such as gorillas and orangutans. Menstruation is
the main cause of IDA in females overall. One theory
suggests that excessive menstruation in human females
was adapted to enhance iron loss. A clear distinction

between the herbivore diet of non-human primates and
the meat-eating human primate would suggest that a
heavier menstruation was adapted to relieve the body of
potential excess iron through diet (iron from meat is
also more readily available). The origin and purpose of
female menstruation is a matter of debate. Evolutionary
insights are summarized in Fig. 5.

The rarity of human homeostatic iron regulator protein
mutations

An additional clue for the evolutionary need for iron de-
ficiency lies in the relative paucity of hemochromatosis
genes. Given the essential need for iron in human devel-
opment, the question becomes why are iron overload
diseases less common than iron deficiency phenotypes?
The frequency of mutations in the HFE gene worldwide
is very low, where in non-European populations the fre-
quency of C28Y and H36D allele mutations is < 1% and
4%, respectively [47]. HFE lies in close proximity to
genes involved in immune defense, being located within
the major histocompatibility complex (MHC) 1, suggest-
ing a non-immune related role of iron against infection.
Hereditary hemochromatosis (HH) was found to affect
the immune system as follows: (1) decreased number of
Natural Killer T cells (NKT) relating to serum ferritin
and transferrin saturation, (2) abnormalities between
CD8+ T cell pool, (3) iron-related phenotypic changes in
surface expression of molecules on T lymphocytes, (4)
lower numbers of circulating and hepatic CD8 cells, and



Menshawey et al. Egyptian Journal of Medical Human Genetics

(2020) 21:75

Page 6 of 14

Cumulative Number of Reported
Probable Cases of SARS

[l Countries with Reported
Deaths

[T] Countries with Reported
Infections Only

were relatively virus free

s N

Fig. 4 Cumulative number of reported probable cases of SARS based on data from Nov 1, 2002, to July 11, 2003 (source: WHO). Depicted here
are countries with reported deaths and infections versus reported infections and no deaths. Countries of high prevalence IDA (see Fig. 1) in SSA

Prevalence of an IDA
phenotype that developed
under the stress years of
infection to increase odds of
survival against iron
dependent pathogens

The relative paucity of iron
overload conditions and HFE
mutations, as well as links
between iron control and
immune function

The endurance of cultural
orms that have an adaptive
; n lowering iron levels
such as vegetarianismand
the consumption of tea and
coffee

febrile illness

Excessive menstruationin
female human primates
compared to non-human

primates owing to an iron

rich diet

Tremendousselection
pressures exerted by novel
viruses resulting from the
Agrarian revolution, over
crowding, and domestication
L ES

The history of blood letting
practices in the ancient
Egyptian and Chinese, often
prescribed for febrileillness
in the setting of infection

Fig. 5 Several evolutionary and social adaptations support the
theory that a low iron state may have evolved to mitigate infection.
These include the prevalenve of an IDA phenotype that may have
protected against iron dependant pathogens, the excessive
mentruation oberved in female human primates, the paucity of iron
overload conditions, the selection pressures put in place by
agriculture and the domestication of animals which would have
exposed early humans to novel pathogens, changes in human diet,
as well as the persistance of age old blood letting procedures
prescribed in ancient medical therapies for the treatment of

(5) diminished cytotoxic activities of Cytotoxic T lym-
phocytes (CTL) [48-50].

HFE immunologic role further bolsters the theory of
the connection between iron control and the adaptive
immune response to pathogens, and implies a regulatory
connection between iron metabolism and the immune
system. Furthermore, some viruses such as the CMV dir-
ectly induce degradation of HFE genes to promote iron
overload states on a cellular level, providing ample iron
needed as its resource [51, 52]. From an evolutionary
standpoint, not only has an iron deficiency phenotype
prevailed, but also mutations that would increase iron
overload states are rare, and have detrimental effects on
the immune system.

Other genetic considerations

One theory suggests that the presence of pathogens, es-
pecially those with high mortality, trigger natural selec-
tion in humans to increase resistance alleles, and
decrease susceptibility alleles. This may explain the
prevalence of anemic conditions throughout geograph-
ical or ethnic regions that are targeted by iron-acquiring
pathogens. In their paper “The legacy of past pandemics:
common human mutations that protect against infec-
tious disease,” Pittman et al. stated that epidemiology of
resistant populations and geographical patterns prove
that human genetic variations can alter “infection sus-
ceptibility and outcomes” [53]. Additionally, sequencing
has shown that pathogen-driven selection targets specific
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loci to increase the alleles for disease, which lends cre-
dence to the hypothesis that the maintenance of disease
is owed to past pathogen-selective pressures. Back-
ground demography is the strongest factor influencing
these variations [54, 55].

One clue that supports this comes from a recent find-
ing that respiratory infections trigger hepcidin-meditated
blockade of iron absorption in Africans. Prentice et al.
discovered that in African children, a hepcidin-
dependent physiological block of iron absorption was
occurring to the effect of reducing their risk of respira-
tory infection [56]. An unusually large bolus of iron
would be needed to overcome this block, though not
without iatrogenic harm [57]. This is another clue to the
hypothesis that low iron mitigates infection as a result of
infection-related selective pressures. In a recent study,
patients with sickle cell disease were found to have low
morbidity and mortality with COVID-19. Though these
patients were perceived to be high risk, they were “some-
how protected from severe symptoms and complications
of COVID-19 infection” [58]. One hundred percent of
their cohort was African-American, and had anemia
with a mean hemoglobin of 7.8 g/dL. It was unclear
whether hemoglobin (Hb) F, HbS, or medications were
providing a protective effect. Iron deficiency is a com-
mon finding in patients with sickle cell disease [59],
mostly due to intravascular hemolysis causing urinary
loss of iron [60]. Perhaps their low iron status protected
against the detrimental hyperinflammatory response to
COVID-19 infection, as suggested in this hypothesis.

Other examples include hypoferremia and malaria.
The malaria parasite is highly dependent on a small pool
of labile iron in the cytoplasm, and is susceptible to nu-
tritional influences that affect this compartment [57].

Among global populations, there are known differ-
ences between genetic variations involving iron imbal-
ance, though there is a call for further investigation of
these genetic influences among Sub-Saharan Africans
due to a significant lack of data [61].

There are other examples of genetic variants devel-
oped to protect against past pandemics, which influence
infectious diseases today. The best described example is
the CCR5-A32 allele, believed to have developed 700
years ago in response to Yersinia pestis, the causative or-
ganism of the bubonic plague. Individuals that are
homozygous for this allele are totally resistant to HIV
[62, 63]. The presence of resistance alleles confers some
evolutionary advantages. The question remains why
these alleles are not fixed. This may be explained by the
heterozygous advantage which balances the selection; a
notable example being the sickle cell trait which lacks
sickle cell disease while protected from malaria. Another
reason is simply that the selective pressures fluctuate as
pandemics end and new pathogens are introduced,
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where the previous genetic variant may not be advanta-
geous, or even disadvantageous. For example, while
CCR5-A32 allele confers immunity to HIV, on the other
hand, it increases the risk for West Nile virus infection
[64]. Additionally, several generations are needed for the
fixation of resistance alleles.

This may explain the contrast between Black Africans
who, according this hypothesis, are perhaps protected
against COVID-19, as compared to African-Americans
who are currently among the high risk groups for
COVID-19 infection. One study suggests that African-
Americans are at a markedly high risk of infection “that
is not fully explained by characteristics of the environ-
ment and pre-existing conditions in the population”;
perhaps, a genetic influence is responsible [65]. Abdel-
massih et al. have outlined the use of a single-cell se-
quencing in COVID-19. A connection was found
between genetic and immune cellular mechanism under-
lying COVID-19. Substantial variation was found in the
rate and severity by which it impacts different demo-
graphic groups; predilection was found towards African-
Americans [66].

Finally, while resistance alleles may protect against in-
fectious disease, they may increase autoimmune and
chronic disease. One example involves coding changes
on the APOLI gene, which is protective against African
sleeping sickness caused by Trypanosoma brucei rhode-
siense. This same coding variant increases the risk of
focal segmental glomerulo-sclerosis and non-diabetic
end-stage renal disease in African-Americans [67].

iv. Iron, RNA viruses, and the RNA world hypothesis

The RNA world hypothesis posits that, in the evolution-
ary history of life, it is the RNA molecule that is the ori-
gin of life on earth. RNA possesses a multitude of
characteristics that befit this theory, such as, its ability to
store, transmit, and self-replicate genetic information
and its ability to catalyze simple reactions including pep-
tide bonds to form protein [68, 69]. Evidence to this the-
ory further lies in the presence of viroids which are
extremely small (246—467 nucelobases), circular, single-
stranded, non-coding RNA plant pathogens [70]. Diener
proposed that these viroids represent relics of the RNA
world [71]. Recently, Forterre theorized, in his “three vi-
ruses; three domains” hypothesis, that the last universal
common ancestor is an RNA virus [72]. Carrasco-
Hernandez et al. recently suggested that RNA viruses
are the next likely candidates for upcoming global epi-
demics. Modern medical technology appears to be par-
ticularly challenged by RNA viruses, owing to their rapid
adaptive rates and biologic diversity [73]. Studies have
identified RNA viruses as the primary cause of all emer-
ging infectious diseases, with a rate of 2—3 novel viruses
being discovered yearly [31]. The RNA viral genome has
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been shown to adapt effectively under selective pres-
sures, owing to their high mutation rates [74]. Many
RNA viruses also lack proofreading ability, apparently
benefiting from mutability. Coronaviruses are uniquely
equipped with a proofreading ability, shown in their
Nspl4 protein which functions as a 3" 5" exoribonu-
clease [73]. Mutations within the RNA viral genome can
be of great risk to the survival of any virus. Owing to the
high fidelity to their code, a single-point mutation can
greatly decrease the efficiency of the replication process.
In simple terms, each mutation may increase the num-
ber of either unviable or viable virions. If the number of
unviable virions exceeds the viable ones, the “point of fi-
delity of equilibrium” tips. Now, loyalty to its genetic
code will be to the detriment of the fitness and survival
of the entire species, leading to the so called mutational
meltdown [73]. Given the unusually long genome of the
coronaviruses, and the understanding that the longer the
genome the greater the risk of mutation accumulations
per replication, it is clear that the presence of the proof-
reader is of paramount significance to the survival of this
species [75]. It is suggested that coronaviruses selectively
turn on or off their proofreading ability, allowing them
to rapidly adapt to evolutionary stresses effectively, ac-
quiring the right mutations at the right time to ensure
adaptability without loss of fidelity to their code and loss
of fitness for survival [76].

In his paper titled “Regulation by Iron; RNA Rules the
Rust,” Kadner mentions that iron is both a challenge to
obtain and maintain, as well as the concern involving
production of dangerous reactive oxygen species [77].
Therefore, pathogens must obtain iron given its neces-
sity for their survival, as well as find ways to protect
themselves from its adverse effects. RNA appears to
affect the expression of genes involved in iron metabol-
ism, as was discovered in the sSRNA of V. cholera and E.
coli [78, 79]. Fur proteins are found in many microor-
ganisms, such as E. coli, C. diphtheria, and P. aeruginosa,
which have a role in iron-dependent repression. There
are two possible settings: (1) in the setting of limited
iron, the fur protein is inactive as a repressor and sSRNA
RhyB is depressed (which is responsible for increasing
the turnover of iron-containing proteins that also pro-
tect the pathogen from iron damage, such as superoxide
dismutase), resulting in increased affinity of iron uptake,
and (2) in the setting of excess iron, Fe- Fur binding
causes increased expression of iron-containing proteins
as well as storage proteins. Furthermore, Fur-binding
sites overlap promoter sites for RNA polymerase. These
findings suggest the absolute need of iron by RNA and
RNA pathogens. RNA pathogens have evolved the per-
fect mechanisms in dealing with iron-dependent survival
challenges [77]. Coronavirus replication was found to be
suboptimal in iron-depleted cells. Aconitase is an iron-
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dependent coronavirus replication protein, whose func-
tion was blocked by the use of iron chelators. These
findings suggest the iron dependency of coronaviruses
[80-82].

3. The overarching connection of iron to COVID-19
i. Hyperferritinemia syndrome and COVID-19
Ferritin, a universal iron-binding molecule, is responsible
for the storage of iron in a biologically active form [83,
84]. Hyperferritinemia syndrome (HFS) is a spectrum of
disorders characterized by excessive levels of serum fer-
ritin, which includes macrophage activation syndrome
(MAS), adult Still's disease, septic shock, and multiple
organ dysfunction (MOD) [84]. The etiology of HES de-
pends on the degree of elevation of serum ferritin (mild/
moderate/or severe). Severe elevation, seen in HFS, is
mainly triggered by viral infection [85, 86]. Similarities
between COVID-19 and HFS have recently been no-
ticed. Gomez-Pastora et al. stated that there was elevated
serum ferritin (1.5-3.5 times higher) found in all
severely-ill COVID-19 patients on admission, and when
comparing the ferritin levels of survivors vs. non-
survivors, the latter had levels of serum ferritin 3-4
times higher [87]. Ruscitti et al. mentions that COVID-
19 shares similar pathogenic mechanisms, clinical pic-
ture, and outcomes as HFS, also maintaining ferritin
levels in both pathologies has been associated with re-
duced mortality [2]. The similarities between HFS and
COVID-19 have been outlined in Tables 1 and 2 [88].
Although high serum ferritin levels can occur in differ-
ent types of pathologies, making it a non-specific
marker, it should be noted that the degree of elevated
serum ferritin tends to be higher when more etiologies
of HFS are present [85]. This raises the question, could
elevated ferritin levels indicate the prognostic outcome
and point out the possible development of complications
seen in COVID-19? [84, 88-90] Given the resulting in-
crease in iron availability of these conditions, iron con-
trol as suggested may prove to be beneficial and
protective [2, 85, 87, 88]. Carcillo et al. demonstrated
that correction of ferritin levels in HFS patients resolved
their symptoms, whereas uncorrected levels resulted in
the development of serious infections [83]. Kernan et al.
states that oral iron supplementation during an infection
escalates the chances of mortality, while elevated serum
ferritin is associated with increased viral/pathogen load,
which is also demonstrated in severe COVID-19 patients
[83, 88]. It is worthy to note that hyperferritinemia is
also implicated in the failure to produce antibodies post
vaccination [91] (as seen in studies involving HIN1
vaccine).

This data suggests that COVID-19 may be considered
a part of HFS, and its therapy may prove beneficial in
the setting of COVID-19. This obervation is an
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Table 1 Clinical presentation of COVID-19 and hyperferritinemia-associated syndromes

Clinical COVID- Hyperferritinemia syndromes
presentation r1'ngild— MAS MOD Still's disease Septic shock
severe

Fever + + + + +
Fatigue + + + + +
Headache + + + + n
Rash + + + 4 _
Altered mental status + + + — n
Dyspnea + + + _ n
Sore throat + — - n _
Joint pain/swelling + - + — _

(+) Present and (-) not present (MAS) macrophage activation syndrome (MOD) multi-organ dysfunction

additional proof that optimal iron control may be pro-
tective against COVID-19.

ii. The link to hepcidin

Hepcidin is the key regulator for iron metabolism. Hep-
cidin binds to ferroportin, which is the iron export chan-
nel found on tissues that prevents the release of iron.
Iron would fail to enter the circulation and would re-
main sequestered inside the cells [92, 93]. In the absence
of hepcidin, ferroportin efflux of iron is uninhibited,
causing release of iron into the circulation. Therefore,
hepcidin determines iron availability and distribution.

As was previously mentioned, pathogens have adapted
methods to acquire iron from their hosts. It is even ad-
vantageous for some to make use of already present
iron-related channels and receptors to acquire this iron,
including transferrin and lactoferrin receptors. A distant
sequence similarity has been found by Ehsani between
the SARS-Cov-2 spike protein and puffer fish hepcidin
[3]. This similarity was found at the cytoplasmic tail of
the spike protein. Other similarities include cysteine-rich
areas on the hepcidin and spike protein, use of furin for

activation, the overarching connection between IL-6 and
hepcidin and COVID-19 symptoms, and similarities be-
tween COVID-19 and altitude illness-related hypoxia,
the result of elevated hepcidin. It is suggested that
SARS-Cov-2 is utilizing its hepcidin-like similarity to
bind to ferroportin receptors on cells, and this remains
to be proven. If this is the case, SARS-Cov-2 would be
strategically limiting the release of iron from the cells it
infects [11]. Cavezzi et al. posit that it is this hepcidin
mimicking action that could be the basis for the ob-
served silent hypoxia seen later in severe COVID-19 pa-
tients [93]. Cavezzi also notes that the elevated hepcidin
in diabetic and obese patients may be a reason for
their increased risk of poor outcomes in the setting
of COVID-19. Banchini et al. also found that there
is an overexpression of hepcidin as well as iron
overload in COVID-19 patients [94]. Overexpression
of hepcidin in obese, elderly, and diabetic popula-
tion is a correlating factor that may explain the in-
creased disease severity in these patient groups.
Hepcidin is further suggested as a prognostic bio-
marker in these patients [95].

Table 2 Laboratory and clinical abnormalities in COVID-19 and hyperferritinemia-associated syndromes [72]

Laboratory/clinical COVID-19

Hyperferritinemia syndromes

evaluation severe

MAS

MOD Still's disease Septic shock

Hyperferritinemia

Ferritin range (ng/ml) (300-5000) (> 10000)
Hypercytokemia
Infection triggered
Multi-organ involvement
ARDS

Low/absent NK activity

ESR/CRP (high/low)

+ o+ + o+ o+ o+ o+ o+
+ o+ + o+ o+ o+ o+ o+

Abnormal liver function + +

+ +

(300-5000) (300-5000)

+ o+ o+ o+ o+ o+ o+ o+

+
+
+
+
+
+
+
+

+

(+) Present and (-) not present (MAS) macrophage activation syndrome (MOD) multi-organ dysfunction
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4, Medicine-based adjuvant therapeutic considerations in
the setting of infection
i. Iron control
Iron chelators are very advanced medications used to
prevent the accumulation of excess iron and its toxic ef-
fects, and their use has been suggested in the setting of
COVID-19 [96, 97]. These drugs decrease iron availabil-
ity for pathogens, resulting in their inactivation and
death [98]. There are many pathogens that are inhibited
by iron chelators, such as HIV, Ebola, Herpes simplex
virus, TB, H. pylori, and HCV [99-101]. Examples of
iron chelators include bipyridyl and desferoxamine,
which are currently under clinical trial for COVID-19
patients (NCT04333550) [98, 100]. Banchini et al. sug-
gests iron control by exploring both endogenous (insu-
lin, heparin, and erythropoietin) and exogenous options
(vitamins D and C, toclizumab, carvedilol), relating to
hepcidin control in the setting of COVID-19 [102]. Ab-
bas et al. also suggest the use of iron chelators to lower
disease severity in the setting of COVID-19 infection.
Lactoferrin is an iron-binding iron-chelating substance
which plays a vital role in the host defense mechanisms
[103, 104]. Lactoferrin is known to inhibit pseudotyped
SARS-COV with an inhibitory concentration of 50%.
The use of lactoferrin was tested in vitro on SARS-Cov-
2, which showed inhibition of viral entry via binding to
the host cell surface. There is polarizing views regarding
the use of iron chelators as adjuvant therapy; chelation
should not be employed until there is empirical evidence
of increased and relevant levels of iron. A call for anti-
hepcidin therapy may be preferred, until actual iron de-
pendency of the RNA coronaviruses is established [105].
There are still many questions that remain to be an-
swered in trials with iron chelators including dosages,
timing, and which iron chelator to use [106].

ii. Insights from hyperferritinemia

As mentioned before, elevated levels of serum ferritin go
hand in hand with iron, so the need to maintain a mod-
erate amount of iron in the body is essential in the ther-
apy of hyperferritinemia, and insights from its therapy
may be considered in the treatment of COVID-19 [85,
107]. Remedy used in hyperferritinemia patients is thera-
peutic plasma exchange (TPE) [108]. Benefits of TPE in-
clude reversing disseminated intravascular coagulation
(DIC), and the removal of excess amounts of ferritin and
free hemoglobin [108]. The 2010 American Society for
Apheresis (ASFA) outlines the use of TPE for all hyper-
ferritinemia syndromes [109, 110]. TPE may prove bene-
ficial in the setting of COVID-19 as evidenced by
COVID-19 patients who recovered and were discharged
after undergoing TPE therapy [101]. Iron chelators may
play an additional role here as well, by decreasing the
degradation of ferritin by lysosomes, decreasing the

(2020) 21:75

Page 10 of 14

production of free radicals, and promoting the downreg-
ulation of hepcidin [82].

iii. Phlebotomies and erythropoiesis

Phlebotomy is a blood extraction procedure which de-
creases iron load in patients with excessive iron/ferritin
blood levels [111]. With each phlebotomy, ferritin levels
decrease by 30-50 points. Tanaka et al. confirms that
the use of “petit phlebotomy” is beneficial in Hepatitis-C
virus infected patients as it decreases the iron overload
(which damages the liver and destroys its protective en-
zymes) [111, 112]. Phlebotomy decreases total RBC
count; as a result, it activates physiological erythropoi-
esis, which scavenges the body for iron stores resulting
in decreased iron availability for pathogens [113]. Iron
depletion by phlebotomy has also been shown to reduce
insulin resistance and hyperferritinemia [114]. Hadadi
et al. concluded that the use of erythropoietin stimulat-
ing drugs could attenuate SARS-COV-2 via cytokine
modulation, anti-apoptotic effects, and iron redistribu-
tion away from the virus [115]. The use of recombinant
erythropoietin was shown to have unexplained rapid re-
lief and viral load regression in an 80-year-old male
COVID-19 patient with severe anemia. Iron-related ab-
normalities in patient indices suggest that iron is being
depleted on an extracellular level while overloaded on an
intracellular level. This is explained by the decrease in
hemoglobin and significantly increased index values of
serum ferritin [116].

Conclusion

The insight provided by evolutionary and genetic per-
spectives, points towards an iron deficiency phenotype
that has prevailed throughout generations, providing
protection against acute infection. By referring to previ-
ous pandemics, a connection can be seen in the general
inability of some viruses to invade deeply into high
prevalence IDA territories. Human biology seems to
have also evolved with this goal in mind, along with cul-
tural and sociological patterns that have upheld the iron
deficient phenotype.

Humans may have adapted ways to favor iron loss,
while pathogens have adapted methods to effectively ac-
quire iron from their hosts. Coronaviruses are RNA vi-
ruses that are highly dependent on iron. Evidence that
point to an overarching role of iron in COVID-19 infec-
tion includes hyperferritinemia in severe cases, similar-
ities between COVID-19 and hyperferritinemia
syndromes, and hepcidin overexpression that may also
be responsible for the increased risk of disease in dia-
betic, obese, and elderly patients. Given this understand-
ing, targeting iron from a therapeutic stand point may
prove decisive as part of adjuvant therapy against such
viruses; however, more robust evidence is needed. These
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would include the use of iron chelators, or therapy
which would sequester iron away from pathogens like
erythropoietin, and targeting hepcidin control through
several endogenous and exogenous means via anti-
hepcidin agents. The observation of elevated ferritin
warrants their use as prognostic markers for disease pro-
gression in COVID-19 patients. More robust research is
needed to link the potential of iron control and the ther-
apy of COVID-19 patients.

Overall, low iron is theorized to mitigate infection. It
should be noted that this hypothesis still requires more
evidence. Namely, iron itself is necessary for immune
cell proliferation, and counter evidence suggests that low
iron increases the risk of some infection. What remains
to be elucidated are as follows: which low iron state is
conferring the protective effect?, is it overt iron defi-
ciency anemia or covert iron deficiency without anemia?
And which pathogens are affected by this low iron state?
These are the questions that remain to be answered by
this hypothesis. This theory ultimately suggests that evo-
lutionary stressors have promoted genetic variations in
the form of resistant alleles. If low iron mitigates infec-
tion, then the areas with high iron deficiency anemia
prevalence may be protected against some types of infec-
tion, such as Sub-Saharan Africa. Therefore, to enhance
this theory, further investigations are needed to deter-
mine the genetic variants responsible for iron imbalance
among susceptible populations. Focus on iron indices in
COVID-19 patients is also necessary to provide a clear
picture of the iron metabolism of these patients before
the suggestion of iron control in the clinical setting.
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