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Abstract: This study investigates the metabolome of 26 experimental cool-climate wines made
from 22 grape varieties using two different protocols for wine analysis by proton nuclear magnetic
resonance (1H-NMR) spectroscopy. The wine samples were analyzed as-is (wet) and as dried samples.
The NMR datasets were preprocessed by alignment and mean centering. No normalization or scaling
was performed. The “wet” method preserved the inherent properties of the samples and provided a
fast and effective overview of the molecular composition of the wines. The “dried” method yielded
a slightly better sensitivity towards a broader range of the compounds present in wines. A total of
27 metabolites including amino acids, organic acids, sugars, and alkaloids were identified in the
1H-NMR spectra of the wine samples. Principal component analysis was performed on both NMR
datasets evidencing well-defined molecular fingerprints for ‘Baco Noir’, ‘Bolero’, ‘Cabernet Cantor’,
‘Cabernet Cortis’, ‘Don Muscat’, ‘Eszter’, ‘Golubok’, ‘New York Muscat’, ‘Regent’, ‘Rondo’, ‘Triomphe
d’Alsace’, ‘Précose Noir’, and ‘Vinoslivy’ wines. Amongst the identified metabolites, lactic acid,
succinic acid, acetic acid, gallic acid, glycerol, and methanol were found to drive sample groupings.
The 1H-NMR data was compared to the absolute concentration values obtained from a reference
Fourier transform infrared method, evidencing a high correlation.

Keywords: 1H-NMR; FT-IR; cool-climate wines; Danish wines; LalVigne Mature; Pometum;
wine as-is; dried wines; PCA

1. Introduction

Grape wine is a beverage made from the fermented juice of grapes whose chemical composition
consists of inorganic and organic molecules of diverse nature including water, alcohols, proteins, amino
acids, carbohydrates, and polyphenols [1]. Recent research has shown that a regular and moderate
consumption of red wine is associated with health benefits [2–4]. In particular, many research and
epidemiological studies have brought evidence that the intake of polyphenols as grape juice and red
wine is associated with a reduced risk of cardio vascular diseases [5–8], increased lifespan due to
resveratrol, a stilbenoid found in red grapes, which is proposed to prevent the age-related decline in
the cardiovascular function [9,10], and a number of other beneficial health effects [11].

Besides defining the quality and character of the beverage, the chemical composition of wines
reflects the history of the wine making process, including the yeast strain, the grape variety,
the fermentation process, and storage, as well as the geographic origin [12–17]. According to the
statistics reported by the International Organization of the Vine and Wine (OIV), the leading wine
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producers remain the Mediterranean countries of Europe where the fertile soils and the mitigate climate
promote optimal fruit maturity. However, despite unfavorable factors such as the shorter growing
season, lower sunshine duration, higher humidity and risk of frost, Northern European countries have
recently emerged as new wine producing countries. During the last decades, the development and
intensive breeding of new disease-resistant grape varieties has brought the limit for vine growing to
lower latitudes [18]. In particular, Denmark has been counted as one of the European vine-growing
countries since 2000 [18]. Many attempts have been made in order to introduce and improve viticulture
in Denmark, from the development of a method for identifying potential cool-climate vine growing
sites [19] over the finding of suitable cultivars, the best vinification methods and wine styles, to the
identification of the best yeast strains for the production of high-quality cool-climate wines [20].

Analytical chemistry is increasingly playing an important role in the wine industry, as the chemical
analysis of wine is an essential tool for ensuring product quality as well as for elucidating many aspects
related to grape and wine production [21,22]. Nuclear magnetic resonance (NMR) spectroscopy is
a powerful analytical platform that is widely applied as a high-throughput method for the analysis
of biological samples, since it requires minimal sample preparation [23]. NMR spectroscopy is an
unbiased and effective screening tool able to capture a snapshot of primary metabolites (i.e., sugars,
organic acids, amino acids) and secondary metabolites (i.e., flavonoids, anthocyanins, and other
pigments) in the sample under investigation. It has successfully been used for the overall chemical
characterization of wines and several grape-derived products [24], as well as in wine metabolomics
investigations with the purpose to study the effect of vintage [16], berry shading [15], geographical
origin [12], and the alcoholic and malolactic fermentation processes [25]. By using NMR spectroscopy,
many different molecules have been found in wines including amino acids (i.e., leucine, isoleucine,
valine, threonine, alanine, arginine, glutamine, proline, and tyrosine), organic acids (i.e., succinic acid,
acetic acid, malic acid, tartaric acid, and citric acid), sugars (α- and β-glucose, fructose, and arabinose),
2,3-butanediol, glycerol, 2-phenylethanol, trigonelline, and phenylpropanoids (cis/trans-caftaric acid,
cis/trans-caffeoyl malate, and cis/trans-coutaric acid) [26,27].

In general, no sample pre-treatment is required prior to untargeted NMR analysis of wine [27].
However, pH adjustment and/or buffer addition are usually performed to minimize the signal shifts
in the NMR spectra due to pH fluctuations amongst different wine samples [28]. Lyophilization
and multiple solvent suppression can be used to remove the strong and dominating signals of water
and ethanol [29,30]. When performing targeted NMR analysis, for example of phenolic compounds,
metabolites extraction must be carried out [31,32].

This work aimed to develop an efficient, sensitive, and reproducible method for an optimal
1H-NMR analysis of wines by comparing two different sample preparation protocols. For this
purpose, 26 experimental cool-climate wines, made from 22 different grape varieties harvested in
Denmark during vintage 2016, were measured using both methods. The efficiency of the two protocols
was assessed by comparison of the 1H-NMR method with a reference Fourier transform infrared
(FT-IR) method.

2. Results

2.1. 1H-NMR Spectroscopy

The representative 1H-NMR spectra of wine as-is (wet) and dried wine samples are shown in
Figure 1A,B, respectively. The primary difference between the spectra of the two sample types is
the presence of the strong 1H resonances of ethanol at 1.18 ppm and 3.65 ppm, and methanol at
3.36 ppm, in the 1H-NMR spectra of the wet samples. In the dried samples, where the signals of
ethanol and methanol are no longer present, the strongest signals stem from glycerol (multiplets
at 3.57, 3.68, and 3.81 ppm). In addition, several organic acids are present in the aliphatic region of
the 1H-NMR spectra of both samples types, with lactic acid, succinic acid, and acetic acid being the
predominant ones. The amino acid pool in the wine samples consists of both polar and non-polar
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molecules such as proline, alanine, and arginine. Amongst the carbohydrates, α- and β-glucose are
identified in the wine samples of both types. The aromatic region of the 1H-NMR spectra contains
the signals from different molecular classes such as amino acids (i.e., tyrosine), higher alcohols
(i.e., 2-phenylethanol), alkaloids (i.e., trigonelline), and phenolic compounds (i.e., gallic acid). Table 1
shows the multiplicity and chemical shifts of the assigned metabolites. In total, 27 compounds were
identified in the wine samples.
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Table 1. List of the metabolites identified in the 1H-NMR spectra of wet and dried wines. The chemical 
shifts and multiplicity of the assignments are reported. 

Peak Numbers Metabolite Wet Wine Dried Wine 
1 Valine 1.04 (d) 1.01 (d), 1.05 (d) 
2 2,3-butanediol 1.14 (d) 1.15 (d) 

Figure 1. Representative 1H-NMR spectra of wet (A) and dried wine (B) samples. The major resonances
have been assigned: 1. Valine; 2. 2,3-butanediol; 3. Isopropanol; 4. Ethanol; 5. Lactic acid; 6. Alanine;
7. Arginine; 8. Proline; 9. Acetic acid; 10. Methionine; 11. γ-aminobutyric acid; 12. Succinic acid;
13. Choline; 14. Myoinositol; 15. Methanol; 16. Fructose; 17. Glycerol; 18. Tartaric acid; 19. β-glucose;
20. α-glucose; 21. Arabinose; 22. Cis-caftaric acid; 23. Tyrosine; 24. Gallic acid; 25. 2-phenyethanol;
26. Phenylalanine; 27. Trigonelline.
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Table 1. List of the metabolites identified in the 1H-NMR spectra of wet and dried wines. The chemical
shifts and multiplicity of the assignments are reported.

Peak Numbers Metabolite Wet Wine Dried Wine

1 Valine 1.04 (d) 1.01 (d), 1.05 (d)
2 2,3-butanediol 1.14 (d) 1.15 (d)
3 Isopropanol 1.13 (d) 1.14 (d)
4 Ethanol 1.17 (t), 1.65 (m) /
5 Lactic Acid 1.39 (d), 4.29 (m) 1.41 (d), 4.34 (m)
6 Alanine 1.48 (d) 1.52 (d)
7 Arginine 1.65 (m), 1.73 (m) 1.66 (m), 1.74 (m)
8 Proline 2.00 (m) 2.02 (m)
9 Acetic Acid 2.08 (s) 2.12 (s)
10 Methionine 2.08 (m) 2.12 (m)
11 γ-aminobutyric acid 2.48 (t) 2.55 (t)
12 Succinic Acid 2.64 (s) 2.70 (s)
13 Choline 3.19 (s) 3.21 (s)
14 Myoinositol 3.29 (t) 3.32 (t)
15 Methanol 3.35 (s) /
16 Fructose 3.50 (m) 3.50 (m)
17 Glycerol 3.55 (m), 3.78 (m) 3.57 (m), 3.68 (m), 3.81 (m)
18 Tartaric Acid 4.52 (s) 4.58 (s)
19 β-glucose 4.60 (d) 4.61 (d)
20 α-glucose 5.25 (d) 5.26 (d)
21 Arabinose 5.30 (d) 5.30 (d)
22 cis-caftaric acid 5.34 (s) 5.34 (s)
23 Tyrosine 6.88 (d), 7.18 (d) 6.92 (d), 7.20 (d)
24 Gallic Acid 7.14 (s) 7.16 (s)
25 2-pheniylethanol 7.35 (m) 7.37 (m)
26 Phenylalanine 7.40 (m) 7.41 (m)
27 Trigonelline 8.06 (m), 8.84 (m), 9.13 (s) 8.07 (m), 8.83 (m), 9.14 (s)

s: singlet; d: doublet; m: multiplet.

Protocol quality control. The efficiency of the applied sample preparation methods was assessed
in terms of number of compounds detected in the average 1H-NMR spectra of wet and dried wine
samples, as well as through the obtained reproducibility. Even though sample up-concentration
increased the signal-to-noise in the dried wines spectra, the drying process also led to the loss/decrease
of several semi-volatile and volatile metabolites. In particular, the amount of the unknown signal at
0.89 ppm and methanol (15) has drastically decreased in the dried wines. As expected, the ratio of
acetic acid (9) to lactic acid (5) in dried wines is reduced to half-level of that in the wet wine samples,
while the lactic acid to succinic acid (12) and gallic acid (24) to arabinose (21) ratios remain constant.
The signal intensity of the unknown metabolite at 7.30 ppm (singlet) has decreased by a factor of two
in the dried samples. The drying process has affected the aromatic region between 6.50 ppm and
7.50 ppm, where several spin systems have disappeared. The relative amount of the least abundant
(detectable) metabolite in wine, trigonelline (27), was constant in both wet and dried wine samples.
After the vacuum drying process, an unknown multiplet emerged at 1.18 ppm where the ethanol
signal dominated in the wet wine samples.

2.2. Multivariate Analysis

PCA was performed on the wet and dried wine datasets (Figures 2 and 3). The analysis
was carried out separately on three different areas of the 1H-NMR spectra labelled the aliphatic
region (0.80–3.00 ppm), the carbohydrates region (3.01–5.50 ppm), and the aromatic region
(5.51–9.30 ppm) [33].

Aliphatic region. Figures 2C–F and 3C–F display the scores plots and correspondent loadings
plots of the PCA performed on the wet and dried wine datasets, respectively. Overall, the explained
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systematic variance by the first two PCs is around 81% in the wet wine dataset and 85% in the dried
wine dataset. A clear differentiation amongst the wine samples made from different grape varieties can
be observed in both scores plots (Figures 2C and 3C). The scores distribution along PC1 is driven by
the same metabolites (Figures 2F and 3F), namely lactic acid, and succinic acid in both wine datasets.
In particular, ‘Baco Noir’ samples are characterised by high levels of lactic acid, while ‘Vinoslivy’
samples are rich in succinic acid. Interesting, ‘Précose Noir’ and ‘Triomphe d’Alsace’ samples cluster
together in the score plots of both PCA models. Samples distribution along PC2 is mainly driven by
acetic acid and succinic acid in both datasets. These metabolites are particularly abundant in ‘Cabernet
Cantor’ and ‘Golubok’ samples. Except for ‘Golubok’ (0.79 g/L), the levels of acetic acid, as measured
by the WineScan, were in the normal range for red wines (0.2–0.5 g/L) (data not shown). The metabolite
2,3-butanediol is found to play a key role in the scores distribution of the dried wine dataset.
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Figure 2. Scores and loadings plots of the PCA on the aliphatic (0.80–3 ppm) (C–F); carbohydrates
(3.01–5.50 ppm) (B–E); and aromatic (5.51–9.30) (A–D) regions of the 1H-NMR spectra from wet wines.
The explained variance, for each principal component, is reported in parenthesis.

It is worth mentioning that, due to the removal of the ethanol signals in the wet wine data,
the PCA models developed using the aliphatic regions were built using a different number of variables
in the two wine datasets. Nevertheless, the results of the PCA were similar.

Carbohydrates region.Figure 2B–E and Figure 3B–E show the scores and loadings plots of PCA
applied to the carbohydrates regions of the 1H-NMR spectra from wet and dried wine samples,
respectively. A total of 60.06% and 80.11% of the systematic variation is explained by the first two PCs,
in the wet and dried wine datasets, respectively. This region proved to be the least informative in terms
of sample clustering according to different grape varieties in both datasets. However, a consistent trend
is observed in both wet and dried wines where ‘Bolero’, ‘Bolero L.’, and ‘Don Muscat’ samples show
the lowest glycerol content. The ‘Golubok’ samples have the highest content of methanol (Figure 2B–E).
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Figure 3. Scores and loadings plots of the PCA on the aliphatic (0.80–3 ppm) (C–F); carbohydrates
(3.01–5.50 ppm) (B–E); and aromatic (5.51–9.30) (A–D) regions of the 1H-NMR spectra from the dried
wines. The explained variance for each principal component is reported in parenthesis.

Aromatic region. Figures 2A–D and 3A–D display the PC1 versus PC2 scores and loadings of the
PCA models performed on the aromatic region of the 1H-NMR spectra of the wet and dried wine
samples, respectively. PC1 and PC2 explain a cumulative variance of 46.86% and 48.53% in the wet and
dried wine datasets, respectively. A remarkable grouping of wine types is observed in the scores plots,
indicating a well-defined molecular fingerprint in each of the wine samples. All ‘Rondo’ samples,
namely ‘Rondo’, ‘Rondo Y.’, and ‘Rondo L.’, cluster together in the score plot obtained from the PCA
on the wet dataset. Along with the ‘Golubok’ samples, all ‘Rondo’ samples are characterised by a high
concentration of phenolic compounds (Figure 2A–D).

The pooled wine samples, which represent the chemical average of all samples, are clustered in
the center of the scores plots and validate the high reproducibility of the sample protocol.

2.3. Quality Control of 1H-NMR Data

Lactic acid, glycerol, and ethanol were chosen as target molecules for the quality control of the wet
wine samples. The regression models in Figure 4B,C show correlations between the IR and 1H-NMR
data for lactic acid (R2 = 0.94 ) and ethanol (R2 = 0.98), as measured in the wet wine samples. A weaker
correlation is observed in the case of glycerol: R2 = 0.77 (Figure 4A). Concerning the dried wine
samples, lactic acid and glycerol were chosen as target molecules. Correlations between 1H-NMR and
IR data were 0.79 and 0.85 for glycerol and lactic acid, respectively (Figure 4D,E).

In order to assess the variability distribution in the wine samples, the relative amount of
6 representative metabolites, namely lactic acid, succinic acid, choline, glycerol, tartaric acid,
and gallic acid, were calculated in the 1H-NMR spectra of wet and dried wines. As shown in Figure 5,
the two sample preparation methods yield comparable distribution, albeit differences can be observed
for the individual metabolites. In particular, the recovery in dried samples was less efficient for
tartaric acid.
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glycerol, succinic acid, and tartaric acid in the wet and dried wine sample sets. Purple boxes are the
wet wine samples and the green boxes are the dried wine samples. The wet and the dry datasets have
been scaled to the same average intensity of lactic acid.

3. Discussion

Two different protocols for wine sample preparation prior to 1H-NMR analysis were compared
using a total of 26 experimental wine samples. In the first method, wine was measured directly after
addition of phosphate buffer (wet wines). The advantage of this approach is its simplicity (no drying
and no titration), but the high concentration of ethanol limited the dynamic range in the NMR
spectrometer (receiver gain), resulting in low signal-to-noise ratio of minor compounds. Despite being
dominated by the presence of the two ethanol signals, the obtained 1H-NMR spectra of the wet samples
provided an overview of the chemical composition of the wines. In the second method, the wine
samples were dried and resolubilized in phosphate buffer. The advantage of this method is the removal
of the intense ethanol signals, a possible up-concentration, and, possibly, a much better sample storage
capability before measurement. The dried method led to the loss of ethanol and methanol and other
volatile metabolites. However, the increased dynamic range of the NMR spectrometer (the use of
higher receiver gain values) allowed for the enhancement of the remaining non-volatile 1H-NMR
signals, thus providing a better definition of the 1H resonances deriving from the lower concentration
molecules present in wines. Despite the achieved improvement in the quality of the 1H-NMR spectra,
the drying process also results in loss of volatile and semi-volatile compounds, altering thus the
chemical composition of the original matrix. Moreover, re-solubilization of the dried samples can be a
significant problem, especially if the new solvent has different chemical properties with respect to the
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original matrix. In this case the metabolite pool would not be longer representative [34]. The observed
lower distribution range in the box plot graph could partially be ascribed to this phenomenon.

Numerous primary and secondary metabolites were identified in the 1H-NMR spectra of wine
samples including amino acids, organic acid, carbohydrates, phenolic compounds, as well as higher
alcohols. Amongst these, organic acids are important molecules that contribute to the composition,
stability, and organoleptic qualities of wines [35]. The origin of the organic acid pool in wines can be
ascribed to two different sources, namely the grapes and the fermentation process. Several organic
acids derived from the wine fermentation by yeasts and bacteria were identified in the wine samples
including succinic acid, acetic acid, and lactic acid, the final product of the malolactic fermentation.
Grapes ripened in a cool climate will normally contain relatively high levels of malic acid, and, therefore,
high levels of lactic acid will be reached after the malolactic fermentation. However, 2016 was an
unusually warm year with the 5th most sunny autumn ever recorded, thus levels of lactic acid were
low to moderate (Mean = 2.14 g/L, Table 2). Tartaric acid, along with malic acid and citric acid,
are grape-derived acids that account for the majority of the acidity in wine grapes [35]. The metabolite
2,3-butanediol, a by-product of the alcoholic fermentation and important source of aroma, was found
in all the wines samples [36]. The analyzed cool-climate wines were also characterised by the presence
of a variety of free amino acids and sugars , which are important nutrients for yeasts during the
fermentation process [37]. Amongst the free amino acids, the most predominant were proline and
arginine, while phenylalanine and alanine were less abundant in the wine samples. Finally, several
higher alcohols were identified in the 1H-NMR spectra of wines, including 2-phenylethanol. Higher
alcohols represent an important category of aroma compounds in wines that are produced by yeasts
using sugars and amino acids as substrates [38].

In order to account for the contribution of minor components to the variability within the analyzed
wines, PCA was performed on three different spectral regions of the NMR spectra, namely the aliphatic,
carbohydrates and aromatic regions. NMR data normalization and scaling have been omitted in order
to be able to compare the real wine chemistry amongst different wines and not only the relative
wine chemistry amongst different wines. Data normalization, which has been the default in many
wine NMR studies, is required when less standardized sample preparation and data acquisition
are performed. In those cases, the proton density (excluding water protons) is assumed to be the
same in diluted and full-bodied wines. Therefore a diluted wine will become identical to a powerful
concentrated wine, if the relative wine chemistry is the same. The results of the applied PCA showed
that the aliphatic and aromatic regions were found to contain most of the systematic variance in the
1H-NMR datasets. Well-defined sample groupings according to the wine types were achieved by
modelling the abovementioned regions in which organic acids, amino acids, and phenolic compounds
are the major contributors to the molecular fingerprint of the different cool-climate wines. ‘Baco Noir’
wines were found to be the richest in lactic acid followed by the two cultivars ‘Prècose Noir’ and
‘Triomphe d’Alsace’. All tree cultivars are old French hybrids derived from crossing Vitis vinifera
and Vitis riparia. The second grape species gives very high acid levels, especially malic acid that,
after malolactic fermentation, will result in high levels of lactic acid. The close relationship between
these cultivars could also be observed in the PCA scores plots of the aliphatic regions where ‘Précose’
and all the ‘Triomphe D’Alsace’ samples clustered together. Close genetic background may also be
observed in the PCA of the aromatic region where ‘Golubok’ cluster together with all the ‘Rondo’
samples. Both cultivars are hybrids of ‘Précose de Malingre’ with a Vitis amurensis.

PCA applied to the carbohydrates region did not reveal any well-defined clusters according
to different wine varieties, suggesting that the sugar content and type are rather similar in all the
analyzed cool-climate wines. The fermentation process also very strongly modifies the original sugar
composition of the grapes. Glycerol, one of the major metabolites responsible for wine viscosity [39],
and an osmoprotectant produced by yeast during ethanol fermentation, accounted for the majority
of the systematic variation in the carbohydrates region. ‘Vinoslivy’ is a Ukrainian hybrid that is
characterised by early grape ripening and contains high sugar levels, which, after fermentation,
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resulted in the highest levels of ethanol and glycerol. Amongst the cultivars with the lowest alcohol
level, ‘Bolero’ showed a rather high variability between the repetitions (Table 2) indicating variable
fruit quality. Analysis of the sugar content of the juice (free run after crushing) showed 8 g/L difference
between samples for ‘Cabernet Cortis’ and up to 9 g/L in ‘Bolero’ (data not shown). The sugar levels
obtained in the grapes highly depend on the cultivar, but also on the growing technique. ‘Bolero’ is
a cultivar with very big clusters (over 400 g/cluster) and a tendency to “over crop” if not carefully
thinned. This may cause variable quality from plant to plant. Some cultivars may also have a tendency
to develop bunch stem necrosis, which causes variable quality amongst clusters on the same plant.
‘Cabernet Cortis’ and ‘Rondo’ are prone to this problem, and it may have caused variable ethanol
levels amongst replicates. During fermentation, deviations may also develop due to the activity by
other microorganisms than the inoculated strain. This, however, appears only to play a minor role,
as the estimation of the potential alcohol based on the glucose + fructose content of the juice sampled
(Pot. % vol. = g sugar/17) showed an average deviation of only 0.1% vol. if compared to the final wine
shown in Table 2.

The consistency between the 1H-NMR and the infrared measurements obtained on the WineScan
was assessed by comparison of the ethanol (wet wines), lactic acid and glycerol concentrations.
The results showed a high consistency between the two approaches, especially in the case of the wet
wines samples. The lower correlation of the glycerol could be ascribed to additional measurement
errors due to signal overlapping. Naturally, these prediction models are associated with a prediction
error that will depend on the reference method used for infrared calibration. However, in the present
study, it is assumed that the WineScan instrument is accurate to within the range of the error of the
underlying reference analysis itself, and that the error contributed by the prediction is thus on par or
lower in the context of comparison to the NMR data. This is supported by the prediction accuracy of
the WineScan for the ethanol prediction of 0.09 vol. % (data not shown).

4. Materials and Methods

4.1. Experimental Design

A total of 22 varieties of cool-climate wine grapes were harvested in vintage 2016 from the field
vineyard at the Pometum (Taastrup, Denmark), the fruit and berry Genebank, and experimental
orchard of the University of Copenhagen. For each grape variety, the harvested grapes were split
in two batches of 10 to 20 kg and processed independently (destemmed and crushed), resulting in
two biological wine fermentation replicates (A and B). All wines were inoculated with a commercial
Saccharomyces cerevisiae, bayanus (Lalvin DV10TM, Lallemand, Denmark), followed by a malolactic
fermentation using Viniflora CH35 (Chr. Hansen, Denmark). 2 g/10 L of the yeast nutrient product
Go-Ferm (Lallemand, Denmark) were added during rehydration of the yeast. After 12 days of
skin contact with a daily cap punch down, the wines were pressed with a small 20 L hydropress
(Speidel, Germany) and transferred to 5 L glass demijohns. The final wines were racked and stabilized
with SO2 addition. Temperature was kept at 25 ◦C during fermentations and reduced to 16–18 ◦C
afterwards. Approximately 6 months after harvest, WineScan measurements (WineScan FT 120,
FOSS A/S, Hillerød, Denmark) were performed and the wines bottled into 375 mL bottles with
screwcap. Samples were stored at 4 ◦C before NMR measurements. The experimental wine samples
were prepared in duplicates for the 1H-NMR analysis. In Figure 6 a schematic representation of the
experimental design is shown. See Table 2 for the complete list of the grape varieties included in
the study.
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Table 2. List of the grape varieties used for making the wine samples. A and B represent different fermentation replicates. A brief description of the grape varieties,
pH values, and the absolute concentrations of glycerol, lactic acid, and ethanol, as measured by the WineScan instrument in the wine samples, are reported. Absolute
concentrations are expressed as g/L or % volume (ethanol). (L.): Grapes form plants treated with LalVigne Mature at veraison; (Y.): Grapes from young plants.

Grape Variety Description Wine Samples pH Glycerol (g/L) Lactic Acid (g/L) Ethanol (% vol.)

Acolon
‘Acolon’ is a German wine grape variety created in 1971 by crossing ‘Lemberger’
(‘Blau Fränkisch’) and ‘Dornfelder’. Medium to large clusters and berries.
It ripens early and produces a very colour-intensive wine with mild tannins.

A 3.56 7.58 2.14 11.58

B 3.55 7.33 2.20 11.43

Baco Noir

‘Baco Noir’ is a hybrid grape variety produced in France in 1902 by crossing a
French variety of Vitis vinifera named ‘Folle blanche’ and the native American
Vitis riparia. Medium clusters with small berries. Wines made from ‘Baco Noir’
are known to be rustic, wild, and great for staining teeth because of their
heavy pigment.

A 3.35 5.22 4.04 9.53

B 3.39 5.36 3.98 9.53

Bolero
‘Bolero’ is an interspecific wine grape variety created in Germany in 1982. It is a
cross between (‘Rotberger’ × ‘Reichensteiner’) and ’Chancellor’ grapes. It has
Vitis rupestris in its pedigree. Large clusters and berries. It ripens quite early and
produces a ruby red wine, harmonious on the palate with medium tannins.

A 3.64 5.15 1.88 9.14

B 3.70 5.69 2.01 10.04

A (L.) 3.56 5.23 1.82 9.02

B (L.) 3.42 4.65 1.63 8.33

Cabernet Cantor

‘Cabernet Cantor’ is an interspecific red grape created in 1989 by crossing the
grape varieties ‘Chancellor’, ‘Merzling’, ‘Zarya Severa’, and ‘Muscat Ottonel’.
It gives a wine with dark berry and black pepper flavour, which is soft but rich
in extract and phenolic compounds.

A 3.89 7.40 1.21 11.00

B 3.88 7.50 1.22 10.91

Cabernet Cortis

‘Cabernet Cortis’ is a dark-skinned interspecific grape variety. It was bred in
Germany in 1982 by crossing ‘Cabernet Sauvignon’ and ‘Solaris’. Medium-sized
clusters and small to medium berries. It ripens relatively early and produces
colourful and tannic wines with vegetal characters, which are very herby on the
palate, rich in extract, and contains phenolic compounds.

A 3.78 7.27 2.34 11.81

B 3.81 7.57 2.22 12.38

Cabaret Noir

‘Cabaret Noir’ is an interspecific grape variety created in Switzerland by the
breeder V. Blattner in 1991 by crossing ‘Cabernet Sauvignon’ with an interspecific
resistant cultivar. Clusters and berries are small. Produces a wine with
cabernet character.

A 4.00 7.71 1.81 12.26

B 4.07 8.03 1.84 12.65

Don Muscat
‘Don Muscat’ is a Russian cultivar. The genetic origin is unknown to us, but we
believe it to be interspecific. It produces a light red wine, very rich in flowery,
and fruity muscat flavours.

A 3.93 5.62 2.78 9.22

B 3.99 5.95 2.88 9.41

Eszter
‘Eszter’ is an interspecific cultivar created in Hungary in 1969 by crossing ‘Eger 2’
and ‘Magaracsi’. It has Vitis berlandieri in its pedigree. It produces a light fruity
aromatic wine.

A 3.79 7.81 1.60 11.24

B 3.80 7.92 1.60 11.34
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Table 2. Cont.

Grape Variety Description Wine Samples pH Glycerol (g/L) Lactic Acid (g/L) Ethanol (% vol.)

Frühburgunder

‘Frühburgunder’, known also as ‘Pinot Noir Précoce’, is the early ripening
version of ‘Pinot Noir’. Clusters are small and tight with small berries. It is an old
cultivar mutation likely to originate in France. It gives a light coloured soft and
velvet Pinot style wine characterised by a fruity spicy aroma.

A 4.04 8.29 1.96 12.66

B 4.12 8.25 2.09 12.57

Golubok

‘Golubok’ is a cultivar originating from Ukraine. The genetic background is
unknown to us. Clusters and berries are medium sized. In this grape, the colour
pigment is not only located in the skin, but a significant amount of pigment is
also present in the pulp. This results in a deep, rich, dark, almost black colour
and a unique flavour.

A 4.07 8.40 2.32 10.57

B 4.04 8.51 2.26 10.73

Lemberger

‘Lemberger’ (or ‘Blau Fränkisch’) is an old cultivar assumed to origin in Austria
or Franconia in Germany. ‘Heunisch’ is proven to be one of the parents. The tight
clusters and berries are medium sized. It produces a well coloured fruity wine
with dark berry flavours with a bit spicy character. The wines are well balanced
with a good soft tannin structure.

A 3.47 7.83 2.00 11.52

B 3.45 8.04 2.01 11.74

Leon Millot

‘Léon Millot’ is an old French hybrid created in 1911 in Alsace by crossing the
hybrid grape ‘Millardet et Grasset’ (Vitis riparia × Vitis rupestris) with
‘Goldriesling’, which is a Vitis vinifera variety. The relatively early ripening makes
it particularly suited for cultivation in cool climates. Clusters and berries are
small. Common aromatic and flavour profiles for ‘Leon Millot’ include earthy,
barnyard, woody notes, purple fruits, and chocolate.

A 4.15 7.87 1.95 11.59

B 4.20 7.81 2.06 11.51

Monarch
‘Monarch’ is an interspecific grape variety breed in Germany in 1988. It is a
crossing of ‘Solaris’ and ‘Dornfelder’. From Solaris it has several Vitis species in
its pedigree. It produces a light fruity wine with red and dark berry flavours.

A 3.42 6.04 1.74 9.53

B 3.45 6.03 1.75 9.54

Nero

‘Nero’ is an interspecific cultivar originating in Hungary. It was created in 1965 by
crossing (‘Medoc Noir’ x ‘Perle von Csaba’) and (‘S.C 12375’ × ‘Gárdonyi’).
Clusters and berries are medium to large and may be used as table grape.
It produces a light aromatic wine with red berry flavours with a little
muscat character.

A 3.78 7.63 2.10 11.91

B 3.76 7.68 2.09 11.87

New York Muscat

‘New York Muscat’ is a cultivar made in US at Cornell University by crossing
‘Muscat Hamburg’ and ‘Ontario’. Clusters and berries are medium in size and
may be enjoyed as table grape. It produces a deep red very aromatic wine with
floral muscat flavours.

A 3.86 5.94 2.07 10.37

B 3.90 6.01 2.07 10.25

Précose Noir
‘Précose Noir’ is an old French hybrid from the same breeding as ‘Triomphe
d’Alsace. Clusters and berries are small to medium. Produces a medium dark red
light bodied wine with dark berries and spicy aromas.

A 3.90 7.21 2.90 11.42

B 3.88 7.20 2.89 11.39
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Table 2. Cont.

Grape Variety Description Wine Samples pH Glycerol (g/L) Lactic Acid (g/L) Ethanol (% vol.)

Reberger

‘Reberger’ is an interspecific grape variety that was breed in Germany in 1986 by
crossing the ‘Regent’ and ’Lemberger’ (‘Blau Fränkisch’). The loose clusters and
berries are medium sized. It produces a light fruity wine with a
tannic/phenolic character.

A 3.83 7.44 2.20 12.03

B 3.70 7.17 2.11 11.73

Regent

‘Regent’ is an interspecific grape variety created in Germany in 1967 by crossing
‘Diana’ (‘Silvaner’ × ‘Müller-Thurgau’) with the hybrid ‘Chambourcin’. Clusters
are relatively loose medium in size with small to medium berries. It gives
colourful and tannic wines and shows aromas of cherries or black currants with
peppery notes.

A 3.89 7.39 2.19 12.22

B 3.88 7.45 2.15 12.23

Rondo

‘Rondo’ is an interspecific variety created in 1964 in then-Czechoslovakia by
crossing ‘Zarya Severa’ × ‘St. Laurent’. It is characterised by a very early
ripening which make it particularly suitable for cultivation in cool climates.
Clusters and berries are medium sized. ‘Rondo’ produces a very dark red wine
with dark berry and woody aromas.

A 3.81 8.18 1.52 11.67

B 3.73 8.15 1.32 11.75

A (L.) 3.75 8.30 1.75 11.30

B (L.) 3.83 8.30 1.83 11.41

A (Y.) 3.73 8.03 1.78 11.87

B (Y.) 3.77 8.08 1.85 11.84

Titan

‘Titan’ is a cultivar developed at the research station in Eger in Hungary. The
genetic origins is unknown to us, but believe it to be interspecific. The berries are
characterised by coloured flesh resulting in a very dark almost black wine.
Clusters and berries are medium in size. The wine has good dark berry flavours
and rich good phenolic structure.

A 3.92 8.18 2.13 10.85

B 3.93 8.13 2.09 10.85

Triomphe
d’Alsace

‘Triomphe d’Alsace’ is an interspecific grape variety that was produced in France
in 1911 by crossing the American grape species Vitis riparia with Vitis rupestris.
The resultant hybrid was then crossed with ‘Goldriesling’ (Vitis vinifera). Clusters
and berries are small. It produces a medium dark red light bodied wine with
dark berries and spicy aromas. Quite similar to ‘Prècose Noir’.

A 3.70 6.33 3.16 10.89

B 3.76 6.83 3.11 11.43

A (L.) 3.81 6.76 2.95 11.33

B (L.) 3.63 6.34 2.95 11.00

Vinoslivy

’Vinoslivy’ is an interspecific cultivar breed in Ukraine in 1958 by crossing ‘Getsh’
with (‘Muscat Hamburg’ × Vitis amurensis). It is very early ripening and
accumulates relatively high sugar levels. The clusters and berries are small to
medium. It produces a light red wine with an aroma rich in pyrazines.

A 3.64 8.54 1.36 13.09

B 3.61 8.42 1.37 12.92

Average 3.78 7.23 2.14 11.16

Max 4.20 8.54 4.04 13.09

Min 3.35 4.65 1.21 8.33
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using 22 grape varieties. For each experimental wine, two fermentation replicates were prepared
(A and B), giving a total of 52 experimental wines. Wine samples were analyzed by FT-IR (wine as-is)
and 1H-NMR spectroscopy (wine as-is and dried wines). Samples for NMR and IR analysis were
prepared in duplicates (R1 and R2).

4.2. Chemicals

Deuterium oxide (D2O, 99.9%), sodium phosphate monobasic (NaH2PO4), and sodium
3-trimethylsilyl-propionate-2,2,3,3-d4 (TSP) were purchased from Sigma-Aldrich (Darmstadt, Germany).

4.3. 1H-NMR Spectroscopy

4.3.1. Sample Preparation

Wet wine. In order to minimize the chemical shift fluctuation in the 1H-NMR spectra due to
different pH values in different wine samples, 700 µL of wine sample were transferred to a 1 mL
Eppendorf tube containing 300 µL of 1M KH2PO4 buffer in D2O (4:1 v/v, pH = 3.50 ± 0.02).
The obtained mixture was vortexed for 1 minute at maximum speed to ensure sample homogeneity.
Subsequently, 600 µL of the sample were transferred to a 5 mm NMR glass tube.

Dried wine. For each wine, 1 mL of sample was placed in an Eppendorf tube and dried overnight
in a Scanvac centrifugal vacuum concentrator (Labogene, Lynge, Denmark) operating at 25 ◦C
and 1200 rpm. The dried sample was re-dissolved in 600 µL of 1M KH2PO4 buffer and vortexed
for 5 min at maximum speed. The homogenized sample was transferred to a 5 mm NMR glass tube.

4.3.2. 1H-NMR Measurements

1H-NMR spectra of the wine samples were recorded on a Bruker Avance III 600 operating at
a proton Larmor’s frequency of 600.13 MHz and equipped with a 5-mm broadband inverse (BBI)
probe. Data acquisition and processing were carried out with the TOPSPIN software (version 3.5).
A 5-min waiting period was applied for temperature equilibration prior to 1H-NMR measurements.
1H-NMR spectra were acquired at 298 K using the standard pulse sequence for presaturation of the
water signal (zgcppr pulse program), a sweep width of 12,626 Hz, a 90◦ pulse, and an acquisition time
of 3 s. Data were collected into 64 k data points after 256 scans. The relaxation delay (d1) was set
to 4 s. The receiver gain (RG) was fixed for all the experiments to an adequate value estimated through
several tests for the wet and dried wine samples. The spectra were acquired in automation using the
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sample jet system (Bruker BioSpin, Ettlingen, Germany). Spectral chemical shift referencing on the
TSP CH3 signal at 0.00 ppm was performed on all spectra. Metabolites assignments was performed by
comparison with the yeast metabolome database (http://www.ymdb.ca/) and with literature data.

4.4. Multivariate Analysis

4.4.1. Preprocessing of the 1H-NMR Data

The 1H-NMR spectra were imported into the Matlab software (version 2017b, Mathworks Inc.,
Natick, MA, USA) and two data matrices sized 124 × 65,536 (samples × variables) were built. Spectra
were aligned using the icoshift algorithm, which is based on correlation optimized shifting of spectral
intervals and aligns all spectra simultaneously [40]. Figure 7 shows the 1H-NMR spectra of wet and
dried wine samples before and after alignment.
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The regions containing the residual water signal as well as the noisy “baseline” regions
at 9.30–15 ppm and −5–0.8 were excluded from the analysis, making the final data matrices sized

http://www.ymdb.ca/
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124 samples × 26,001 variables. The ethanol signals were also excluded from the wet wine matrix,
yielding a final matrix sized 124 samples × 24,998 variables in the case of wet wines.

The datasets were imported into the PLS_toolbox (version 7.5.1, Eigenvector Research, Mahson,
WA, USA) running in MATLAB (version 2017b, Mathworks Inc., Natick, MA, USA). Due to the use of
highly standardized protocols for sample preparation, no preprocessing method other than alignment
and mean centering was performed prior to multivariate analysis. This is inspired by the extreme
standardization efforts made in the metabolomics area for measurements of blood in order to be able
to predict lipoprotein distributions across cohorts [41].

4.4.2. Principal Component Analysis (PCA)

PCA is an unsupervised method for reducing the dimensionality of a data set consisting of a
large number of interrelated variables while retaining the variation present in the data set as much as
possible [42]. Reduction is achieved by projecting the variance in the dataset onto orthogonal latent
structures called principal components (PCs). The PCs represent the systematic variation of the dataset
while noise is isolated as a residual of the model. Samples are assigned scores that correspond to the
variation along the PCs. Similar samples will have similar scores and cluster together. The loadings
identify the relation between the original variables and define the direction of the PCs in the model
space. The results of this exploratory tool is traditionally displayed as scores and loadings plots.

In this study, PCA was applied to explore the systematic variation present amongst the
wine samples to discover sample groupings and to evaluate the reproducibility of the sampling
protocols. The emerging group structures in the scores plots were evaluated by investigating the
chemical information in the loadings plots. The analysis was carried out separately on the aliphatic
(0.80–3.00 ppm), carbohydrates (3.01–5.50 ppm), and aromatic (5.51–9.30 ppm) regions of the 1H-NMR
spectra of two types of datasets separately.

4.4.3. Quality Control of the 1H-NMR Data

The consistency of the results of the 1H-NMR analysis, based on the two different protocols for
samples preparation, was assessed by comparison to Fourier transform infrared (FT-IR) spectroscopy
data obtained from the WineScan instrument (FOSS, Hillerød, Denmark) designed for the routine
and high throughput chemical analysis of wines. The WineScan estimates the absolute concentration
of several organic molecules in wine samples through regression models, which are built through
multivariate calibration of the FT-IR instrument against traditional chemical analysis of hundreds of
compounds. The regression models are commercially available from the instrument vendor who has
developed and is maintaining them. The standard grape wine calibrations developed by FOSS were
used in the present study. Increased absolute accuracy may be obtained by slope-intercept adaptation
of the models based on the local wines in Denmark. The WineScan is also sensitive to the CO2 levels in
the wine, which in young wines, like in the present case, can be relatively high. To minimize the effect,
CO2 was reduced in the samples by repeated shaking (3×) of a half full sample vial prior to analysis.

Lactic acid, glycerol, and ethanol were chosen as target signals for the quality control of the
1H-NMR data. These signals were integrated in the 1H-MNR spectra of the wet samples. Lactic acid
and glycerol were used for the quality control of the dried wine dataset. The 1H-NMR data were
compared to the data from the reference FT-IR method.

In order to assess the metabolites variation across different samples, the relative amounts of
lactic acid, succinic acid, choline, glycerol, tartaric acid, and gallic acid were calculated by integrating
the corresponding base-line resolved signals in the 1H-NMR spectra of the wet and dried wines.
The selected metabolites were normalized to the average value of lactic acid, assuming a complete
lactate recovery in both methods [43].
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5. Conclusions

In this work, a total of 26 cool-climate experimental wines made from 22 different grape varieties
were evaluated and measured using 1H-NMR spectroscopy. Two different sample preparation methods
for the analysis of wine samples by NMR spectroscopy were compared with the aim to find an efficient,
sensitive, and reproducible protocol. The wine as-is (wet) approach, in which the sample preparation
involves only addition of a 1M KH2PO4 buffer solution to wine, was found to be a faster method for
the NMR analysis of wine samples. Moreover, the buffer addition limited considerably the signal shifts
in the 1H-NMR spectra due to different pH values in the wine samples and only minor alignment
correction was required prior to multivariate data analysis. The obtained NMR data provided a
comprehensive overview on the molecules characterizing the Danish cool-climate wines. Nevertheless,
the presence of the ethanol spin systems in the wet wine samples hampered partially the analysis
of the corresponding NMR spectral region and made deletion necessary prior multivariate analysis.
To sum up, almost an equal number of molecules can be detected from both, the “wet wine” and
the “dried wine” protocols. Both methods proved to be very consistent and reproducible though
differences in the recovery of some metabolites between the two methods remained. It was found that
the drying step results in the complete removal of many of the volatile compounds including ethanol,
methanol, and other unidentified low concentration compounds. Thus, considering the number of
identified metabolites and the simplicity of the protocols, the wet wine sampling protocol is generally
to be preferred. The present study illustrates how standardized sample handling in the laboratory
with advantage can replace assumptions of the samples introduced by post-analysis modification of
the data.
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