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Abstract: Bovine mesenchymal stem cells are a relevant cell population found in the maternal repro-
ductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The
phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic
trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition,
respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk
via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention
of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implan-
tation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and
the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion
in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due
to the uptake of MSC EVs. However, the changes in this EV-mediated communication between
maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly
understood. They are critical in the investigation of reproductive viral pathologies.
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1. Introduction

Many physiological processes, including embryo development, require effective com-
munication between cells and tissues. Mammalian preimplantation embryos develop in
the female genital tract (oviduct and uterus), and effective communication is necessary for
their development and survival. It was considered that the bovine embryo was completely
autonomous and did not require communication with the mother until day 7–8 of em-
bryonic development [1], converting the oviductal transit of the embryo before it entered
the uterus into a simple journey devoid of embryo-maternal communication. However,
in 2016 Lopera-Vasquez et al. designed an in vitro model of communication between the
bovine embryo and maternal oviductal cells, attributing to their secretome, composed of
soluble proteins and extracellular vesicles, fundamental roles in the proper development
and growth of embryo during its oviductal transit [2,3]. In other words, while the embryo
develops and travels towards the endometrium through the oviduct, the active communica-
tion between the two implies optimization of its development. Subsequently, other authors
have deepened bovine embryo-maternal communication during the oviductal transit of
the embryo [4,5], and findings have been reported in other species of mammals such as the
sow and the mare [6]. The embryo in the morula stage (day 5–6) reaches the uterus, where
it develops into a blastocyst (day 7–8) and hatches from the zona pellucida (day 8–9) [7].
During this preimplantation period, embryo-maternal communication is essential for cor-
rect embryonic development. Failures in this communication are responsible for the high
rate of early embryonic loss (40% between days 8 to 17 post-fertilization) in cattle [8].
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In addition, as a result of this embryo-maternal communication, an intensive modula-
tion of the immune response in the endometrium is produced, which is essential to prevent
embryonic rejection since the embryo constitutes a semi-allogenic “foreign body” (50% of
its genetic makeup is of paternal origin) [9]. The presence of the embryo triggers changes in
immune cell populations and induces the production of molecules involved in mediating
immune tolerance [10]. Immunomodulation is produced by the presence of the embryo in
the uterus both locally and systemically in peripheral blood [11]. The immune response
has traditionally been classified into two types: Th-1 and Th-2. Even though several hu-
man studies have sought to justify pregnancy as a Th-2 or anti-inflammatory state [12], a
comparable number of studies have supported its status as a Th-1 or pro-inflammatory
state [13]. More recently, a two-phase model, with the first and third trimesters defined by a
pro-inflammatory environment and the second trimester representing an anti-inflammatory
phase, was suggested [14].

2. The Role of Maternal MSC in Embryo Implantation
2.1. Evidence for the Existence of MSC in the Maternal Reproductive Tract

Mesenchymal stem cells, also documented as multipotent stromal cells or mesenchy-
mal stromal cells (MSCs) [15], are multipotent cells with notable clinical relevance due
to their potential application in cell therapy for regenerative medicine and tissue engi-
neering [16]. Although Prianishnikov hypothesized the presence of stem cells in the
endometrium in 1978 [17], it wasn’t until 2004 that stem cells were located and described
for the first time in endometrial tissue [18]. The existence of mesenchymal stem cells in the
bovine endometrium (eMSC) has also been reported by different authors [19–21]. Clono-
genicity, ability to attach to plastic, fibroblast shape, and in vitro differentiation potential to
adipocytes, chondrocytes and osteocytes are all characteristics of bovine eMSCs during the
entire estrous cycle [22,23].

The uterus is a histologically dynamic organ, and the processes that coordinate its
regeneration during the estrous cycle and implantation remain unknown. It has been
suggested that bone marrow-derived cells aid in uterine renewal [24]. According to Cunha
et al., MSCs are an important component of the hematopoietic stem cell niche in the
bone marrow [25]. MSCs are a special type of multipotent progenitor that may maintain
hematopoiesis while also differentiating into osteogenic, adipogenic, and chondrogenic
lineages [26]. MSCs can migrate into damaged tissues from the bone marrow or peripheral
circulation, suggesting that eMSCs are probably derived from the bone marrow. It has been
documented that between 2% and 52% of the epithelium and endometrial stroma in women
who received an HLA-mismatch bone marrow transplant for cancer treatment originated
from the transplanted bone marrow [27]. Mints et al. found that around 8% of the uterine
epithelium and 9% of the uterine stroma were sourced from bone marrow [28]. Human
endometrial endothelial progenitor cells differentiate into endometrial glandular epithelial,
stromal, and endothelial cells [29]. Before obtaining blood samples, mobilizing the bone
marrow with granulocyte colony-stimulating factors (G-CSF) does not affect red blood
cell parameters, but it does increase the number of nucleated cells in the peripheral blood,
which includes the pbMSC population [30]. However, the results demonstrate that prior
G-CSF mobilization has no significant benefit in MSC isolation in cows. MSC functions
were not observed to differ between mobilized and untreated MSCs by Calle et al. [31].

2.2. Relevance of Immunoregulation during Implantation

Multiple studies have demonstrated that MSCs are immunosuppressive both in vitro
and in vivo, decreasing both B and T cell proliferation [22,30] and reducing the risk of
graft-versus-host disease in allografts and xenografts [32]. MSCs have the special ability to
move to injured and inflammatory tissues, where they multiply and use their immunomod-
ulatory characteristics as part of the tissue’s regeneration process [33]. MSCs can restrict
or limit T cell proliferation, as well as play a role in the control of Th-1/Th-2 balance,
transitioning a Th-1 phenotype to a Th-2 phenotype [34]. In the human species, mesenchy-
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mal stem cells (MSCs) immunomodulate the maternal immune response [35], preventing
abortions [36]. MSCs interactions with immune cells have been extensively researched in
humans, rats, and even pigs [33]; however, this study has yet to be extended to MSC from
other mammalian species.

The immune system in the endometrium of ruminants, which protects the uterus
against infections [37], must also be controlled to prevent embryo rejection [38]. The
percentage of diverse populations of endometrial and circulating leukocytes is varied in
cattle during mid-and late pregnancy [39], indicating a complicated control in ruminants,
as in other animals with an invasive form of implantation.

2.3. MSC Plasticity

During the window of implantation, after blastocysts attach to the endometrium in
both humans and mice, the stromal cells at the implantation site begin to decidualize [40].
Decidua is identified morphologically as a tissue composed of endometrial fibroblast
cells which become rounded or polyhedral as a result of glycogen or lipid buildup in the
cytoplasm. These tissular morphological changes can occur during pregnancy, pseudo-
pregnancy, or in experimentally generated deciduomas [41]. One of the earliest uterine
adaptations to pregnancy in mice and primates is the differentiation of decidual cells [42],
which involves cell proliferation, changes in shape, multinucleation, and the formation
of intercellular connections [43]. The process of decidualization, which is required for
blastocyst implantation and pregnancy maintenance, involves many genes and signal
pathways. Decidualization is not shown in species with non-invasive implantation, such
as domestic animals. Ruminants and pigs both have non-invasive implantation, but the
type of placentation differs. Epitheliochorial placentation occurs in pig conceptuses. The
luminal epithelium (LE) is maintained biologically intact throughout pregnancy, and the
conceptus trophectoderm only attaches to the apical LE surface without interacting with
uterine stromal cells [44]. Synepitheliochorial placentation in ruminants, on the other
hand, results in severe LE erosion owing to syncytium development with trophectoderm
binucleate cells. Conceptus tissue opposes but does not penetrate uterine stroma after
Day 19 of pregnancy. According to Johnson et al., the uterine stroma of sheep undergoes
a differentiation process similar to decidualization in invasive implanting species, while
porcine stroma shows less differentiation than sheep, rodents, or primates. The degree of
uterine stromal decidualization thus varies among species and coincides with the depth
of trophoblast invasion during implantation [45]. Few studies have focused on the role of
alterations in the uterine stroma that support uterine luminal epithelium since domestic
animals have mainly non-invasive implantation.

In situ cellular transdifferentiation, such as mesenchymal to epithelial transition (MET),
would represent an alternate or additional mechanism of endometrial regeneration. MET
reprogram mesenchymal cells, causing them to lose mesenchymal cell properties while
gaining epithelial cell characteristics [46]. MET and the epithelial to mesenchymal transi-
tion (EMT) are important processes that occur throughout the development of the bovine
embryo and have been correlated to tumor metastasis [47]. According to Uchida et al.,
the EMT may aid human embryo implantation by allowing the embryo to cross through
endometrial epithelial cells and into the endometrial stromal cell layer [48]. MET may also
present during decidualization, according to Zhang et al., providing a stable developmental
environment and an anchor point for embryos to penetrate the uterus [49]. Patterson et al.
revealed that MET aids endometrial regeneration in mice after spontaneous and artificial
decidualization using Sesame oil injections into the uterine lumen [50]. However, it has not
been investigated whether cellular transdifferentiation could be used to rebuild mature en-
dometrium in bovines. Early and late luteal phase bovine eMSC lines have a fibroblast-like
shape and express vimentin. eMSC lines derived from the follicular phase (in the absence
of an embryo) express cytokeratin, showing an epithelial-like shape. This finding could
indicate eMSC is undergoing a mesenchymal-to-epithelial transition (MET) [30]. Both
bone marrow-derived cells [24] and MET of resident cells [50] were involved in uterine
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regeneration in both mice and humans. In a mouse model of menstruation, Cousins et
colleagues established that MET contributes to endometrial epithelium during proges-
terone withdrawal-induced tissue disintegration [51]. Yu et al. found that luteal hormone
concentration and/or duration thresholds induce plasticity and reversibility of endometrial
stromal phenotype via MET [52]. The rapid regression of the cow’s corpus luteum is a
critical event in the bovine estrous cycle. It is responsible for the abrupt decrease in proges-
terone levels in the blood, signaling the end of the cycle (follicular phase) [53]. In cows, the
findings on differentiation induction of eMSC lines to mesodermal lineage have validated
their multipotency in the early and late luteal phases, as well as the follicular phase. eMSC
lines derived from various stages of the estrous cycle exhibit a distinct mesenchymal pattern
in the early luteal phase (corresponding to the presence of the embryo in the oviduct) and
late luteal phase (corresponding to the presence of the embryo in the uterus). While eMSC
from the follicular phase display an apparent mesenchymal to epithelial transition state
(corresponding to the regression of corpus luteum if there was no embryo), they also ex-
press cytokeratin and, on limited occasions, have an epithelial appearance [22]. Given that
both the epithelium and the stroma contain estrogen and progesterone receptors during the
bovine estrous cycle [54], it would be interesting to investigate the paracrine function of
eMSCs in future experiments due to the possible expression of hormone receptors during
the estrous cycle.

3. The Other Side of the Line: The Embryo Trophoblast

Most research on the bovine embryo–maternal communication has been conducted
in vitro, using a trophectoderm primary culture (CT-1) produced by coculture with mouse
feeder layers [55]. Through a novel biopsy and culture system that did not require coculture
with murine cells, the isolation and characterization of primary cultures of bovine blastocyst
embryonic trophectoderm cells (BBT) have been reported. The expression of genes from
early trophoblastic markers (CDX2, ELF5), mononucleated cells (IFNT), and binucleated
cells (PAG1, PRP1, and CSH2) changed with time in culture, demonstrating that these initial
cultures are dynamic populations [56].

It has been shown that the embryonic trophectoderm upregulates the expression of
genes associated with an epithelial to mesenchymal transition (EMT) during the embryo’s
attachment to the endometrium on day 22 [57]. EMT-related genes, as well as cytokeratin,
are found in the bovine TE following the conceptus-endometrium attachment. EMT-related
genes (SNAI2, ZEB1, ZEB2, TWIST1, TWIST2, and KLF8), as well as cytokeratin, are found
in the bovine trophectoderm cells following the conceptus-endometrium attachment [57].
Lee et al. found that cell-cell communication continues after the conceptus is implanted
into the endometrium, and that EMT is a crucial process for numerous processes that help
embryonic development, including the formation of basal epidermal compartments [58].
Trophectoderm cells must be more flexible at this time to form binucleated and trinucleated
cells. Binucleated trophoblast cells were discovered to have intermediate properties be-
tween epithelial and mesenchymal phenotypes [59]. The first type of EMT is thus connected
with implantation, embryo formation, organ development, and the creation of several cell
types with mesenchymal phenotypes [60].

Following conceptus implantation, the trophectoderm loses the adherence junction
molecule, CDH1, and acquires the expression of mesenchymal markers like VIM and CDH2
while still expressing the epithelial marker cytokeratin. On days 20–22, trophectoderm EMT
was controlled by the endometrium through activin A and FLST1 [61]. CH1 was found
in the cytoplasm of trophoblast binucleate cells in the bovine placentome, and b-catenin
translocation into the nucleus was detected [62], demonstrating the role of the CDH1–b-
catenin axis in trophoblast differentiation. On day 22, trophoblast CDH2 expression is
much higher, suggesting that a rise in CDH1 degradation is responsible for the following
drop in its expression. Once it results, as the conceptus connects to the luminal epithelium,
CDH1 depletion may play a significant role in the gene expression change required for
successful implantation to placentation. The expression of CDH1 was overrepresented in



Cells 2022, 11, 1858 5 of 16

the soluble fraction secreted by trophectoderm primary cultures with epithelial phenotype,
while the soluble fraction secreted by trophectoderm primary cultures with mesenchymal
phenotype expresses VIM and maintains cytokeratin expression [31].

4. Interaction between Embryonic and Maternal MSC in Homeostasis—The Role of
the Secretome: Soluble Mediators and Extracellular Vesicles
4.1. Trophoblastic-Derived Secretome and EMT

Although the EMT process has been found in bovine trophectoderm cells after em-
bryo implantation [57,61,63], its implications on the cell secretome require still further
investigation.

Several growth factor signals, including transforming growth factor (TGF-β), hepato-
cyte growth factor (HGF), epidermal growth factor (EGF), fibroblast growth factor (FGF),
Wnt proteins, and IL-6, modulate EMT induction at the molecular level [64]. TGF-β is a
multifunctional cytokine considered the primary cause of EMT. TGF signaling regulates
cell proliferation, differentiation, invasion, migration, apoptosis, and microenvironmental
remodeling, as well as inducing pathophysiology EMT and metastasis [65]. TGF-β and
FGFR1 proteins were highly expressed in the secretome of trophectoderm primary cultures,
indicating that they are involved in the regulation of EMT in the bovine trophectoderm [31].

FGF promotes cell mobility by boosting vimentin expression and inducing MMP2 activ-
ity during EMT. FGF also alters the actin cytoskeleton, allowing for anchorage-independent
growth [66]. Vimentin and MMP2 expression are significantly increased in mesenchy-
mal trophectoderm cells’ EVs and soluble proteins, respectively [31]. Although bovine
trophoblasts do not infiltrate the endometrium, MMP2 metalloproteinase overexpression
indicates that it may have a function in the non-invasive trophectoderm. FGF1, the ligand
for FGFR1, is known to upregulate MMP13 [67], contributing to EMT induction, and is
overrepresented in the soluble fraction released by mesenchymal trophectoderm cells [31].

4.2. Embryonic Secretome and Inflammatory Cytokines Induce Maternal MSC Chemotaxis towards
the Implantation Niche

Maternal hormones control the earliest stages of uterine remodeling for implantation,
regardless of whether the embryo is present. A successful pregnancy, on the other hand,
requires embryo identification by the mother organism, as well as a crucial contribution
to the uterine response. Cows hatch typically 7 to 10 days after fertilization, with the
earliest attachments between trophectoderm and endometrium happening until around
day 20 of gestation, in contrast to mice and humans, where implantation occurs shortly
after hatching [68]. During the brief period between hatching and embryo attachment
in humans, a gradient of chemokines and cytokines secreted by endometrial cells has
been identified to direct the blastocyst to the implantation site [69]. During the elongation
phase, which ends when trophectoderm cells adhere to the luminal endometrial epithelium,
bovine trophectoderm cells produce IFN-τ. IFN-τ inhibits luteolysis, which is required to
produce progesterone from the corpus luteum [70].

eMSC lines can migrate in the absence of cytokine stimuli. In terms of non-stimulated
migration, there was no discernible difference between eMSC lines from different oestrus
phases or with distinct morphologies (mesenchymal or epithelial). Although the eMSC
lines isolated during the follicular phase (the absence of an embryo) express cytokeratin,
and two of these lines displayed apparent epithelial type shape, they also demonstrated
a significant migratory capacity and intracellular Vimentin expression [22]. Vimentin is a
necessary regulator of mesenchymal cell motility and an important mesenchymal biomarker
for epithelial transition. Vimentin protein and mRNA expression are reduced during
MET when cell mobility reduces and cells adopt epithelial features [71,72]. Considering
the preceding, bovine eMSC exhibit MET cellular flexibility, allowing them to exhibit
mesenchymal and epithelial cell properties.

In all scenarios, whether the embryo is still in the oviduct, the embryo without zona
pellucida is in the uterus, or the corpus luteum regresses due to the absence of an embryo
in the uterus, most of the eMSC presented active migration towards a pro-inflammatory
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niche (Th-1) characterized by the presence of IL-1β [22] and also described in the early
and late stages of human gestation [14]. In contrast, the majority of the eMSC from the
three scenarios mentioned respond with a block in migration to IFN-τ [22], the key embryo-
derived pregnancy signal in bovines [73].

Under standard conditions, circulating MSCs are found in low quantities in the pe-
ripheral blood [74]. Their trafficking, on the other hand, is triggered by an injury, chronic
diseases, or cancer [75]. Activated MSCs are released into the peripheral blood circula-
tion [76]. This increase in circulating MSCs is assumed to be sourced from bone marrow,
while MSCs from other sources, such as adipose tissues, may also be recruited. Chemokines
and homing receptors interact specifically to guide adherence to various locations of dam-
age, cancer, or implantation. In the mouse estrous/menstrual cycle, bone marrow-derived
MSCs are implicated in uterine regeneration following injury, but not in cyclic regeneration
of the endometrium, according to Du et al. [77].

In cows, the ability of pbMSCs to migrate to an inflammatory environment has also
been analyzed. TNF-α does not cause pbMSC to move, although pbMSC lines obtained
following G-CSF mobilization from bone marrow did exhibit a reduction in cell migration.
The inflammatory cytokine IL-1β, on the other hand, increased the migratory capability of
pbMSC recovered with or without bone marrow stimulation [30]. It has been revealed that
pbMSC isolated with or without bone marrow stimulation have increased their migratory
potential towards the IFN-τ implantation cytokine [30]. These findings contrast markedly
with IFN-τ induced reduction of migratory ability in bovine MSC lines generated from the
endometrium [22]. Therefore, the embryonic implantation niche would also be a site of
active MSC recruitment.

In conclusion, under normal circumstances, bovine MSCs circulate in the peripheral
circulation. The fact that inflammation/implantation signals and signals from embryonic
trophectoderm induced pbMSC chemotaxis suggests that endometrial mesenchymal stem
cells originated in the bone marrow during bovine pregnancy to help keep the immune
response low and prevent embryo rejection by the maternal organism. It must be considered
that MSCs derived from different tissues have demonstrated heterogeneity based on their
migratory capacity [30]. Therefore, to better comprehend MSCs’ status in circulation
and maximize their therapeutic potential, it’s essential to characterize their capacity to
disseminate and migrate, considering that MSCs originating from diverse tissue sources
may have distinct reactions. According to the literature, MSCs demonstrate tissue and
donor-related diversity, not only in mRNA expression but also in chemokine and cytokine
production [78–82]. The migratory ability of MSC varies depending on the tissue of
origin, both in the absence of stimulation and as a result of activation by inflammatory
cytokines [83]. In the scenario of pregnancy, the combination of both IL-1β and IFN-τ
signals would ensure the retention of eMSC as well as continued recruitment of MSC
from the circulation, ensuring the immunomodulation required in the mother for embryo
survival (Figure 1). This result supports the concept that either IFN-τ or a Th1 cytokine-
like IL-1β could promote the migration of pbMSCs towards the implantation site in the
reproductive tract, modulating the Th1 maternal response while retaining eMSC already in
the tissue [22].

Later stages of development are not possible in pure in vitro systems, so investigations
of embryo-maternal communication have been based on Trophoblastic cells derived from
hatched embryos [30,31]. Although the diverse trophectoderm cell lines described have
different properties, some of them similar to those seen later in embryo development, it
would be fascinating to investigate the chemotactic stimuli released by trophoblastic cells
derived from elongated embryos. Trophectoderm cells with a mesenchymal phenotype
have developmental characteristics that are closer to EMT, and so would represent a more
advanced developmental stage, closer to embryo implantation [31]. A careful analysis was
performed, in which the trophectoderm secretome was dissected into soluble mediators
and extracellular vesicles (EVs), and the chemotactic activity of both fractions was analyzed
independently in parallel. Interestingly, epithelial embryonic trophectoderm lines drive
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chemotactic migration of maternal eMSCs via both soluble and EVs mediators, while
chemoattraction of pbMSCs is induced only via soluble mediators. In contrast, when
the embryonic trophectoderm has already developed mesenchymal properties, it induces
endometrial or peripheral maternal MSC migration via both soluble and EV-cargo proteins,
and these cells can travel greater distances and at faster speeds [31]. Secretome-dependent
signaling might thus cause a substantially amplified call effect in MSCs at late implantation
stages to guarantee embryo implantation at that key time of pregnancy.
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Figure 1. Maternal MSC immunomodulation at the embryo implantation site. The existence of MSC
in the reproductive tract is associated with maternal immunoregulation during embryo implantation.
MSC exerts immunomodulatory functions in the local environment through cell-to-cell contact or by
secreting EV and soluble factors that interact with local immune cell populations, resulting in a shift
to a Th2 maternal response.

4.3. Tissular Rearrangements for Implantation

Following EMT, a micro-angiogenesis process associated with uterine vascularization
is required for effective implantation [84] and placenta formation. In the trophectoderm
cell secretome, eleven proteins implicated in angiogenesis pathways were identified, six of
which participate in the vascular endothelial growth factor (VEGF) pathway [31] (Figure 2).
The VEGF signaling pathway is required for all stages and processes of vascular formation
(vasculogenesis, angiogenesis, and lymphangiogenesis). VEGF is the primary regulator
of angiogenesis in bovine pregnancy. Interestingly, four angiogenic-related factors were
overrepresented in the secretome of mesenchymal trophectoderm cells: fibroblast growth
factor receptor 1 (FGFR1), RHO GTPase-activating protein 1 (ARHGAP1), RHO-related
GTP-binding protein (RHOC), and vascular cell-adhesion molecule (VCAM1). However,
only the Serine/threonine-protein kinase A-RAF (ARAF) and Heat Shock Protein Beta-
1 (HSPB1) from this pathway were shown to be overrepresented in the secretome of
epithelial trophectoderm cells [31]. In conclusion, both the overexpression of EMT markers
and the increased detection of angiogenic factors are observed in trophectoderm cell
populations at a more advanced embryonic stage near an EMT stage. However, the
characteristic bovine pregnancy angiogenic related markers such as VEGF family proteins
or its receptor, Angiopoietin (ANGPT)-2/ANGPT-1 [85], were not detected in the secretome
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of trophectoderm cells, most likely due to an early embryonic stage [31]. In addition, on
Day 13 in vivo conceptuses, MMP2, a member of the matrix metallopeptidase family, which
is involved in the degradation of extracellular matrix in normal physiological processes [57],
and PEG3 are both upregulated [57]. MMP2 and PEG3 are essential implantation proteins
whose expression has only been observed in in vivo conceptuses [86].
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trophectoderm cell lines showing different EMT transitions. Figure adapted from Calle et al. [31].

The expression of integrins (ITGs) at the uteroplacental interface during trophec-
toderm attachment and placentation has been studied in bovine species [87]. ITGαV,
overrepresented in Mesenchymal trophectoderm cells-EVs cargo [31], is known to bind to
Osteopontin in conjunction with the β5 subunits (SPP1) [88]. ITGβ1 is similarly overrepre-
sented in the cargo of mesenchymal trophectoderm cells-EVs [31]. It can form heterodimers
with the 4 chain, also defined as very late antigen-4 (VLA4), commonly found in MSC [89],
and the α8 subunit, resulting in alternate Osteopontin SPP1 receptors [90].

Yamakosi et al. discovered that the subunits of SPP1-binding ITGs are increased during
embryo attachment, implying a role in trophoblast adhesion to the uterine epithelium
in cows [57]. Furthermore, ITG on EVs has been shown to guide organ-specific EVs
uptake to induce pre-metastatic niche development in a tumor environment [57]. Similarly,
integrin expression profiles of trophectoderm-secreted exosomes may be advantageous for
managing maternal MSCs in the implantation niche. They may be considered diagnostic
biomarkers to predict successful maternal immunoregulation to prevent embryo rejection.
The principal counter ligand of ITGα4β1, vascular cell adhesion molecule-1 (VCAM-1),
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is critical in leukocyte recruitment during an immunological response [91]. According to
Bai et al., uterine VCAM-1 expression was low in cyclic and pregnant animals on day 17
but enhanced between days 20 and 22 of pregnancy [89]. The authors also observed that
uterine flushings increased VCAM-1 expression in CT-1 cells (a primary trophoblast culture
grown using STO mouse feeder cells) [57]). Additionally, VCAM-1 expression is increased
in the cargo of mesenchymal trophectoderm cells-EVs. [31]. Galectin 3 (LGALS3), which
also plays an important role in immune system regulation by regulating both innate and
adaptive responses in physiological and pathological processes [92], has been linked to the
implantation process [93] and is overexpressed in mesenchymal trophectoderm cells-EV
cargo [31].

Many invasive, proliferative, and immunological tolerance processes that allow for
pregnancy also occur in malignant tumors to promote angiogenesis to ensure nutrition
supply and induce an immunologically depressing environment to elude the host’s immune
response [94–96]. Thus, understanding how all these factors interact during the physiologic
process of pregnancy could also aid in the development of new cancer treatment options.

4.4. Maternal MSC-EV-Cargo Modulate Embryonic EV-Cargo

After studying the changes in the secretome of the embryonic trophectoderm as it
develops during preimplantation, it would be fascinating to learn how it is modulated by
the communication with maternal mesenchymal populations via EVs. For that purpose,
MSCs have been first stimulated with implantation signals: Activin A, a member of the
TGF-ß superfamily, and FSLT1as an activin A inhibitor [97]. FLST1 increase on day 20
uterine flushing and decrease on day 22, according to Kusama et al., whereas activin A
elevates on day 20 and increase on day 22. Furthermore, Kusama et al. found that FLST
reduced Activin A-induced EMT marker expressions in CT-1 embryonic trophectoderm
cells [61]. Activin A or Activin + FLST1 stimulation of embryonic trophectoderm cells with
either an epithelial or mesenchymal phenotype resulted in the secretion of implantation
proteins (TDGF1, HSPH1, MMP2, and PEG3 [86]) in their EV-cargo [31]. Other authors
also found a significant rise in the expression of TDGF1 at day 12, which they linked to
the process of invasive growth and embryo implantation [98]. Hatayama et al. found a
significant rise in HSPH1 expression in mouse embryos between days 9 and 12, which
coincided with organogenesis, and they attributed HSPH1 a role in organogenesis during
embryonic development [99]. Yuan et al. later discovered that HSPH1 was present in rat
embryos [100]. A substantial expression of HSPH1 in EVs from trophectoderm with the
epithelial phenotype was seen in vitro, which was further amplified in the presence of
Activin A. HSPH1 expression was much lower in EVs from embryonic trophectoderm with
a mesenchymal characteristic [31].

5. Challenges and Obstacles in Bovine Embryo-Maternal Communication Study When
a Third Viral Actor Breaks in

The main viral pathogens that cause abortion in cattle, sheep, and goats are pestiviruses
and herpesviruses [101,102]. However, there is also evidence of naturally occurring abortion
and vertical transmission of an Aphthovirus in cattle [103].

The genus Pestivirus contains the bovine viral diarrhea virus (BVDV), and the Herpesviridae
family includes the bovine alphaherpesvirus 1 (BoHV-1) and the bovine gammaherpesvirus 4
(BoHV-4). These three viruses attack cattle’s uterus and cause significant economic losses in
livestock production [104,105]. Most herds are at risk of infection with bovine viral diarrhea,
one of the most common bovine diseases [102].

For laboratory studies, the epithelial cell line Madin Darby Bovine Kidney (MDBK)
is commonly used for the in vitro multiplication of BVDV [106–108], BoHV-1 [107,109],
and BoHV-4 [110–112]. In addition, the susceptibility of primary endometrial cultures to
BoHV-4 and BVDV has been reported [102,113,114]. Furthermore, BoHV-4 infects both
endometrial epithelial cells and endometrial stromal cells [114–116]. The infection ability of
in vitro-produced embryos by BoHV-1 [117–119] and BoHV-4 [111] has also been reported.
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The genus Aphthovirus within the family Picornaviridae contains the foot-and-mouth
disease virus (FMDV). During the 2001 outbreak in the United Kingdom, large numbers
of abortions were documented within 24 h of the onset of lameness in sheep flocks. In
addition, the same FMDV strain that caused the UK 2001 outbreak was later shown
to be able to cross the placenta and cause fetal death in newborns under experimental
conditions [120,121]. However, there is still a limited description and investigation of
FMDV vertical transmission.

The most successful experimental model systems for FMDV isolation, culture, assay,
and investigation are cell lines obtained from hamster kidneys (BHK-21) and swine kidneys
(PK-15, IB-RS-2, and SK-6) [122]. The relative receptivity of these cell lines to different viral
strains varies, leading to virus mutation through virus culture. Furthermore, the FMDV
sensitivity of the fetal goat tongue cell line ZZ-R 127 was validated [123]. A primary bovine
thyroid (BTY) cell with a high susceptibility to the cow virus was reported [124]. However,
primary BTY cells cannot be passaged or frozen without losing their sensitivity. Thus, the
preparations of primary BTY cells need the sacrifice of a bovine fetus to get thyroid tissues
during the research and diagnostic procedure, which is at odds with the intended aim of
“animal welfare” and is both time-consuming and tedious. Mao et al. reported establishing
a bovine thyroid cell line (hTERT-BTY) as a tool or an in vitro model to separate, culture,
and assay FMDV to study FMDV host-virus interaction [122].

The first reported FMDV receptor, αvβ3, is predominantly expressed in endothelial
cells. αvβ6 is highly expressed in the epithelial cells of FMDV target tissues. This is also
consistent with the fact that FMDV frequently targets epithelial cells during infection [125].
The reported FMDV receptors include, in addition to the integrin receptors, the heparan
sulfate (HS) receptor and a third receptor that has not been yet identified [126].

The role of EVs in viral pathogenesis is being investigated because of their crucial role
in mediating intercellular communication. On the one hand, some studies address how
EVs are regulated by viruses, focusing on the composition and function of virus-regulated
EVs, isolation methods of EVs in the context of virus infection, and prospective antiviral
therapies based on EVs utilization. On the other side, researchers are looking at how
viral components influence exosome synthesis, composition, and secretion [127,128]. In
the context of maternal-embryonic communication, each of the viruses responsible for
abortions in cattle (BVDV, BoHV, and FMDV) our knowledge is still incomplete.

Regarding BoHV, the comparable size of smaller EVs and herpesvirus particles, either
representing entire enveloped virions in the range of 140–200 nm or non-infectious virus-
like particles [129], makes investigations on EVs from herpesvirus-infected cells difficult,
restricting the use of several well-known EV separation methods, such as size-exclusion
chromatography (SEC). In addition, the herpesvirus assembly and exosome biogenesis
pathways may have several common points, as evidenced by human herpesvirus 6 in
particular [130]. Exosome formation and alphaherpesvirus virion morphogenesis share
certain components of the endosomal sorting complex essential for transport (ESCRT)
machinery, like ESCRT-III complex components and Vps4 ATPase [131,132]. Not only is
herpesvirus envelope glycoprotein B (gB) an important component of the virus entrance
complex, but it is also one of the most well-studied EVs-incorporated viral proteins (for
HCMV and HSV-1) [109].

In the case of BVDV, to date there is no information on the implications of EVs in viral
pathogenesis, virus-regulated EVs, or possible EVs-isolation methods in the presence of
viral particles nor on antiviral therapies based on EVs.

Exosomes produced by FMDV-infected cells have been found to contain FMDV RNAs
and most of the viral proteins, enabling productive infection in vitro and in vivo. Further-
more, NAbs have no effects on FMDV infection spread via exosomes. Taken together, the
findings suggest that FMDV transmission via exosomes contributes to FMDV’s recognized
immunological evasive characteristics [133]. Moreover, FMDV suppresses the secretion of
exosomes, suppressing the host cell’s exosome-mediated antiviral immune response [134].
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Considering the preceding, it is of great interest to explore the main roles played by
mesenchymal stem cells in embryo-maternal communication under healthy conditions in
the subsequent stages of preimplantation and embryonic development in which elongating
bovine blastocysts are classified as ovoid, tubular, or early filamentous based on their
shape and size. Moreover, it is also of significant scientific interest to examine the changes
within that communication via EVs, and when virus infection occurs throughout the
preimplantation stage.
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