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Abstract 

Background:  Virus transmission from various wild and domestic animals contributes to an increased risk of emerg‑
ing infectious diseases in human populations. HTLV-1 is a human retrovirus associated with acute T-cell leukemia 
and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 originated from ancient zoonotic 
transmission from nonhuman primates, although cases of zoonotic infections continue to occur. Similar to HTLV-1, 
the simian counterpart, STLV-1, causes chronic infection and leukemia and lymphoma in naturally infected monkeys, 
and combined are called primate T-lymphotropic viruses (PTLV-1). However, other clinical syndromes typically seen 
in humans such as a chronic progressive myelopathy have not been observed in nonhuman primates. Little is known 
about the development of neurologic and inflammatory diseases in human populations infected with STLV-1-like 
viruses following nonhuman primate exposure.

Results:  We performed detailed laboratory analyses on an HTLV-1 seropositive patient with typical HAM/TSP who 
was born in Liberia and now resides in the United States. Using a novel droplet digital PCR for the detection of the 
HTLV-1 tax gene, the proviral load in PBMC and cerebrospinal fluid cells was 12.98 and 51.68 %, respectively; however, 
we observed a distinct difference in fluorescence amplitude of the positive droplet population suggesting possible 
mutations in proviral DNA. A complete PTLV-1 proviral genome was amplified from the patient’s PBMC DNA using 
an overlapping PCR strategy. Phylogenetic analysis of the envelope and LTR sequences showed the virus was highly 
related to PTLV-1 from sooty mangabey monkeys (smm) and humans exposed via nonhuman primates in West Africa.

Conclusions:  These results demonstrate the patient is infected with a simian variant of PTLV-1, suggesting for the 
first time that PTLV-1smm infection in humans may be associated with a chronic progressive neurologic disease.
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Background
Virus transmission from various wild and domestic ani-
mals has contributed to the increased risk of emerging 
infectious diseases in human populations. Several recent 
endemics, such as avian flu, Human immunodeficiency 
virus (HIV) and ebola, originated from wild animals and 
which often are asymptomatic but which might induce 

severe diseases and a pandemic threat in humans [1]. 
Nonhuman primates (NHP) can be sources of viruses 
that infect humans and are well-characterized in the 
natural host and as animal models for some retroviruses 
[2]. Human T-cell lymphotropic virus type 1 (HTLV-1) is 
also known to originate from cross-species infection with 
simian counterparts, simian T-cell lymphotropic virus 
type 1 (STLV-1) [3, 4]. The majority of HTLV-1 infec-
tions remain asymptomatic, but small subsets of infected 
individuals develop a disease associated with the virus, 
such as adult T-cell leukemia (ATL), HTLV-1 associated 
myelopathy/tropical spastic paraparesis (HAM/TSP), and 
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other inflammatory diseases [5–7]. HTLVs and STLVs 
constitute the primate T-lymphotropic viruses (PTLV) 
and share some common epidemiological and biological 
features [4]. Phylogenetic analysis showed that HTLV-1 
contains at least seven major subtypes (HTLV-1a to g) [4, 
8]. Most humans are infected with the globally distributed 
HTLV-1 cosmopolitan subtype a which is the only sub-
type known to be human-restricted and associated with 
HAM/TSP and ATL. In contrast, the remaining six sub-
types closely cluster with STLV-1 strains, of which, five 
human subtypes together with simian strains are all found 
in central Africa [4, 9]. Recent epidemiological studies 
showed that NHP hunters in Cameroon and the Ivory 
Coast were infected with viruses closely related to STLV-1 
strains circulating among local NHPs [9–12], suggesting 
that, in Africa, recent or ongoing interspecies transmis-
sion between simians and humans might likely occurs 
by severe bites of NHPs and during the collection and 
consumption of NHP bushmeat [11, 12]. STLV-1 infects 
a wide variety of Old World primate species of African 
and Asian origin [2]. Similar to HTLV-1, most STLV-1-in-
fected monkeys remain asymptomatic, but only a small 
subset of monkeys develops STLV-associated lymphoma/
leukemia that shares clinical and pathological features 
with ATL in humans [13, 14]. However, other clinical 
syndromes typically seen in humans, such as HAM/TSP, 
have not been reported in NHPs [6, 7]. Moreover, little is 
known about the development of neurologic and inflam-
matory diseases in human populations infected with 
STLV-1-like viruses following NHP exposures. The lack of 
disease association in STLV-1-infected NHPs and human 
likely results from the absence of long term systematic 
follow-up of these subjects as retroviral disease can take 
decades to present. Therefore, STLV-1 that cross the spe-
cies barrier to humans and cause virus-associated neuro-
logic and inflammatory diseases after chronic infection 
would be of significant public health interest.

Here we demonstrate the detection and sequencing of 
the complete PTLV-1 genome obtained from a patient 
with neurologic disease consistent with HAM/TSP. Phy-
logenetic analysis showed the virus closely clustered with 
STLV-1 from NHPs in West Africa. These results demon-
strate that the patient is infected with the simian variant 
of PTLV-1, suggesting for the first time that infection of a 
PTLV-1 strain, clustered with STLV-1 strains from sooty 
mangabey monkeys, is associated with a chronic, inflam-
matory, progressive neurologic disease in humans.

Results
Clinical follow‑up
Patient NIH00261 was a 65-year old, African male who 
was originally from Monrovia, Liberia and immigrated 
to the United State (U.S.) in the 1980s. He was diagnosed 

with HAM/TSP for approximately 20 years. On examina-
tion, he was found to have spasticity and increased reflexes 
in the lower extremities, moderate lower extremity weak-
ness, a spastic adductor gait, and decreased sensation to 
vibration in the lower extremities. His disability score was 
6.5 in the expanded disability status scale (EDSS) and 16 
in the Instituto de Pesquisa Clinica Evandro Chagas dis-
ability scale (IPEC). Both serum and CSF from the patient 
were reactive to HTLV-1 proteins including envelope 
(Env; rgp46-1 and GD21) and Gag (p19 and p24) (Fig. 1a). 
Other causes of chronic myelopathy were excluded: labo-
ratory testing for Lyme antibody, B12, folate, copper, rapid 
plasma reagin, HIV-1 and -2, and rheumatology panel 
were all negative or within normal limits; cerebrospinal 
fluid (CSF) analysis showed no evidence of malignancy or 
other infectious etiologies; and magnetic resonance imag-
ing (MRI) showed no evidence of spinal cord compression, 
tumor, syrinx, or transverse myelitis. The spinal cord MRI 
of the patient NIH00261 exhibited atrophy of the entire 
spinal cord as seen in the mid-sagittal (T1–T6) and axial 
(T1) T2 weighted scan (Fig. 1b-i, b-ii). Based on the atro-
phy quantification method [15], we compared the spinal 
cord cross-sectional area of the patient NIH00261 (black 
line) to those of the other HAM/TSP patients (green) 
and normal healthy donors (NDs; blue) (Fig.  1b-iii). The 
result showed that the entire length of the spinal cord was 
atrophic in the patient NIH00261, consistent with a clini-
cal finding of HAM/TSP [15].

Immunologic analysis
HAM/TSP patients have been reported to show an 
increased effector T cell phenotype in peripheral blood 
with increased CD8+ T cells in the CSF compared to 
NDs [16, 17]. Similar to the HAM/TSP group, patient 
NIH00261 also had increased effector T cell pheno-
types, including effector/memory and effector cells in 
both CD4+ and CD8+ T cells compared to the con-
trol ND group (Fig. 2a-ii). As typical for HAM/TSP, the 
CD4:CD8 ratio was 1.06 in the patient’s CSF due to a 
higher frequency of CD8+ T cells in his CSF (Fig. 2b). In 
addition, an established measure of ex  vivo T cell acti-
vation in HAM/TSP is the well-described observations 
of increased spontaneous lymphoproliferation [18]. In 
patient NIH00261, spontaneous lymphoproliferation was 
also significantly increased linearly during culture com-
pared to ND (Fig. 2c). Collectively, these ex vivo immu-
nological observations are consistent with a diagnosis of 
HTLV-1-associated inflammatory neurologic disease in 
patient NIH00261.

Virologic analysis
Droplet digital PCR (ddPCR) was recently shown to be a 
precise and reliable method for HTLV-1 proviral DNA 



Page 3 of 13Enose‑Akahata et al. Retrovirology  (2016) 13:56 

load quantification in samples with low amounts of nucleic 
acids and for detection of viral mutants in the target gene 
sequence [19]. Using ddPCR, the proviral load for patient 
NIH00261 was determined to be 12.98 and 51.68  % in 
peripheral blood mononuclear cells (PBMCs) and CSF 
cells, respectively (Fig.  3a). As previously reported [20], 
higher HTLV-1 proviral loads in CSF cells compared to 
PBMC also supports the diagnosis of HAM/TSP in patient 
NIH00261. It has been demonstrated that increased lev-
els of HTLV-1 in CSF cells can differentiate HAM/TSP 
from other neurologic disease (such as patients with mul-
tiple sclerosis infected with HTLV-1) and a concomitant 
HTLV-1 infection [20]. While there was clear PCR reactiv-
ity in both CSF cells and PBMC specimens from patient 
NIH00261 (Fig. 3a), unexpectedly, the fluorescence ampli-
tude of tax sequence was lower in patient NIH00261 com-
pared to a typical HAM/TSP patient NIH00565 (HTLV-1 
proviral load; 17.55  %) (Fig.  3a). CSF cells from patient 
NIH00261 also showed the lower fluorescence amplitudes 
for detection of the tax sequence, which was identical to 
that observed in the PBMCs of this patient (Fig. 3a). Since 
fluorescence amplitude reflects the binding affinity of the 
primers and probe to the target DNA, these results sug-
gested that patient NIH00261 might be infected with an 
HTLV-1 strain with potential mutations in both peripheral 
blood and CSF that are different from prototype HTLV-1.

To confirm the presence of genetic mutations in the 
HTLV-1 from patient NIH00261, we analyzed the tax 
sequences generated with the ddPCR primers (154-
bp) from the PBMC of this patient. Sequence analysis 
demonstrated eight point mutations including one in 
the probe-binding region of the HTLV-1 from patient 
NIH00261 compared to a reference sequence from a 
prototypic variant of HTLV-1 cosmopolitan subtype 
a (HTLV-1 ATK; Fig.  3b), which is most prevalent 
in the U.S. and the sequence variability within these 
strains are very low [8]. These mutations in patient 
NIH00261 were not observed in the sequence from 
a HAM/TSP patient NIH00565 as well as the other 
HTLV-1 cosmopolitan subtype a variants (boi and 
TSP-1). Interestingly, the tax sequence from patient 
NIH00261 seemed to have similar variations with 
some African STLV-1 strains (Fig.  3b). Therefore, we 
generated the complete HTLV-1 genome present in 
patient NIH00261 by PCR-amplification from PBMC 
DNA of nine overlapping subgenomic fragments. The 
complete genome of HTLV-1NIH00261 is 9035-bp in 
length. The overall genomic organization of HTLV-
1NIH00261 is similar to other PTLV-1, including the 
presence of intact structural, replication, and regula-
tory genes (gag, protease (pro), polymerase (pol), env, 
tax, rex, p12I, and p30).
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Fig. 1  Characteristics of a patient with HAM/TSP (NIH00261). a Detection of HTLV-1-specific antibody responses in serum and CSF of patient 
NIH00261 by Western blot testing. b MRI analysis of patient NIH00261. MRI T2-weighted imaging of the patient’s thoracic cord depicting atrophy 
of the thoracic spinal cord, with a sagittal view of the upper part of the thoracic spine (i) and an axial image at level T1 (ii). iii Profile of the cross-
sectional area along the length of the spinal cord in the patient (black line). Shaded region represent 5 standard errors of the mean in normal healthy 
donors (NDs) (blue, n = 10) and HAM/TSP patients (green, n = 10)
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Phylogenetic analysis of PTLV‑1
BLAST analysis identified HTLV-1 and STLV-1 LTR 
and env sequences from Cote d’Ivoire (IC) as having the 
greatest nucleotide identity to HTLV-1NIH00261 [10]. The 
HTLV-1NIH00261 LTR sequence (756-bp) is 99.8  % iden-
tical to HTLV-1_Gah050_IC (575-bp) and HTLV-1_
Kei005_IC (551-bp) and shared 97.7  % identity with 
HTLV-1_Pau009_IC and about 98.5 % with STLV-1_Cat_
IC (strains 487, 753, 754; 549-bp in length each) from 
wild sooty mangabey monkeys (Cercocebus atys). Simi-
larly, the env gene (1464-bp) had the highest nucleotide 
identity (>99 %) to STLV-1 strains from wild mangabeys 
from Cote d’Ivoire and from captive mangabeys at two 
U.S. primate centers [10, 21, 22].

To further investigate these genetic relationships, we 
performed detailed phylogenetic analyses using ML and 
Bayesian inference using both LTR and env datasets. 

Both methods confirmed that the HTLV-1NIH00261 LTR 
was closely related with HTLV-1 and STLV-1 sequences 
found in Cote d’Ivoire with strong statistical support 
(Fig. 4). In the LTR trees, three of these HTLV-1 strains 
(HTLV-1_Gah050, HTLV-1_Kei005, and HTLV-1_
Pau009) were reported to be from persons residing in 
villages close to the Taï National Park, Cote d’Ivoire, and 
who were exposed to NHPs through activities such as 
bushmeat preparation and consumption [10]. Within this 
PTLV-1 LTR cluster (PTLV-1smm), five STLV-1 strains, 
including three STLV-1_Cat (487, 754, and 753) and two 
STLV-1_Ptr (Loukoum and Leo), have been reported to 
be isolated from sooty mangabeys and chimpanzees (Pan 
troglodytes; Ptr), respectively, in the Taï National Park, 
Cote d’Ivoire [10, 23].

Phylogenetic analysis of the env sequences showed that 
HTLV-1NIH00261 also clustered with six STLV-1 isolated 
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from wild sooty mangabeys in Sierra Leone (SL121, 
SL134 and SL135) and from Cote d’Ivoire (Cat487, 
Cat753, and Cat754) and with seven STLV-1 from cap-
tive sooty mangabeys housed at the Yerkes National Pri-
mate Research Center (YNPRC) and the Tulane National 
Primate Research Center (TNPRC) (Fig. 5) [21, 22]. Since 
previous studies of STLV-1sm strains at YNPRC and 
TNPRC suggested that the colonies of sooty mangabeys 
in the U.S. originated from Sierra Leone [22], phyloge-
netic analysis of the env region demonstrated that HTLV-
1NIH00261 is highly related with PTLV-1smm strains; 
HTLV-1 strains in humans exposed via NHP and STLV-1 
isolated from sooty mangabeys in West Africa.

Discussions
PTLVs are deltaretroviruses which by conventional 
nomenclature are named STLVs when found in NHPs 
and HTLVs when found in humans, regardless of sus-
pected zoonotic origin [4]. A similar nomenclature is 
widely used for HIV and their simian counterparts, 
SIV. Since PTLV genomes are generally stable and their 

nucleotide substitution rates are significantly lower than 
those of corresponding lentiviruses, such as HIV and 
SIV, phylogenetic analysis of PTLV strains from endemic 
human and simian populations is useful to trace the ori-
gin of the virus [24]. Phylogenetic analyses of PTLV-1 
corroborated that human and simian strains are inter-
spersed in some subtypes, while others are mainly com-
prised of human strains without simian counterparts. 
In Central Africa, STLV-1 strains from chimpanzees or 
mandrills are indistinguishable from HTLV-1 strains of 
subtype b or d strains, respectively [25–27]. Human and 
simian subtype f strains from Gabon and Cameroon are 
also closely related [26, 28, 29]. However, for the cosmo-
politan subtype a, which has spread globally, an STLV-1 
counterpart has not yet been identified [8]. Phylogenetic 
analyses of PTLV-1 therefore have demonstrated that 
HTLV-1 arose several times from STLV-1 strains by geo-
graphically separate interspecies transmissions [8].

In our study, we identified HTLV-1 infection in a male 
who migrated from Liberia to the U.S. about 30 years ago. 
HTLV-1 PCR reactivity was initially demonstrated using 
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a novel ddPCR methodology that is a third generation 
PCR technique that enables the high-precision, direct 
absolute quantification of nucleic acid target sequences 
in a given sample [30]. This approach provides wide-
ranging applications for quantification of viral DNA 
[31], detection of more than two target genes (multiplex 
assay) [32], and importantly has been used to capture 
rare mutagenesis event [33]. We have reported previously 
that mutations in regions of HTLV-1 PCR binding probes 
could be identified using ddPCR [19] and exploited this 
observation when it was apparent that HAM/TSP patient 
NIH00261 demonstrated a lower fluorescence ampli-
tude of the HTLV-1 tax sequence in both PBMC and 
CSF when compared to other HAM/TSP patients. This 
prompted us to obtain a complete, intact viral genomic 
sequence using PBMC DNA from this patient by PCR 
amplification of overlapping gene regions for further 
genetic characterization.

Phylogenetic characterization of two subgenomic 
regions, LTR and env, showed that the virus in this indi-
vidual was highly similar to PTLV-1smm strains; STLV-
1sm found in sooty mangabey monkeys and in persons 
from West Africa with a history of NHP exposure, includ-
ing preparing and consuming NHP bushmeat, and who 
were infected with STLV-1sm from sooty mangabeys liv-
ing nearby in the Tai National Forest [10]. These results 
suggest that our patient is also infected with a PTLV-
1smm virus and thus raises questions about the origin 
of his infection. Patient NIH00261 had at least three 
possible risk factors for PTLV-1 transmission: a blood 
transfusion from his father, mother-to-child transmis-
sion and sexual contacts (with multiple wives). It remains 
unknown if the PTLV-1 infection occurred through intra-
familial transmission because HTLV seropositivity in his 
parent and spouses are unknown. Although the exact 
route of viral transmission is not clear in the patient, it 
possible that all potential risks likely happened to the 
patient while he still lived in Liberia. In the U.S., HTLV-1 
prevalence is about 0.03 % which consists almost entirely 
of the cosmopolitan subtype a [8]. Although direct con-
tact between STLV-1-infected NHPs and human is 
absent or very rare in the U.S. [34], increased global 
travel and immigration have contributed to the increased 
risk of virus transmission from various wild and domes-
tic animals in human populations. For example, it has 

recently been reported that a new strain of HIV-2 was 
isolated from an immunodeficient patient in New Jersey, 
which clustered with SIV strains from sooty mangabeys 
in Sierra Leone from which the patient immigrated [35]. 
Our patient immigrated to the U.S. in the 1980s and was 
confirmed to have anti-HTLV-1 antibody responses and 
HTLV-1 infection in 1998. At that time, since there was 
no concern for any other PTLV-1 other than HTLV-1 
in patient NIH00261, comparative viral genomic analy-
sis was not performed and there was no precise screen-
ing method to distinguish between HTLV-1 and STLV-1 
infection. The novel ddPCR assay used in our study can 
simultaneously determine viral loads and detect genetic 
polymorphism that can be further evaluated by sequence 
analysis [19]. Our finding also highlights that additional 
analysis of HTLV-1-infection is needed in persons where 
NHPs are endemic, or in infected persons migrating from 
those areas to non-endemic regions to fully understand 
the prevalence and spread of these PTLV-1 infections 
closely related to STLV-1 from NHPs.

Similar to HTLV-1, STLV-1 causes chronic infection 
and leukemia and lymphoma in naturally infected mon-
keys [13]. Although some clinical signs such as rash and 
bladder dysfunction have been reported in pig-tailed 
macaques infected with STLV-1sm [36], to date, cases 
of other clinical syndromes, such as a chronic progres-
sive myelopathy, have not been reported in NHPs. In 
human, several HAM/TSP cases have been reported in 
Africa where HTLV-1 strains cluster with STLV-1 strains 
[4, 37]. Especially in Central Africa, high frequency of 
HAM/TSP cases have been reported in northern Zaire 
concomitant with a high HTLV prevalence in the popu-
lation [37–40], and most of the Central African strains 
clustered into HTLV-1 subtype b which clusters with 
STLV-1 strains from chimpanzee [4, 8]. These results sug-
gested that HAM/TSP might be also caused by HTLV-1 
closely related to STLV-1 strains from NHPs, but it is 
still not clear about the clinical and epidemiological data 
on HAM/TSP in Africa, immigrants from Africa and 
humans infected with PTLV-1 closely related to STLV-1 
strains following NHP exposure. Patient NIH00261 has 
all the clinical characteristics of HAM/TSP associated 
with typical virological and immunological features, 
including increased proviral load in CSF, spontaneous 
proliferation, effector T cell phenotypes and CD8+ T cell 

(See figure on previous page.) 
Fig. 4  Phylogenetic analysis of PTLV-1 LTR sequences. a Maximum likelihood (ML) tree inferred using 207 HTLV-1 and STLV-1 taxa and an LTR align‑
ment of 732 positions. Node support determined using 1000 nonparametric bootstraps. Only bootstrap values >60 are shown. b Bayesian-inferred 
tree using a subset of LTR sequences identified from the ML analysis as having high genetic identify to HTLV-1NIH00261 and using selected West 
African, cosmopolitan, and Australomelanesian reference HTLV-1s for a total of 29 taxa. Posterior probabilities ≥0.7 are shown at nodes. Scale bar is 
in unit of time relative to the mean substitution rate used for the analysis. HTLV-1NIH00261 is shown in green text and with a green arrow. HTLV-1 from 
three Africans infected with STLV-1 from sooty mangabey monkeys are shown in blue text
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infiltration into the central nervous system [16–18, 20]. 
Therefore, since it is well established that specific viral 
genetic mutations in HTLV-1 are not associated with 
the development of HAM/TSP [41, 42], our results are 
the first to document that an PTLV-1smm infection in 
humans is associated with a chronic, inflammatory, pro-
gressive neurologic disease. To further explore an asso-
ciation of disease development with this specific strain or 
PTLV-1 infection from NHPs, systematic epidemiologic 
studies of PTLV-1 infections in human populations will 
further improve our knowledge of the pathogenic poten-
tial of PTLVs. Such studies will also facilitate determining 
if this HTLV-1 variant is also spreading in humans.

Conclusions
We provide evidence that PTLV-1smm transmission to 
a human is associated with a chronic progressive neuro-
logic disease. Further studies of PTLVs are thus essential 
for understanding the causes of virus-associated neuro-
logic and inflammatory diseases after chronic infection.

Methods
Case history
Patient NIH00261 was a 65-year old, African male who 
was diagnosed with HAM/TSP in 1998. He was originally 
from Monrovia, Liberia and immigrated to the U.S. in 
the 1980s. His symptoms started in the early 1990s with 
the sub-acute onset of difficulty walking and neurogenic 
bladder symptoms, which slowly progressed over the 
ensuing years to the point of needing a cane with ambu-
lation in 1996, and a walker in 2000. He also had lower 
extremity spasms, occasional paresthesias and sensory 
loss in his lower extremities, as well as chronic constipa-
tion. He was diagnosed in the setting of a work-up for a 
lower extremity deep vein thrombosis that he developed 
in 1997. He was seen at the National Institutes of Health 
(NIH) for the first time in 1998 for evaluation, where he 
was confirmed to have anti-HTLV-1 antibody responses 
by Western blot and HTLV-1 DNA by PCR and had a 
full work-up to exclude other causes for myelopathy. 
On examination, he was found to have spasticity and 
increased reflexes in the lower extremities, moderate 
lower extremity weakness, a spastic adductor gait, and 
decreased sensation to vibration in the lower extremities. 
He was lost to follow up until 2012, when he returned 

for evaluation at the NIH. Over this time period, he had 
continued slow progression of his neurologic symptoms 
and did not receive any medical treatments. The patient 
had a transfusion from his father at the age of 11 while he 
still lived in Liberia; the HTLV-1 serostatus of his parent 
and spouses (multiple wives) were unknown; he denied 
any IV drug use, and while he admitted to eating bush-
meat while living in Liberia, he denied ever preparing it 
or coming into close contact with living NHPs.

Magnetic resonance imaging (MRI) analysis
MRI of the cervical and thoracolumbar spinal cords was 
done as previously reported [15]. Briefly, MRI was per-
formed on a 3T Skyra system (Siemens) equipped with a 
20-channel head-neck coil and a 16-channel spine-array 
coil. T1-weighted images were acquired in the cervical 
spine using 3D-gradient-echo sequences with field-of-
view (FOV) = 256 mm, TR = 7.8 ms, TE = 3 ms, 1 mm 
isotropic resolution, and flip angles of 16°, GRAPPA = 2, 
for a scan time of about 3.5  min. The sequence was 
repeated for the thoracic spine, which contains the thora-
columbar cord, by changing the FOV and base resolution 
to 320  mm in order to cover the larger anatomy while 
maintaining the 1  mm isotropic resolution. Additional 
sequences were also used in the cervical and thoracic 
regions, including short tau inversion recovery (STIR), 
T2-weighted, T1-MPRAGE, and axial gradient echo.

The cervical and thoracic cords were imaged separately 
to minimize distortion artifacts at the edge of the imaging 
region, and 3D distortion correction was used. For analy-
sis, the C- and T-spine images were stitched together 
using their DICOM information and AFNI’s 3dCalc func-
tion and analyzed as a single image. When DICOM infor-
mation was unable to stitch properly, a few user-placed 
landmarks near vertebral disks joined the two analyses.

Specimen preparation
PBMCs were isolated from fresh whole blood using 
Ficoll-Hypaque (Lonza) centrifugation. Following isola-
tion, PBMCs were cryopreserved in liquid nitrogen or 
stored as a cell pellet at −80 °C until use. CSF was cen-
trifuged at 1300 rpm for 10 min at 4 °C immediately after 
collection by lumbar puncture. The CSF supernatant and 
the cell pellet were collected and stored at −80  °C until 
use.

(See figure on previous page.) 
Fig. 5  Phylogenetic analysis of PTLV-1 envelope (env) sequences. a ML tree inferred using 269 HTLV-1 and STLV-1 taxa and an env alignment of 
426-bp. Node support determined using 1000 nonparametric bootstraps. Only bootstrap values >60 are shown. Cosmo: cosmopolitan. b Bayesian 
inferred tree using a subset of env sequences identified from the ML analysis as having high genetic identify to HTLV-1NIH00261 and using selected 
West African, cosmopolitan, and Australomelanesian reference HTLV-1s for a total of 49 taxa. Posterior probabilities ≥0.7 are shown at nodes. Scale 
bar is in unit of time relative to the mean substitution rate used for the analysis. HTLV-1NIH00261 is shown in green text and with a green arrow. HTLV-1 
from three Africans infected with STLV-1 from sooty mangabey monkeys are shown in blue text
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Western blot analysis
Serum and CSF samples were tested for confirmation 
of HTLV-1/2 antibodies using HTLV Blot 2.4 kit (MP 
Biomedical) following the manufacturer’s instructions. 
Serum and CSF were diluted 1:50 for testing.

Flow cytometry
For analysis of lymphocyte populations in peripheral 
blood and CSF, EDTA-treated whole blood or CSF cells 
were stained with antibodies for CD3, CD4, CD8, CD14, 
CD19, CD27, CD45, CD45RA and CD56 (all from BD Bio-
sciences) and analyzed using a flow cytometer (LSRII; BD 
Biosciences). Data analysis was performed using FlowJo 
software (Tree Star). Effector T cell phenotypes including 
effector/memory and effector phenotypes were defined as 
CD27−CD45RA− and CD27−CD45RA+, respectively. The 
Mann–Whitney Test was used to compare effector T cell 
phenotypes and CD4:CD8 ratio between NDs and HAM/
TSP patient using Prism (GraphPad software).

Lymphoproliferation assay
Measurement of lymphoproliferation was performed as 
previously described [43]. PBMCs were plated in triplicate 
at a concentration of 3 × 105 cells/well and were cultured 
in a 5 % CO2 incubator at 37 °C. The cells were pulsed after 
3–5 days of culture for 4 h with 1 μCi [3H] thymidine. The 
average cpm from each of the wells was plotted.

HTLV‑1 proviral DNA load
HTLV-1 proviral DNA load was measured using ddPCR 
(Bio-Rad) as previously described [19]. DNA was 
extracted from the PBMC and CSF cell pellets using a 
DNeasy Blood and Tissue kit (Qiagen) according to the 
manufacturer’s instructions. DNA was digested with 
the restriction enzyme BamH1 (New England Biolabs) 
for 30  min at 37  °C, and diluted 1:5 with PCR-certified 
water. The digested, diluted DNA was mixed with both 
HTLV-1 tax and human ribonuclease P protein subu-
nit 30 (RPP30) primers and probes and Bio-Rad 2× 
Supermix, and then emulsified with droplet generator 
oil using a QX-100 droplet generator according to the 
manufacturer’s instructions (Bio-Rad) [19]. The follow-
ing primers and probe were used to amplify and detect 
a 154 base pair region of HTLV-1 tax: ddPCR HTLV-1 
tax F: 5′-CTTATTTGGACATTTACCGATG-3′; ddPCR 
HTLV-1 tax R: 5′-TGAGGCCGTGTGAGAGTAGA-3′; 
ddPCR HTLV-1 tax probe: 6FAM-TGATTTCCGGGC 
CCTGC-MGBNFQ [19]. The droplets were then trans-
ferred to a 96-well reaction plate (Eppendorf ) and heat-
sealed with pierceable sealing foil sheets (Thermo Fisher 
Scientific). The duplex PCR amplification was performed 
in this sealed 96-well plate using a GeneAmp 9700 ther-
mocycler (Applied Biosystems) [19]. Following PCR 

amplification, the 96-well plate was transferred to a 
QX100 droplet reader (Bio-Rad). For proviral load calcu-
lation, QuantaSoft software version 1.3.2.0 (Bio-Rad) was 
used to quantify the copies/μl of each queried target per 
well. All samples were tested in duplicate, unless other-
wise specified, and proviral load is reported as the average 
of the two measurements. The proviral load was calcu-
lated using the following formula: proviral load = {quan-
tity of HTLV-1 tax/(quantity of RPP30/2)} × 100 %.

Viral genome sequencing
Table  1 lists the primers used to obtain the complete 
PTLV-1 genome from patient PBMC DNA using PCR to 
generate nine overlapping fragments. PCR amplification 
was performed using Platinum® PCR SuperMix High 
Fidelilty (Life Technologies) as follows: 10 min at 94  °C, 
30 cycles consisting of a 30 s denaturation at 94 °C, a 30 s 
annealing at 55  °C, and a 60  s extension at 68  °C. PCR 
products were electrophoresed on 1 % agarose gel, then 
extracted and purified using a QIAquick gel extraction 
kit (Qiagen). The purified PCR product was ligated with 
the pCR-4™ TOPO® TA cloning vector (Life Technolo-
gies) and transformed into One Shot® Top10 chemically 
competent E. coli (Life Technologies). Plasmids con-
taining each viral DNA insert were purified from trans-
formed E.coli using QIAprep® Miniprep (Qiagen) and 
sequenced using T3 and T7 primers (Genewiz). The 
complete HTLV-1NIH00261 genome has been assigned the 
GenBank accession number (KU214243).

Table 1  PCR primer pairs used for  amplification of  over-
lapping subgenomic PTLV-1 fragments

Fragment no. Name Primer sequences 5′–3′

1 Px 23 ACDFN Fwd: TCATTTCTACTCTCACA

LTR U5E Rev: CGCAGTTCAGGAGGCACCACAGGCG

2 LTR400-F Fwd: CATCCACGCCGGTTGAGTCGC

Gag1400-R Rev: GCTGGTGATGGAGGGAAGCTA

3 Gag1350-F Fwd: CAAAGACCTCCAAGACCTCCT

Pol2520-R Rev: TCTAGCCCAAGGACGGCTGGC

4 Pol AG 1 Fwd: GTCGTGATGCCTTACAACAATGCC

Pol AG 2 Rev: GGGCATGTAGCCAGACAAGTGGCC

5 SK54 Fwd: CTTCACAGTCTCTACTGTGC

SK111 Rev: GTGGTGAAGCTGCCATCGGGTTTT

6 SK110 Fwd: CCCTACAATCCAACCAGCTCAG

SG453 Rev: GCGGGATCCTAGGGTGGGAACAG

7 ENV 1 Fwd: TCAAGCTATAGTCTCCTCCCCCTG

ENV 2 Rev: GGGAGGTGTCGTAGCTGACGGAGG

8 Env3-F Fwd: ACAAACTGGAATCACCCTTGTTGC

SK44 Rev: GAGCCGATAACGCGTCCATCG

9 SK43 Fwd: CGGATACCCAGTCTACGTGT

Tax ddPCR-R Rev: TGAGGCCGTGTGAGAGTAGA
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Sequence analysis
Nucleotide identities were determined using Geneious 
v8.1.5 and genome open reading frames and structure 
were determined by MacVector v13.5.32. Since the num-
ber of complete PTLV-1 genomes available at GenBank 
is limited we restricted the phylogenetic analysis to the 
envelope (env) and LTR regions which have the highest 
representation of HTLV-1 and STLV-1 sequences at Gen-
Bank and have demonstrated utility for inferring PTLV-1 
evolutionary histories [3, 9–11]. A BLAST search of the 
GenBank database using the LTR and env sequences was 
done to identify highly related reference sequences for 
the analysis. Reference sequences were selected based on 
the BLAST quality scores (E value) and sequence length. 
Sequences were aligned in MEGA6 using the MUSCLE 
program [44] followed by manual editing. The best fitting 
distance model of nucleotide substitution for each align-
ment was inferred using the maximum likelihood (ML) 
method with goodness of fit measured by the Bayesian 
information criterion in MEGA6. The kimura-2 parameter 
(K2P) nucleotide substitution model with gamma (G) dis-
tributed rates gave the best fit to both datasets followed by 
the Hasegawa–Kishino–Yano (HKY) + G model. ML phy-
logenies were inferred using the K2P model implemented 
in MEGA6. 1000 nonparametric bootstrap replicates 
were used to assess the strength of the inferred relation-
ships and ML tree topologies. ML trees were visualized 
and edited with the Tree Explorer program in MEGA6. 
Bayesian inference was also performed using the program 
BEAST v1.8.2 on a subset of sequences identified as highly 
phylogenetically related to HTLV-1NIH00216 from the ML 
analysis using HKY + G model [45]. The smaller datasets 
were utilized to minimize computational algorithm com-
plexity and to maximize the alignment length and phy-
logenetic signal in the data. The selected sequences were 
re-aligned using MUSCLE and for the LTR resulted in a 
slightly longer alignment of 763 positions compared to 732 
positions with the larger dataset. The length of the smaller 
env dataset was unchanged due to the shorter length of 
some GenBank reference sequences included in the analy-
sis. For both alignments the Australomelanesian HTLV-1 
sequences were used as outgroups and we also included 
some cosmopolitan HTLV-1a for comparison. The follow-
ing parameters were used for the BEAST analysis: a log-
normal molecular clock, the HKY + G nucleotide model, 
a birth–death process tree prior, and a normal distribution 
of substitution rate (LTR, mean 2.67E−06, s.d. 4.5E−07; 
env, mean 4.01E−06, s.d. 7.45E−06) previously inferred 
for HTLV-1 vertical transmission [24]. Two independent 
100 million Markov chain Monte Carlo (MCMC) genera-
tions were done for each viral region with sampling every 
10,000th generation. Convergence of the MCMC was 
assessed by calculating the effective sampling size (ESS) of 

the runs using the program Tracer v1.6.0 (http://beast.bio.
ed.ac.uk/Tracer). All parameter estimates showed signifi-
cant ESSs >4000 indicating sufficient mixing. The tree with 
the maximum product of the posterior clade probabilities 
(maximum clade credibility tree) was chosen from the 
posterior distribution of 9001 sampled trees after burning 
in the first 1000 sampled trees with the program TreeAn-
notator version 1.8.2 [45].
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