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Abstract
Background: Chordomas of the skull base are rare locally aggressive neoplasms 
with a predilection for encapsulating critical neurovascular structures, bony 
destruction and irregular growth patterns, and from which patients succumb to 
recurrence and treatment failures.
Methods: A review of the medical literature is performed, using standard search 
engines and identifying articles related to skull base chordomas, surgery, radiation 
therapy, chemotherapy, molecular genetics, and prospective trials.
Results: A synthesis of the literature is presented, including sections on pathology, 
treatment, molecular genetics, challenges, and future directions.
Conclusion: Beyond an understanding of the current treatment paradigms for skull 
base chordomas, the reader gains insight into the collaborative approach applied 
to orphan diseases, of which chordomas is a prime exemplar.
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INTRODUCTION

Chordomas are rare, locally aggressive neoplasms thought 
to arise from notochordal remnants in the axial skeleton. 
In the skull base, they destroy bone, encapsulate 
critical neurovascular structures, and have irregular 
patterns of growth, rendering safe maximal surgical 
removal and effective radiation therapy challenging. 
In many ways, however, skull base chordomas are a 
paradigm for advancing progress in orphan diseases due 
to multi‑institutional collaboration. In this article, we 
review the current treatment paradigms for cranial base 
chordomas, outline the molecular biology and potential 

therapeutic targets, and discuss future directions for such 
collaboration and research.

OVERVIEW

Chordomas occur with an annual age‑adjusted rate of 
0.02/100,000 person years and account for 0.1% of all 
reported brain tumors in the United States, 2004‑2007.[13] 
The median survival based on Surveillance Epidemiology 
and End Results (SEER) data is 6.29 years,[49] although 
updated epidemiologic data suggest a significantly longer 
median survival longer in 1987 and later period compared 
with pre‑1987.[48] Weighted mean 5‑year overall and 
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progression‑free survival (PFS) are 78.4% and 50.8%, 
respectively, based on literature meta‑analysis data.[23] 
Sacral and cranial locations are the most frequent and 
occur with a roughly equal proportion.[49]

Virchow in 1846 is credited with first describing the 
physaliphorous cell, however, he believed these tumors 
were derived from a cartilaginous overgrowth at the base 
of the skull, and termed them “ecchondrosis physaliphora 
spheno‑occipitalis”.[95] It was Heinrich Müller in 1858 
who rejected Virchow’s theory of cartilaginous origin, and 
asserted correctly that chordomas arose from remnants 
of the primitive notochord, and termed these tumors 
“ecchordosis physaliphora spheno‑occipitalis”.[51] There 
have since been a number of indirect lines of evidence 
linking chordomas to the primitive notochord. Salisbury 
et al. noted morphologic patterns of arrangement of the 
cranial and caudal ends of the notochord, which they 
postulated could predispose to failure of involution and 
development of chordoma.[72] Similarly, intraosseous benign 
notochordal cell tumors follow a similar distribution as 
classic chordomas, suggesting a common origin.[20,98] Finally, 
transcription factor T, which is crucial for notochordal 
development, frequently demonstrates copy number 
variations in both sporadic and familial chordomas.[65,102]

Histologically, three types of chordoma are recognized 
by the World Health Organization: Classic chordoma, 
chondroid chordoma, and dedifferentiated chordoma.[50] 
Whereas classic chordoma displays typical physaliphorous 
cells [Figure 1], chondroid chordomas exhibit typical 
chordoma architecture with areas of cartilaginous hyaline 
stroma,[34] but with positive cytokeratin and epithelial 
membrane antigen immunoreactivity. Dedifferentiated 
chordomas are very rare and have been reported primarily 
in sacrococcygeal chordomas and in pediatric patients;[90] 
their histologic appearance is that of a high‑grade spindle 
cell sarcoma.[15]

Systemic metastases may occur in as many as 30% of 
patients,[14,26] although they tend to be more frequent 
in sacral than skull base chordomas.[94] The frequency 
of metastasis from all chordomas is substantially higher 
in the very young.[6] Drop metastases are also known 
to occur.[47,93] In the skull base, iatrogenic seeding of 
chordoma tissue along the surgical trajectory, including 

at the site of abdominal fat graft harvest, has been 
well‑documented.[3]

TREATMENT

Surgery
There is compelling evidence that en bloc surgical excision 
of chordomas confers long‑term recurrence‑free survival, 
based on experience with spinal column tumors.[7,99] 
Boriani et al. documented in their series that all patients 
undergoing intralesional resection in spinal chordomas 
recurred within 2 years, compared with 12/18 patients 
with en bloc resection who remained disease‑free after a 
mean follow‑up of 8 years.[7] In a systematic review of the 
literature, 119 primary chordomas of the spine undergoing 
en bloc surgical resection had a 5‑year recurrence‑free 
survival of 58.5%. The median time to recurrence was 
94 months with negative surgical margins, compared with 
50 months if the margins were positive.[16]

The vast majority of cranial base chordomas are not 
amenable to strict en bloc oncologic resection; instead 
an intralesional resection toward normal appearing 
bony margins is typically performed in order to avoid 
neurovascular complications. Nevertheless, maximal safe 
resection of skull base chordomas is generally advocated, 
although there has been limited evidence supporting this 
practice. In a recent meta‑analysis of the literature over 
the past 10 years, 23 studies incorporating 807 patients 
were combined to analyze the effect of complete 
resection on 5‑year overall and PFS.[23] Complete 
resection conferred a higher 5‑year PFS than incomplete 
resection based on a random effects model (mean 
difference in PFS 20.7%; 95% CI 6.57‑34.91%). Patients 
with incomplete resection were 3.83 times more likely 
to experience a recurrence (95% CI 1.63‑9.00) and 
5.85 times more likely to die (95% CI 1.40‑24.5) at 5 years 
versus patients with complete resection. In patients with 
subtotal resection, smaller residual tumor volume in the 
range of 25‑30 cm3 seems to confer a similar rate of local 
control with adjunctive radiation therapy.[2,38,63] In one 
study of 42 patients with skull base chordomas, a gross 
tumor volume ≤25 mL was associated with excellent local 
control using spot‑scanning‑based proton radiotherapy.[2]

Achieving aggressive removal of chordomas largely 
provided the impetus for pioneers in skull base surgery 
to develop and refine open approaches to the central 
skull base.[22] These include the extended sub frontal, 
frontotemporal orbitozygomatic transcavernous, 
subtemporal‑infratemporal, extreme lateral transcondylar, 
posterior transpetrosal, subtemporal‑transzygomatic, and 
Le Fort I transmaxillary approaches.[71] Depending on the 
extent of disease, in certain cases staged approaches are 
necessary to safely maximize surgical resection. In the 
largest surgical series of cranial base chordomas to date,[21] 
95 patients with skull base chordomas were treated from 

Figure 1: Histologic specimen stained with hematoxylin and eosin 
stain demonstrating the classic lobular architecture of chordoma, 
×10 (a) , composed of physaliphorous cells, ×60 (b) 

ba
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1988 to 2011; 5‑year overall and recurrence‑free survival 
were 74% ±  6% and 56% ±  8%. In 39 patients who were 
treated from 2000 to 2011, with a 70.5% rate of complete 
resection. In another large series by Sen et al.,[78] complete 
resection was achieved in 58% of 71 patients, with a 5‑year 
overall survival rate of 75%. The degree of surgical resection 
appeared to be most important determinant of survival, 
based on a multiple Cox proportional hazard model.

Recently a number of centers have published short‑term 
data regarding endoscopic endonasal resection of cranial 
base chordomas.[19,30,32,36,84,86] In chordomas affecting 
primarily the midline clivus and without significant 
lateral extension, an anterior trajectory via the endonasal 
endoscopic ventral approach is appealing. In a recent 
systematic review,[41] 639 patients across 26 studies who 
underwent open resection of skull base chordomas were 
compared with 16 studies and 127 patients in whom 
an endoscopic resection was performed. Mean tumor 
volume was lower in the endoscopic cohort, and there 
were decreased rates of petrous bone and dural invasion 
as well. In this carefully selected endoscopic group, the 
rate of complete resection was 61.0%, with a lower rate of 
cranial nerve deficits, meningitis, and mortality compared 
with the open group. Due to the short follow‑up in the 
endoscopic group, no progression‑free or overall survival 
data was compiled. Nevertheless, this early data suggests 
that for well selected chordomas, particularly those 
which are smaller and/or affecting the midline clivus, 
an endoscopic approach can achieve a similar rate of 
complete resection with low associated morbidity.

Radiation therapy
Despite an apparent benefit to maximal surgical removal 
of skull base chordomas, recurrence without adjuvant 
therapy remains high.[92] Radiation therapy is typically 
used for residual tumor following surgery, as well as for 
unresectable tumors or recurrent cases. The evidence 
supporting the use of radiation therapy following 
complete surgical removal is somewhat more debated,[39] 
however, is often nevertheless recommended and 
implemented.

Chordomas are radiosensitive tumors, with a clearly 
established dose‑response relationship and effective dose 
above 65 Gy.[60] Furthermore, these tumors typically 
abut critical structures such as the optic apparatus and 
brainstem, which need to be carefully spared during 
dosimetric planning. In light of the higher dose required, 
conformal radiation therapy, in particular proton beam 
radiation, has been the mainstay of adjuvant therapy 
following surgery. Proton beam therapy offers several 
theoretical advantages over photon‑based radiation, 
including an increased linear energy transfer in the 
Bragg peak region, and rapid dose fall‑off.[52] A typical 
radiotherapy dose is 74 Cobalt Gray equivalents (CGE) 
to the planning treatment volume, while limiting doses 

to the brainstem surface and optic apparatus to 60 CGE 
or less.[17,87] The 5‑year recurrence‑free survival using 
proton‑based therapy ranges from 59% to 73%.[12,38,52] 
Similar to proton beam therapy, carbon ions offer similar 
advantages relative to photon‑based treatment; however, 
carbon ion therapy may have a number of biological 
differences in vivo, including a higher relative biological 
effectiveness and reduced oxygen‑enhancement ratio 
in the tumor region.[25] This may be advantageous in 
chordomas, whose level of proliferation in vitro is enhanced 
in hypoxic conditions.[59] The 3 year recurrence‑free 
survival for skull base chordomas treated at carbon ion 
facilities in Germany and Japan ranged from 70.0% to 
80.6%.[75,85] There is currently an ongoing monocentric 
randomized clinical trial of proton versus carbon radiation 
therapy in newly diagnosed patients with chordoma of the 
skull base.[54]

Proton and/or carbon ion therapy, however, remains 
considerably more expensive than photon treatment, 
particularly in terms of investment cost,[61] and is less 
available in many parts of the world. Delivery of newer 
photon‑based radiotherapy techniques, especially 
intensity‑modulated radiation therapy (IMRT), has produced 
encouraging results in skull base chordomas, either alone or 
in combination with heavy particle therapy.[31,91] For smaller 
sized tumors, stereotactic radiosurgery may also play a role, 
and early results have suggested comparable outcomes to 
other radiation modalities for residual or recurrent cases.[40]

MOLECULAR GENETICS

With advances in molecular biology and sequencing 
capability, the field of molecularly targeted therapeutics 
has expanded with the development of drugs 
inhibiting pathways necessary for uncontrolled cell 
proliferation [Figure 2]. Due to chordoma’s relatively rare 
occurrence, knowledge of molecular targets specific to 
chordoma is limited and an area of ongoing research, but 
current discoveries have provided promising possibilities 
to be exploited as treatment options.

Brachyury
One such potential therapeutic target is the brachyury (T) 
gene, which codes for a transcription factor that is uniquely 
expressed in chordoma cells. Brachyury plays an important 
role during the development of the notochord in embryos 
but later remains unexpressed in normal tissue.[81] However, 
it has been shown that brachyury expression is uncommonly 
high exclusively in chordoma cells,[96] allowing it to become 
the differential between chordoma and other neoplasms 
with similar location and histology.[70,77]

A number of different mechanisms have been suggested 
to be the cause of brachyury expression in chordoma. It 
was demonstrated, in a familial chordoma study involving 
four families, to be due to duplication of a region in 
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6q27 containing the T gene.[101] In contrast, sporadic 
chordomas have been evidenced to have a much lower 
occurrence of copy number gain (CNG) of the T gene, 
with only 16 of 236 cases positive for T amplification 
in three separate cohorts,[43,65,80] supporting the view 
that CNG is not the cause of brachyury expression in 
the majority of chordomas. Instead, epigenetic factors 
may be behind the abnormal presence of brachyury 
in sporadic chordoma,[43] but further research is 
required to provide a more thorough understanding. 
Moreover, a common nonsynonymous single nucleotide 
polymorphism (SNP) (rs2305089) in brachyury was 
recently found to strongly associated with chordoma 
development.[62]

In addition to being an identifying marker for chordoma, 
brachyury also plays an important role in its pathogenesis. 
It was observed that when the brachyury gene was 
silenced in chordoma cell line JHC7, cells became more 
differentiated, displaying senescence and complete growth 
arrest and were unable to be passaged in vitro, indicating 
that without brachyury expression, they lose their 
tumorigenic capabilities. Similarly, brachyury knockdown 
in chordoma cell line UCH‑1 resulted in decreased cell 
proliferation and senescent appearance.[65] Although the 
specifics of its involvement remains unexplained, it is 
evident the expression of brachyury is strongly implicated 
in the oncogenesis of chordoma.

Since silencing of brachyury results in the interruption of 
cell growth in vitro, it presents itself as an ideal candidate 
as a molecular target for therapy. Moreover, targeted 
silencing of brachyury expression results in the abrogation 

of transcriptional activation of numerous downstream 
genes. What makes it an attractive target is that it is only 
expressed in tumor cells, meaning if it is targeted, the 
cancer cells will be preferentially affected while leaving 
the normal cells with little to no adverse side effects. 
With the lower chance of toxicity to normal cells in 
combination with the antitumourigenic qualities from 
its inhibition, brachyury targeting has great potential for 
the development of a molecular therapy for chordoma 
patients.

Receptor tyrosine kinases
Receptor tyrosine kinase (RTK) inhibitory drugs for cancer 
have experienced much advancement in recent years, with 
the sharp increase in our ability to sequence, and thus 
detect mutations in, RTK genes in tumor DNA. RTKs are 
proteins on the cell surface that interact with extracellular 
ligands to become activated and dimerize, which triggers 
phosphorylation of a downstream signaling protein and 
initiates a signaling pathway ultimately leading to a 
transcriptional change. In cancer cells, the transcriptional 
change most often gives rise to angiogenesis, cell 
proliferation or antiapoptosis, which all contribute to 
tumorigenesis. When an RTK is hyperactivated, its 
associated pathway also becomes constitutively active as 
well, leading to loss of control over cell proliferation and 
cancerous cell growth. The RTK can become hyperactive 
as a result of autocrine/paracrine loops, ligand or receptor 
overexpression, or gain of gene mutations.

One commonly targeted RTK in many cancers is the 
epidermal growth factor receptor (EGFR), which binds 
a number of ligands including EGF and transforming 

Figure 2: Epidermal growth factor receptor and platelet‑derived growth factor receptor signaling pathways in chordoma mediated 
by tyrosine kinases and downstream effectors. These molecules are potential therapeutic targets of targeted inhibition by cetuximab, 
erlotinib, gefitinib, imatinib, PI‑103, and rapamycin analogs 
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growth factor alpha (TGF‑α). A significant portion 
of chordomas have EGFR overexpression that causes 
increased initiation of cell proliferation, leading to higher 
degree of aggressive behavior of the tumor. This has 
been evidenced in a study where 69% of cases expressed 
EGFR and close to 40% of the chordomas tested had 
amplification of the gene.[79] Likewise, three other studies 
have seen a cumulative 43 of 54 cases positive for EGFR 
expression,[29,66,97] indicating that expression is frequently 
deregulated in chordoma.

Targeting EGFR in chordoma has only just begun, with 
four studies conducted thus far. The first (Hof et al.[35]) 
saw improvement in patients treated with a combination 
of cetuximab and gefitinib, both of which are EGFR 
inhibitors. Following the success seen in the first patient 
case, the same regimen of cetuximab and gefitinib was 
also administered in a patient with a recurrent chordoma 
and likewise regression of the tumor as well as a rapid 
improvement of the patient’s neurological function was 
observed.[44] Two cases of treatment with an alternative 
EGFR inhibitor, erlotinib, also showed significant 
response.[42,81] The successes seen with these EGFR 
inhibitors suggest that targeting EGFR in chordoma 
is an effective method of treatment that should be 
incorporated into the arsenal of therapies available for 
chordoma patients.

Another promising target therapy involves the 
platelet‑derived growth factor receptor (PDGFR). Similar 
to EGFR, this RTK can display oncogenic properties 
when hyperactivated, initiating cell proliferation and 
growth via the PI3K/AKT, RAS/ERK, or STAT pathways. 
Of the two different types of PDGFR, α and β, 
overexpression of the β variant is particularly common in 
chordomas[10,29,57,86] implicating it as an important driver 
for tumorigenesis. In particular, preferential PDGFR 
overexpression in the stromal component of tumor 
tissue with only diffuse expression in neoplastic cells 
was observed,[57] demonstrating that PDGFR signaling is 
most significant in the supporting structure of the tumor. 
Thus, PDGFR targeting therapies may lead to different 
responses depending on the stromal content in each 
chordoma case.

Trials of imatinib treatment, a PDGFR inhibitor, 
on chordoma patients first began in 2004 with a 
compassionate trial for six patients, of whom four were 
positive for PDGFR expression.[10] When response to 
the treatment was observed, the trial was increased to 
18 patients and preliminary results were reported.[86] 
Patients experienced nondimensional responses including 
decreased cellular density and less contrast enhancement 
on computed tomography (CT) scan. A minority 
of the patients also showed dimensional responses 
with decreased tumor size in magnetic resonance 
imaging (MRI) and positron emission tomography (PET) 

scan. Overall, tumors were observed to be responsive 
to imatinib for nearly 1 year, which is optimistic 
considering all cases were well advanced. When imatinib 
was tested in a Phase II trial of 56 chordoma cases, 
results were similar in that few dimensional responses 
were observed, with only 9 patients (20%) experiencing 
minor dimensional changes, but with an overall clinical 
benefit rate of 64%, and 70% of patients exhibiting stable 
disease.[83] A complication in an especially bulky tumor 
was found where imatinib treatment caused the tumor to 
undergo liquefaction, which led to septic complications 
and ultimately patient death.[11]

From the results observed in the imatinib trials, patients’ 
disease progression halted for a period of approximately 
9 months, accompanied with symptomatic improvement 
even in cases with no volumetric response. Particularly 
in the very advanced chordoma cases, where survival was 
predicted to be less than 1 year, the benefit of imatinib 
is evident. However, the limitations of this treatment 
are also exhibited clearly. Only a minority of cases 
showed decrease in tumor size, indicating that it does 
little in terms of dimensional response, reflecting on its 
inability to decrease cell numbers. This may be due to 
the preferential overexpression of PDGFR in stromal 
cells, thereby reducing the variety of tumor cells that are 
affected by the treatment. Nevertheless, benefits have 
been observed in patient cases thus far, demonstrating 
the effectiveness of imatinib overall as an antitumor 
therapy. Further study of imatinib in vivo will help in 
determining the extent of its efficacy in chordoma.

Downstream pathways
While RTK inhibitors have proven to be useful target 
therapies, the immense diversity of receptors in a 
cell makes it difficult to control cell growth through 
the inhibition of a single RTK. Many cancers possess 
multiple oncogenic mutated RTKs. If a particular RTK is 
inhibited, its function can be replaced by the increased 
activity of a different RTK able to activate the same 
downstream signaling pathway, thus leading to the onset 
of resistance to the RTK inhibitor. This drug resistance 
has been observed in various cancers and likewise in 
chordoma. Targeting signaling structures downstream 
in the pathway can overcome the problem of one RTK 
making up for the inhibition of another due to the fact 
that many of the RTK activated pathways converge into a 
common one downstream.

One such pathway that receives signals from a variety of 
different RTKs is the phosphoinositide‑3‑kinase (PI3K)/
AKT/mammalian target of rapamycin (mTOR) pathway. 
This pathway is often found to be constitutively activated 
in cancers because it is a mechanism that cells use to 
control proliferation, differentiation, and apoptosis. 
Ungoverned activation of the pathway is caused by an 
amalgamation of various mutations, including down 
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regulation of normally present suppressor proteins, 
hyperactivity of its associated RTKs, or an inability to 
deactivate constituents via the proper feedback loop. As 
a result of deregulation of this pathway, cells undergo 
unrestrained growth, leading to cancer and tumor 
formation.

In human chordoma, activation of this pathway has been 
observed. The majority of a 13 chordoma sample study 
had unusually high levels of activated AKT and mTOR,[76] 
and of another 50 chordoma cases, 92% and 27% were 
positive for presence of the two, respectively.[64] In 
addition, Han et al. observed that not only were AKT and 
mTOR constantly activated, but also that the regulator 
Phosphatase and tensin homolog (PTEN), which normally 
represses the activation of PI3K, was not detected, or was 
significantly reduced, in the chordoma samples.[33] It is 
evident from its ubiquity that the continual activation of 
the PI3K/AKT/mTOR pathway plays an important role in 
the pathogenesis of chordoma.

The PI3K/AKT/mTOR pathway has been targeted mainly 
through the inhibition of mTOR with rapamycin and its 
analogs. mTOR is targeted by rapamycin, as is apparent in 
its name, causing growth arrest in the early G1 phase and 
inhibiting translation initiation.[5,74] As a result, rapamycin 
and analogs such as CC1‑779 have been tested in many 
different cancers.[27] However, a limitation of targeting 
activated mTOR with rapamycin became clear when 
rapamycin and analog treated cells began to display buildup 
in levels of activated AKT that resulted from the disrupted 
overall pathway.[56] In order to remedy this unwanted 
increase in phosphorylated AKT, another rapamycin analog 
with dual inhibitory effects, PI‑103, was developed and 
tested on gliomas, exhibiting proliferative arrest.[28] PI‑103 
is an effective inhibitory drug because not only does it 
target mTOR, but also its upstream partner PI3K. As a 
result, increased levels of phosphorylated AKT are avoided, 

and improved therapeutic effectiveness is possible. When 
PI‑103 was tested in chordoma cell line UCH‑1, PI3K 
and mTOR inhibition, growth disruption and consequent 
apoptosis were observed.[76] Although it is evident that 
PI‑103 fulfills the requirements for a potential molecular 
therapy, further in vivo studies must be conducted before 
drug trials on chordoma patients can begin.

CHALLENGES AND FUTURE DIRECTIONS

The historical lack of major progress in improving 
outcomes for chordoma patients stems both from its rarity 
and difficulties in adapting standard paradigms to its basic 
scientific investigation. Chordoma is a recognized rare (or 
orphan) disease,[67] a fact which impacts acquisition of 
observational data and administration of clinical trials 
powered to provide meaningful outcomes analysis. The 
rarity of chordoma also impairs acquisition of research 
funding as more prevalent cancers take priority. Adding to 
the roadblocks associated with its orphan status, biological 
factors also impact basic science investigation and clinical 
translation. Chordoma cells are slow growing and cell lines 
have proven extremely difficult to establish. The resulting 
paucity of available cell lines significantly impedes basic 
investigation and development of informative animal 
models required to facilitate preclinical testing of new 
therapies. The recognition of this shortcoming has 
stimulated an increase in the number of chordoma cell 
lines reported in the literature [Table 1][8,18,37,45,58,59,68,69,73,100] 
including one with cancer stem‑like characteristics.[4,46] 
However, questions raised about the chordoma phenotype 
of several presumed chordoma cell lines[8] highlights the 
need for more investigation of phenotypic drift in culture 
and the generation of a consensus biomarker panel for 
designating bona fide chordoma cell lines. An additional 
interesting observation is the fact that the majority of 
reported chordoma cell lines are of sacral origin. Whether 

Table 1: Overview of chordoma cell lines

Cell line Source Brachyury Xenograft Number of references Comment

MUG‑Chor1[69] Sacral Gain at 6q27 locus Yes‑generates chordoma 2
CH22[45] Sacral + by IHC Yes 1
JHC7[37] Sacral +: Knockdown inhibits growth Yes 1
U‑CH2[8] Sacral yes ND 1 Chordoma 

phenotype[8]

CCL3[58] Sacral ND ND 2 Mouse origin[8]

CH8[100] Lumbar ND ND 1
EACH‑1[18] Scapula Yes Yes 1
CCL4[59] Metastasis; 

primary not stated
ND ND 3 Lacks some chordoma 

features[8]

GB 60[8,68] Skull base No ND 3 Lacks some chordoma 
features

U‑CH1[73] Sacral Yes; Gain 6q27 Yes 9 Chordoma 
phenotype[8]

IHC: Immunohistochemistry, ND: Not described
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this reflects true differences in biological behavior between 
sacral and skull base chordoma that affect their adaptation 
to cell culture or is simply a result of bias in acquisition 
is a puzzling question requiring additional investigation. 
As demonstrated in the case of brachyury,[65,102] continued 
molecular characterization of chordomas is anticipated 
to reveal additional targets for existing drugs or new 
therapies.[9,24,53] Finally, driven by these advances, the 
ongoing development and refinement of animal xenograft 
models[45,65,82] is expected to provide a platform for basic 
investigation of chordoma biology and preclinical system 
to test therapeutic approaches. Currently no genetically 
engineered mouse models of chordoma exists but would 
be of great value for understanding the cellular basis 
and molecular mechanisms driving chordoma formation, 
malignancy, and progression.

In response to the needs of orphan diseases such 
as chordoma, the National Institutes of Health 
(NIH) created the Office of Rare Diseases Research 
(ORDR)[55] and Therapeutics for Rare and Neglected 
Diseases (TRND).[89] However, currently only three 
extramurally supported NIH research projects of 
direct relevance to chordoma. In an effort to address 
ongoing deficiencies and accelerate progress in 
chordoma therapy, the Chordoma Foundation was 
cofounded in 2007 by Josh and Simone Sommer.[88] 
Among its many initiatives, the foundation maintains 
a central repository of chordoma biospecimens that 
are then distributed to support research studies 
abroad. The foundation has held three international 
research workshops thus far since its inception and 
supported research enabling the development of 
in vitro cell lines and animal models, screening of 
potential drugs to be implemented in clinical trials, 
genomic sequencing of chordoma cell lines, and seed 
funding for chordoma‑related research grants and 
publications. By recognizing the roadblocks to progress 
and galvanizing the research and clinical communities, 
this “grass roots” organization has laid the groundwork 
required to realize meaningful improvement in 
outcomes for chordoma patients. Lastly, AOSpine, the 
international spine surgery organization, recently began 
a primary spine tumor biobanking initiative (PST 
BioNet) to facilitate international collaboration and 
accumulation of rare surgical specimens that include 
chordomas.[1] These efforts will certainly accelerate and 
promote chordoma research. To continue along this 
positive trajectory, it is imperative for neurosurgeons 
who treat chordoma patients to actively participate in 
multi‑institutional registries, studies, and clinical trials.

CONCLUSION

As a result of their relative rarity and unfavorable location, 
the management of cranial base chordomas remains 

challenging. Refinements in open and endoscopic skull 
base approaches and improvements in stereotactic 
radiotherapy and radiosurgery techniques have facilitated 
local control and survival for new cases as well as at 
the time of recurrence. Nevertheless, many patients 
with chordoma ultimately recur and succumb to the 
disease. Through an increasing knowledge of tumor 
genetics and molecular biology, advances in laboratory 
techniques, new in vitro cell lines and xenograft models, 
preclinical screening for potential therapeutic agents, and 
collaboration between centers, an improved understanding 
of chordoma biology that can be translated into treatment 
paradigms will hopefully occur.
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